• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    黄河形成于何时?

    林旭 刘静 刘海金 尚敏

    林旭, 刘静, 刘海金, 尚敏, 2024. 黄河形成于何时?. 地球科学, 49(6): 2158-2185. doi: 10.3799/dqkx.2023.124
    引用本文: 林旭, 刘静, 刘海金, 尚敏, 2024. 黄河形成于何时?. 地球科学, 49(6): 2158-2185. doi: 10.3799/dqkx.2023.124
    Lin Xu, Liu Jing, Liu Haijin, Shang Min, 2024. When was the Yellow River Formed?. Earth Science, 49(6): 2158-2185. doi: 10.3799/dqkx.2023.124
    Citation: Lin Xu, Liu Jing, Liu Haijin, Shang Min, 2024. When was the Yellow River Formed?. Earth Science, 49(6): 2158-2185. doi: 10.3799/dqkx.2023.124

    黄河形成于何时?

    doi: 10.3799/dqkx.2023.124
    基金项目: 

    国家自然科学基金 41972212

    国家自然科学基金 42030305

    三峡库区地质灾害教育部重点实验室(三峡大学)开放研究基金 2023KDZ14

    湖北省楚天学者人才计划 8210403

    详细信息
      作者简介:

      林旭(1984-),男,博导,副教授,主要从事青藏高原隆升和中国大河起源研究. ORCID:0000-0001-7022-6708. E-mail:hanwuji-life@163.com

      通讯作者:

      尚敏,博士,副教授,主要从事区域地质与地质灾害发育相关性方面的研究工作. E-mail: summing@126.com

    • 中图分类号: P641

    When was the Yellow River Formed?

    • 摘要: 河流是塑造地表地貌的重要地质营力之一.认识大河的发育历史有助于提高人类对大河利用的效率和生态保护,从而更好地促进人类社会的发展.黄河是中华民族的母亲河,百余年来国内外研究者对其开展了广泛的研究,但对黄河何时形成及其具体的演化过程等问题至今都没有清晰的答案.鉴于此,本文在前期已经取得的研究结果基础上,广泛搜集和整理国内外研究者已发表的资料,重建黄河在新生代的演化过程,结果表明:青藏高原东北段古近纪发育沿着高原边界纵向流动的原黄河;中新世祁连山东段发育相互平行的河流汇入沉积中心陇西盆地,在晋陕峡谷北部和南部出现流向不同的大型河流,渤海湾盆地和南黄海盆地此时还未出现黄河物质,黄河在中新世进入分段演化阶段;上新世黄河已经连通西宁盆地、兰州盆地、银川盆地和河套盆地,而贵德盆地和共和盆地依然存在内流水系,此时黄河上游还未深入青藏高原东北段更深的腹地.晋陕峡谷南北异向的黄河格局依然存在.三门峡盆地仍然被大型古湖占据,黄河物质未出现在渤海湾盆地和南黄海盆地.上新世是黄河完成最后连通的重要转折阶段;早更新世黄河完成上游、中游和下游的连通,类似现今串联青藏高原、黄土高原和华北平原,东流入海的黄河此时形成.在晚更新世,受气候变化的影响,黄河各段进入新一期演化过程,局部河道再次被古湖占据,在降水丰沛期完成各河道的再次连通.构造和气候的共同作用对黄河的发育具有重要影响.河流水系腹地高大地形的维持是水系发展的前提条件之一.尤其是中新世和上新世祁连山东段的隆升,塑造了黄河在青藏高原的河流基本形态.鄂尔多斯高原周围的贺兰山、阴山和秦岭的隆升,造就了银川、河套和渭河这些深大地堑,在气候干旱期成为限制黄河全线贯通的重要因素.第四纪是东亚气候变化频繁的时期,黄河的最终贯通与气候变化过程密切相关.反过来讲,对黄河的形成与演化过程的研究,可以有效揭示我国北方新生代的构造演化、气候变化过程.

       

    • 图  1  黄河在全球构造背景下的位置

      Fig.  1.  Location of the Yellow River in the global tectonic context

      图  2  黄河在全球气候背景下的位置

      Fig.  2.  Location of the Yellow River in the global climate context

      图  3  黄河流域主要造山带和沉积盆地

      从源头到河口镇为黄河上游,河口镇到花园口为黄河中游,花园口到入海口为黄河下游

      Fig.  3.  Main orogenic belts and sedimentary basins in the Yellow River basin

      图  4  青藏高原东北段沉积盆地

      a.共和盆地、贵德盆地和西宁盆地地质图(Lin et al., 2021);b.贵德盆地和西宁盆地中新统时的地层(Yang et al., 2017a);c.贵德盆地和西宁盆地上新统时的地层(Yang et al., 2017a

      Fig.  4.  Sedimentary basins of the northeastern Tibetan Plateau

      图  5  青藏高原东北缘沉积盆地柱状图

      a.共和盆地(Zhang et al., 2012);b.贵德盆地(Fang et al., 2005);c.西宁盆地(Fang et al., 2019

      Fig.  5.  Histogram of sedimentary basins in the northeastern margin of the Tibetan Plateau

      图  6  兰州盆地

      a.兰州盆地地层分布图(Guo et al., 2018Zhang et al., 2018);b.兰州盆地地层柱状图(Guo et al., 2018Zhang et al., 2018

      Fig.  6.  Lanzhou basin

      图  7  银川盆地

      a.银川盆地地质图(黄兴富,2014);b.银川盆地新生代地层柱状图(黄兴富,2014);c.银川盆地剖面图(Shi et al., 2020

      Fig.  7.  Yinchuan basin

      图  8  河套盆地

      a.河套盆地构造单元划分图(周志成,2020);b.河套盆地横剖面图(张锐锋等,2020);c.河套盆地新生代地层柱状图(黄兴富,2014

      Fig.  8.  Hetao basin

      图  9  晋陕峡谷地质图(据李智佩等,2019)

      Fig.  9.  Geological map of Jinshan Gorge (modified from Li et al., 2019)

      图  10  渭河盆地

      a.渭河盆地构造单元划分图(李智超,2017);b.渭河盆地横剖面图(李智超,2017);c.渭河盆地新生代地层柱状图(李智超,2017

      Fig.  10.  Weihe basin

      图  11  三门峡盆地

      a.三门峡盆地构造单元划分(王丹丹等,2021);b.三门峡盆地横剖面(国家地震局,1988);c.三门峡盆地地层柱状图(Liu et al., 2019王丹丹等,2021Xiao et al., 2021

      Fig.  11.  Sanmenxia basin

      图  12  渤海湾盆地

      a.渤海湾盆地构造单元划分图(邱燕等,2016);b.渤海湾盆地横剖面图(Qi and Yang, 2010);c.渤海湾盆地新生代地层柱状图(邱燕等,2016

      Fig.  12.  Bohai Bay basin

      图  13  苏北-南黄海盆地

      a.苏北-南黄海盆地构造单元划分图;b.苏北-南黄海盆地横剖面图;c.苏北-南黄海盆地新生代地层柱状图;图据姚翔(2019)

      Fig.  13.  North Jiangsu-South Yellow Sea basin

      图  14  大河形成时代研究方法

      a.大河源-汇系统.通过对河流下游沉积盆地内的地层开展相关物源示踪研究,结合沉积地层的年龄,可以有效约束大河的形成时代;b.河流阶地是河流地貌的重要组成部分,它保存了河流的演化记录,通过对河流阶地上覆地层以及阶地自身的沉积时代的约束,可以限定河流阶地的形成时代

      Fig.  14.  Research methods in the formation of big rivers

      图  15  黄河流域主要研究结果位置分布

      图中数字编号与正文中引用相对应

      Fig.  15.  Location distribution map of major research results in the Yellow River basin

      图  16  古近纪原黄河演化重建图

      Fig.  16.  Paleogene proto-Yellow River evolution reconstruction map

      图  17  新近纪和第四纪黄河演化过程

      a.中新世各段黄河开始出现,进入始黄河演化阶段;b.上新世黄河部分河段完成整合,进入最终连接的转折阶段;c.第四纪早期进入黄河形成阶段;d.第四纪晚期受气候变化的影响,黄河进入调整阶段

      Fig.  17.  Evolution of the Yellow River in the Neogene and Quaternary

      图  18  构造和气候事件影响黄河发育

      a.新生代黄河流域主要的构造和气候事件;b.古近纪原黄河沿着青藏高原东北段发育;c.中新世现代黄河开始发育;d.上新世黄河部分河段开始连通,处于转折阶段;e.更新世黄河完成贯通,进入形成阶段

      Fig.  18.  Structural and climatic events affecting the development of the Yellow River

    • Bao, G. D., Chen, H., Zhao, X. T., 2020. Late Miocene Yellow River Formation in Qingtongxia Area, North China: Detrital Zircon and Heavy Mineral Analysis at Niushou Mountain, Ningxia. Geological Journal, 55(11): 7304-7321. https://doi.org/10.1002/gj.3910
      Bovet, P. M., Ritts, B. D., Gehrels, G., et al., 2009. Evidence of Miocene Crustal Shortening in the North Qilian Shan from Cenozoic Stratigraphy of the Western Hexi Corridor, Gansu Province, China. American Journal of Science, 309(4): 290-329. https://doi.org/10.2475/00.4009.02
      Brookfield, M. E., 1998. The Evolution of the Great River Systems of Southern Asia during the Cenozoic India-Asia Collision: Rivers Draining Southwards. Geomorphology, 22(3-4): 285-312. https://doi.org/10.1016/s0169-555x(97)00082-2
      Cao, X. Z., Li, S. Z., Xu, L. Q., et al., 2015. Mesozoic-Cenozoic Evolution and Mechanism of Tectonic Geomorphology in the Central North China Block: Constraint from Apatite Fission Track Thermochronology. Journal of Asian Earth Sciences, 114: 41-53. https://doi.org/10.1016/j.jseaes.2015.03.041
      Cai, X. M., Guo, G. X., Luan, Y. B., et al., 2010. Forming Time for the Yongdinghe River. Quaternary Sciences, 30(1): 167-174(in Chinese with English abstract). doi: 10.3969/j.issn.1001-7410.2010.01.17
      Chang, H., Jin, Z. D., An, Z. S., 2009. Sedimentary Evidences of the Uplift of the Qinghai Nanshan (the Mountains South to Qinhai Lake) and Its Implication for Structural Evolution of the Lake Qinghai-Gonghe Basin. Geological Review, 55(1): 49-57(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2009.01.006
      Cox, K. G., 1989. The Role of Mantle Plumes in the Development of Continental Drainage Patterns. Nature, 342: 873-877. https://doi.org/10.1038/342873a0
      Clinkscales, C., Kapp, P., Wang, H. Q., 2020. Exhumation History of the North-Central Shanxi Rift, North China, Revealed by Low-Temperature Thermochronology. Earth and Planetary Science Letters, 536: 116146. https://doi.org/10.1016/j.epsl.2020.116146
      Craddock, W. H., Kirby, E., Harkins, N. W., et al., 2010. Rapid Fluvial Incision along the Yellow River during Headward Basin Integration. Nature Geoscience, 3: 209-213. https://doi.org/10.1038/ngeo777
      Chen, F. H., Fan, Y. X., Chun, X., et al., 2008. Preliminary Research on Megalake Jilantai-Hetao in the Arid Areas of China during the Late Quaternary. Chinese Science Bulletin, 53(11): 1725-1739. https://doi.org/10.1007/s11434-008-0227-3
      Chen, Q., Liu, X. M., Zhao, G. Y., et al., 2022. 0.2 Ma or 1.2 Ma? Timing of the Linking of the Middle and Lower Reaches of the Yellow River Inferred from Loess-Palaeosol Sequences. Geophysical Research Letters, 49(6): e2021GL097510. https://doi.org/10.1029/2021gl097510
      Cheng, F., Garzione, C. N., Jolivet, M., et al., 2019a. Initial Deformation of the Northern Tibetan Plateau: Insights from Deposition of the Lulehe Formation in the Qaidam Basin. Tectonics, 38(2): 741-766. https://doi.org/10.1029/2018tc005214
      Cheng, Y., Li, X. Q., Shu, J. W., et al., 2019b. Sedimentary Evolution and Transgressions of the Western Subei Basin in Eastern China since the Late Pliocene. Acta Geologica Sinica (English Edition), 93(1): 155-166. https://doi.org/10.1111/1755-6724.13774
      Deng, K., Yang, S. Y., Li, C., et al., 2017. Detrital Zircon Geochronology of River Sands from Taiwan: Implications for Sedimentary Provenance of Taiwan and Its Source Link with the East China Mainland. Earth-Science Reviews, 164: 31-47. https://doi.org/10.1016/j.earscirev.2016.10.015
      Enkelmann, E., Ratschbacher, L., Jonckheere, R., et al., 2006. Cenozoic Exhumation and Deformation of Northeastern Tibet and the Qinling: Is Tibetan Lower Crustal Flow Diverging around the Sichuan Basin? Geological Society of America Bulletin, 118(5-6): 651-671. https://doi.org/10.1130/b25805.1
      Fan, L. G., Meng, Q. R., Wu, G. L., et al., 2019. Paleogene Crustal Extension in the Eastern Segment of the NE Tibetan Plateau. Earth and Planetary Science Letters, 514: 62-74. https://doi.org/10.1016/j.epsl.2019.02.036
      Fang, X. M., Yan, M. D., van der Voo, R., et al., 2005. Late Cenozoic Deformation and Uplift of the NE Tibetan Plateau: Evidence from High-Resolution Magnetostratigraphy of the Guide Basin, Qinghai Province, China. Geological Society of America Bulletin, 117(9-10): 1208-1225. https://doi.org/10.1130/b25727.1
      Fang, X. M., Fang, Y. H., Zan, J. B., et al., 2019. Cenozoic Magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and Its Constraints on Paleontological, Sedimentological and Tectonomorphological Evolution. Earth-Science Reviews, 190: 460-485. https://doi.org/10.1016/j.earscirev.2019.01.021
      Fu, X. W., Zhu, W. L., Geng, J. H., et al., 2021. The Present-Day Yangtze River Was Established in the Late Miocene: Evidence from Detrital Zircon Ages. Journal of Asian Earth Sciences, 205: 104600. https://doi.org/10.1016/j.jseaes.2020.104600
      Gao, H. S., Li, Z. M., Liu, X. F., et al., 2017. Fluvial Terraces and Their Implications for Weihe River Valley Evolution in the Sanyangchuan Basin. Science China: Earth Sciences, 60(3): 413-427. https://doi.org/10.1007/s11430-016-5037-8
      Grimaud, J. L., Chardon, D., Beauvais, A., 2014. Very Long-Term Incision Dynamics of Big Rivers. Earth and Planetary Science Letters, 405: 74-84. https://doi.org/10.1016/j.epsl.2014.08.021
      Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., et al., 2002. Onset of Asian Desertification by 22 Myr Ago Inferred from Loess Deposits in China. Nature, 416: 159-163. https://doi.org/10.1038/416159a
      Guo, Z. T., Sun, B., Zhang, Z. S., et al., 2008. A Major Reorganization of Asian Climate by the Early Miocene. Climate of the Past, 4: 153-174. https://doi.org/10.5194/CP-4-153-2008
      Guo, B. H., Liu, S. P., Peng, T. J., et al., 2018. Late Pliocene Establishment of Exorheic Drainage in the Northeastern Tibetan Plateau as Evidenced by the Wuquan Formation in the Lanzhou Basin. Geomorphology, 303: 271-283. https://doi.org/10.1016/j.geomorph.2017.12.009
      Harkins, N., Kirby, E., Heimsath, A., et al., 2007. Transient Fluvial Incision in the Headwaters of the Yellow River, Northeastern Tibet, China. Journal of Geophysical Research: Earth Surface, 112(F3): 1-21. https://doi.org/10.1029/2006jf000570
      He, M. Y., Mei, X., Zhang, X. H., et al., 2019. Provenance Discrimination of Detrital Zircon U-Pb Dating in the Core CSDP-1 in the Continental Shelf of South Yellow Sea. Journal of Jilin University (Earth Science Edition), 49(1): 85-95(in Chinese with English abstract).
      Hu, X. F., Kirby, E., Pan, B. T., et al., 2011. Cosmogenic Burial Ages Reveal Sediment Reservoir Dynamics along the Yellow River, China. Geology, 39(9): 839-842 doi: 10.1130/G32030.1
      Hu, Z. B., Pan, B. T., Guo, L. Y., et al., 2016. Rapid Fluvial Incision and Headward Erosion by the Yellow River along the Jinshaan Gorge during the Past 1.2 Ma as a Result of Tectonic Extension. Quaternary Science Reviews, 133: 1-14. https://doi.org/10.1016/j.quascirev.2015.12.003
      Hu, Z. B., Pan, B. T., Bridgland, D., et al., 2017. The Linking of the Upper-Middle and Lower Reaches of the Yellow River as a Result of Fluvial Entrenchment. Quaternary Science Reviews, 166: 324-338. https://doi.org/10.1016/j.quascirev.2017.02.026
      Hu, X. F., Chen, D. B., Pan, B. T., et al., 2019a. Sedimentary Evolution of the Foreland Basin in the NE Tibetan Plateau and the Growth of the Qilian Shan since 7 Ma. Geological Society of America Bulletin, 131(9-10): 1744-1760. https://doi.org/10.1130/b35106.1
      Hu, Z. B., Li, M. H., Dong, Z. J., et al., 2019b. Fluvial Entrenchment and Integration of the Sanmen Gorge, the Lower Yellow River. Global and Planetary Change, 178: 129-138. https://doi.org/10.1016/j.gloplacha.2019.04.010
      Huang, X. F., 2014. Tectonic Evolution of Cenozoic Faulted Basin in the Northwestern Margin of Ordos Block (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Huang, X. T., Mei, X., Yang, S. Y., et al., 2021. Disentangling Combined Effects of Sediment Sorting, Provenance, and Chemical Weathering from a Pliocene-Pleistocene Sedimentary Core (CSDP-1) in the South Yellow Sea. Geochemistry, Geophysics, Geosystems, 22(5): e2020GC009569. https://doi.org/10.1029/2020gc009569
      Huang, X. M., 2022. Chronology of Fluvial, Lacustrine and Aeolian Sediments in the Upper Reaches of the Yellow River and Implications for Drainage Evolution (Dissertation). Shantou University, Shantou(in Chinese with English abstract).
      Jia, L. Y., Hu, D. G., Wu, H. H., et al., 2017. Yellow River Terrace Sequences of the Gonghe-Guide Section in the Northeastern Qinghai-Tibet: Implications for Plateau Uplift. Geomorphology, 295: 323-336. https://doi.org/10.1016/j.geomorph.2017.06.007
      Ju, Y. W., Yu, K., Wang, G. Z., et al., 2021. Coupling Response of the Meso-Cenozoic Differential Evolution of the North China Craton to Lithospheric Structural Transformation. Earth-Science Reviews, 223: 103859. https://doi.org/10.1016/j.earscirev.2021.103859
      Kong, P., Jia, J., Zheng, Y., 2014. Time Constraints for the Yellow River Traversing the Sanmen Gorge. Geochemistry, Geophysics, Geosystems, 15(2): 395-407. https://doi.org/10.1002/2013gc004912
      Li, J. J., 1991. The Environmental Effects of the Uplift of the Qinghai-Xizang Plateau. Quaternary Science Reviews, 10(6): 479-483. https://doi.org/10.1016/0277-3791(91)90041-r
      Li, J. J., Fang, X. M., 1999. Uplift of the Tibetan Plateau and Environmental Changes. Chinese Science Bulletin, 44(23): 2117-2124. https://doi.org/10.1007/bf03182692
      Li, L., Zhong, D. L., 2006. Fission Track Evidence of Cenozoic Uplifting Events of the Taishan Mountain, China. Acta Petrologica Sinica, 22(2): 457-464(in Chinese with English abstract).
      Li, J. J., Fang, X. M., Song, C. H., et al., 2014. Late Miocene-Quaternary Rapid Stepwise Uplift of the NE Tibetan Plateau and Its Effects on Climatic and Environmental Changes. Quaternary Research, 81(3): 400-423. https://doi.org/10.1016/j.yqres.2014.01.002
      Li, B. F., Sun, D. H., Xu, W. H., et al., 2017. Paleomagnetic Chronology and Paleoenvironmental Records from Drill Cores from the Hetao Basin and Their Implications for the Formation of the Hobq Desert and the Yellow River. Quaternary Science Reviews, 156: 69-89. https://doi.org/10.1016/j.quascirev.2016.11.023
      Li, Z. P., Wang, H. L., Chen, X. L., et al., 2019. Geological Map of the People's Republic of China (Northwest China, 1∶1 500 000). Geological Publishing House, Beijing(in Chinese).
      Li, X. M., Zhang, H. P., Wang, Y. Z., et al., 2020a. Inversion of Bedrock Channel Profiles in the Daqing Shan in Inner Mongolia, Northern China: Implications for Late Cenozoic Tectonic History in the Hetao Basin and the Yellow River Evolution. Tectonophysics, 790: 228558. https://doi.org/10.1016/j.tecto.2020.228558
      Li, Z. Y., Zhang, K., Liang, H., et al., 2020b. Initial Incision of the Jinshan Gorge of the Yellow River, China, Constrained by Terrestrial In Situ Cosmogenic Nuclides Chronology. Quaternary International, 550: 111-119. https://doi.org/10.1016/j.quaint.2020.03.047
      Li, W. D., Zhao, X. T., Yang, Y., et al., 2020. Formation Age and Provenance Analysis of the Gravel Layer in the Yellow River Terraces of the Hetao Basin. Acta Geoscientica Sinica, 41(4): 515-524(in Chinese with English abstract).
      Li, X. M., 2020. Bedrock Rivers in the Daqing Shan in Inner Mongolia, Northern China: Implications for Late Cenozoic Tectonic History in the Hetao Basin and the Yellow River Evolution (Dissertation). China Earthquake Administration, Beijing(in Chinese with English abstract).
      Li, Z. Y., Li, Y. X., Li, W. H., et al., 2021. Sedimentary Characteristics of Paleogene-Neogene in Fenwei Basin. Chinese Journal of Geology (Scientia Geologica Sinica), 56(4): 1120-1133(in Chinese with English abstract).
      Li, Z. Y., Zhang, K., Liang, H., et al., 2022. Large River Chronology along the Jinshaan Gorge on the Yellow River and Its Implications for Initialization. Geomorphology, 400: 108092. https://doi.org/10.1016/j.geomorph.2021.108092
      Liang, H., Zhang, K., Fu, J. L., et al., 2015. Bedrock River Incision Response to Basin Connection along the Jinshan Gorge, Yellow River, North China. Journal of Asian Earth Sciences, 114: 203-211. https://doi.org/10.1016/j.jseaes.2015.07.010
      Lin, A. M., Yang, Z. Y., Sun, Z. M., et al., 2001. How and when Did the Yellow River Develop Its Square Bend? Geology, 29(10): 951. https://doi.org/10.1130/0091-7613(2001)0290951:hawdty>2.0.co;2
      Lin, X. B., Chen, H. L., Wyrwoll, K. H., et al., 2010. Commencing Uplift of the Liupan Shan since 9.5 Ma: Evidences from the Sikouzi Section at Its East Side. Journal of Asian Earth Sciences, 37(4): 350-360. https://doi.org/10.1016/j.jseaes.2009.09.005
      Lin, X., Tian, Y. T., Donelick, R. A., et al., 2019. Mesozoic and Cenozoic Tectonics of the Northeastern Edge of the Tibetan Plateau: Evidence from Modern River Detrital Apatite Fission-Track Age Constraints. Journal of Asian Earth Sciences, 170: 84-95. https://doi.org/10.1016/j.jseaes.2018.10.028
      Lin, X., Jolivet, M., Jing, L. Z., et al., 2021. Mesozoic-Cenozoic Cooling History of the Eastern Qinghai Nan Shan (NW China): Apatite Low-Temperature Thermochronology Constraints. Palaeogeography, Palaeoclimatology, Palaeoecology, 572: 110416. https://doi.org/10.1016/j.palaeo.2021.110416
      Lin, X., Jolivet, M., Jing, L. Z., et al., 2022. The Formation of the North Qilian Shan through Time: Clues from Detrital Zircon Fission-Track Data from Modern River Sediments. Geosciences, 12(4): 166. https://doi.org/10.3390/geosciences12040166
      Lin, X., Li, L. L., Liu, H. J., et al., 2022a. Sediments from the Upper Reaches of Yellow River Did Not Enter into Shanxi-Shaanxi Gorge in the Neogene. Journal of Palaeogeography, 24(3): 568-58(in Chinese with English abstract).
      Lin, X., Liu, H. J., Liu, J., et al., 2022b. The Yellow River Did Not Enter the Bohai Bay Basin during theMiocene: Constraints from Detrital Zircon U-Pb Ages. Acta Geologica Sinica, 96(7): 2506-2518(in Chinese with English abstract).
      Lin, X., Wu, L., Jolivet, M., et al., 2022c. Apatite(U-Th)/He Thermochronology Evidence for Two Cenozoic Denudation Events in Eastern Part of Sulu Orogenic Belt. Earth Science, 47(4): 1162-1176(in Chinese with English abstract).
      Lin, X., Li, L. L., Liu, J., et al., 2022d. The Yangtze River Contributed Detrital Materials to the Jianghan Basin during the Early Pleistocene: Constraints From Detrital Zircon U-Pb Ages. Earth Sciences(in press)(in Chinese with English abstract).
      Lin, X., Liu, J., Liu, W. M., et al., 2023. Development and Evolution of the Yellow River and Yangtze River. Geological Publishing House, Beijing(in Chinese).
      Liu, J., Zhang, J. Y., Ge, Y. K., et al., 2018. Tectonic Geomorphology: An Interdisciplinary Study of the Interaction among Tectonic Climatic and Surface Processes. Chinese Science Bulletin, 63(30): 3070-3088(in Chinese). doi: 10.1360/N972018-00498
      Liu, J., Chen, X. Q., Shi, W., et al., 2019. Tectonically Controlled Evolution of the Yellow River Drainage System in the Weihe Region, North China: Constraints from Sedimentation, Mineralogy and Geochemistry. Journal of Asian Earth Sciences, 179: 350-364. https://doi.org/10.1016/j.jseaes.2019.05.008
      Liu, J. H., Zhang, P. Z., Zheng, D. W., et al., 2010. Pattern and Timing of Late Cenozoic Rapid Exhumation and Uplift of the Helan Mountain, China. Science China: Earth Sciences, 53(3): 345-355. https://doi.org/10.1007/s11430-010-0016-0
      Liu, T., Ding, Z. L., 1998. Chinese Loess and the Paleomonsoon. Annual Review of Earth and Planetary Sciences, 26: 111-145. https://doi.org/10.1146/annurev.earth.26.1.111
      Liu, Y. M., 2020. Neogene Fluvial Sediments in the Northern Jinshaan Gorge, China: Implications for Early Development of the Yellow River since 8 Ma and Its Response to Rapid Subsidence of the Weihe-Shanxi Graben. Palaeogeography, Palaeoclimatology, Palaeoecology, 546: 109675. https://doi.org/10.1016/j.palaeo.2020.109675
      Liu, J., Zhang, J. Q., Miao, X. D., et al., 2020. Mineralogy of the Core YRD-1101 of the Yellow River Delta: Implications for Sediment Origin and Environmental Evolution during the Last ~1.9 Myr. Quaternary International, 537: 79-87. https://doi.org/10.1016/j.quaint.2019.12.025
      Liu, Y. M., Rui, X. L., Li, Y. L., 2022a. Long-Term Development Archive of the Yellow River since the Neogene in the Central Jinshaan Gorge, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 591: 110899. https://doi.org/10.1016/j.palaeo.2022.110899
      Liu, J., Wang, P., Chen, X. Q., et al., 2022b. The Changes in Drainage Systems of Weihe Basin and Sanmenxia Basin since Late Pliocene Give New Insights into the Evolution of the Yellow River. Frontiers in Earth Science, 9: 1401. https://doi.org/10.3389/feart.2021.820674
      Liu, Y., Liu, X. B., Wang, S. J., et al., 2022c. Late Cenozoic Channel Migration of the Proto-Yangtze River in the Delta Region: Insights from Cosmogenic Nuclide Burial Dating of Onshore Boreholes. Geomorphology, 407: 108228. https://doi.org/10.1016/j.geomorph.2022.108228
      Lu, H., Wang, X., An, Z., et al. 2004. Geomorphologic Evidence of Phased Uplift of the Northeastern Qinghai-Tibet Plateau since 14 Million Years Ago. Science China: Earth Sciences, 47(9): 822-833.
      Lu, H. J., Sang, S. P., Wang, P., et al., 2022. Initial Uplift of the Qilian Shan, Northern Tibet since ca. 25 Ma: Implications for Regional Tectonics and Origin of Eolian Deposition in Asia. Geological Society of America Bulletin, 134(9-10): 2531-2547. https://doi.org/10.1130/b36242.1
      Lu, H. Y., Zhang, H. Z., Feng, H., et al., 2023. Landform Evolution in Asia during the Cenozoic Revealed by Formation of Drainages of Wei River and Indus River. Palaeogeography, Palaeoclimatology, Palaeoecology, 619: 111516. https://doi.org/10.1016/j.palaeo.2023.111516
      Lutgens, F. K., Tarbuck, E. J., Tasa, D. G., 2013. Foundations of Earth Science: Pearson New International Edition. Pearson Higher Education. Upper Saddle River, Prentice Hall, U. S. A. .
      Miall, A., 2006. How Do we Identify Big Rivers? And How Big Is Big? Sedimentary Geology, 186: 39-50. https://doi.org/10.1016/j.sedgeo.2005.10.001
      Ma, Z. H., Peng, T. J., Feng, Z. T., et al., 2023. Tectonic and Climate Controls on River Terrace Formation on the Northeastern Tibetan Plateau: Evidence from a Terrace Record of the Huangshui River. Quaternary International, 656: 16-25. https://doi.org/10.1016/j.quaint.2022.11.004
      Métivier, F., Gaudemer, Y., Tapponnier, P., et al., 1999. Mass Accumulation Rates in Asia during the Cenozoic. Geophysical Journal International, 137(2): 280-318. https://doi.org/10.1046/j.1365-246x.1999.00802.x
      Meng, K., Wang, E., Chu, J. J., et al., 2020. Late Cenozoic River System Reorganization and Its Origin within the Qilian Shan, NE Tibet. Journal of Structural Geology, 138: 104128. https://doi.org/10.1016/j.jsg.2020.104128
      Miao, Y. F., Fang, X. M., Sun, J. M., et al., 2022. A New Biologic Paleoaltimetry Indicating Late Miocene Rapid Uplift of Northern Tibet Plateau. Science, 378(6624): 1074-1079. https://doi.org/10.1126/science.abo2475
      National Seismological Bureau, 1988. Active fault system around Ordos Massif. Seismological Press, Beijing(in Chinese).
      Nie, J. S., Stevens, T., Rittner, M., et al., 2015. Loess Plateau Storage of Northeastern Tibetan Plateau-Derived Yellow River Sediment. Nature Communications, 6: 8511. https://doi.org/10.1038/ncomms9511
      Pan, B. T., 1994. A Study on the Geomorphic Evolution and Development of the Upper Reaches of Yellow River in Guide Basin. Arid Land Geography, 17(3): 43-50(in Chinese with English abstract).
      Pan, B. T., Su, H., Hu, Z. B., et al., 2009. Evaluating the Role of Climate and Tectonics during Non-Steady Incision of the Yellow River: Evidence from a 1.24 Ma Terrace Record near Lanzhou, China. Quaternary Science Reviews, 28(27-28): 3281-3290. https://doi.org/10.1016/j.quascirev.2009.09.003
      Perrineau, A., van der Woerd, J., Gaudemer, Y., et al., 2011. Incision Rate of the Yellow River in Northeastern Tibet Constrained by 10 and 26 Cosmogenic Isotope Dating of Fluvial Terraces: Implications for Catchment Evolution and Plateau Building. Geological Society, London, Special Publications, 353(1): 189-219. https://doi.org/10.1144/sp353.10
      Pan, B. T., Hu, Z. B., Hu, X. F., et al., 2012. Time-Slice of the Fluvial Evolution in the Northern Jinshaan Gorge during Late Cenozoic. Quaternary Sciences, 32(1): 111-121(in Chinese with English abstract). doi: 10.3969/j.issn.1001-7410.2012.01.12
      Peng, H., Wang, J., Liu, C., et al., 2022. Mesozoic Exhumation and ca. 10 Ma Reactivation of the Southern Yin Shan, North China, Revealed by Low-Temperature Thermochronology. Tectonophysics, 823: 229189. https://doi.org/10.1016/j.tecto.2021.229189
      Potter, P. E., 1978. Significance and Origin of Big Rivers. The Journal of Geology, 86(1): 13-33. https://doi.org/10.1086/649653
      Polyak, L., Best, K. M., Crawford, K. A., et al., 2013. Quaternary History of Sea Ice in the Western Arctic Ocean Based on Foraminifera. Quaternary Science Reviews, 79: 145-156. https://doi.org/10.1016/j.quascirev.2012.12.018
      Pumpelly, R., 1867. Geological Researches in China, Mongolia, and Japan, during the Years 1862 to 1865. Smithsonian Institution, New York.
      Qi, J., Yang, Q., 2010. Cenozoic Structural Deformation and Dynamic Processes of the Bohai Bay Basin Province, China. Marine and Petroleum Geology, 27(4): 757-771. https://doi.org/10.1016/j.marpetgeo.2009.08.012
      Qiu, Y., Wang, L. F., Huang, W. K., 2016. Meso-Cenozoic Sedimentary Basins in Sea Areas of China. Geological Publishing House, Beijing(in Chinese).
      Saylor, J. E., Jordan, J. C., Sundell, K. E., et al., 2018. Topographic Growth of the Jishi Shan and Its Impact on Basin and Hydrology Evolution, NE Tibetan Plateau. Basin Research, 30(3): 544-563. https://doi.org/10.1111/bre.12264
      Schmidt, J. C., 1990. Recirculating Flow and Sedimentation in the Colorado River in Grand Canyon, Arizona. The Journal of Geology, 98(5): 709-724. https://doi.org/10.1086/629435
      Shi, G. Z., Shen, C. B., Zattin, M., et al., 2019. Late Cretaceous-Cenozoic Exhumation of the Helanshan Mt Range, Western Ordos Fold-Thrust Belt, China: Insights from Structural and Apatite Fission Track Analyses. Journal of Asian Earth Sciences, 176: 196-208. https://doi.org/10.1016/j.jseaes.2019.02.016
      Shi, W., Dong, S. W., Hu, J. M., 2020, Neotectonics around the Ordos Block, North China: A Review and New Insights. Earth-Science Reviews, 200: 102969. https://doi.org/10.1016/j.earscirev.2019.102969
      Shu, L. S., Wang, B., Wang, L. S., et al., 2005. Analysis of Northern Jiangsu Prototype Basin from Late Cretaceous to Neogene. Geological Journal of China Universities, 11(4): 534-543(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2005.04.009
      Shu, Q., Zhao, Z. J., Zhao, Y. F., et al., 2021. Magnetic Properties of Late Cenozoic Sediments in the Subei Basin: Implications for the Yangtze River Run-Through Time. Journal of Coastal Research, 37(1): 122-131. https://doi.org/10.2112/jcoastres-d-20-00039.1
      Shang, Y., Prins, M. A., Beets, C. J., et al., 2018. Aeolian Dust Supply from the Yellow River Floodplain to the Pleistocene Loess Deposits of the Mangshan Plateau, Central China: Evidence from Zircon U-Pb Age Spectra. Quaternary Science Reviews, 182: 131-143. https://doi.org/10.1016/j.quascirev.2018.01.001
      Shen, X., Tian, Y., Wang, Y., et al., 2021. Enhanced Quaternary Exhumation in the Central Three Rivers Region, Southeastern Tibet. Frontiers in Earth Science. https://doi.org/10.3389/feart.2021.741491
      Shen, Y. F., Liang, M. Y., Wu, J. X., et al., 2022. Detrital-Zircon Evidence for the Origin of the Late Quaternary Loess in Qingzhou, Shandong Province and Its Implications for the Evolution of the Yellow River. Journal of Earth Science, 33(1): 205-214. https://doi.org/10.1007/s12583-021-1489-9
      Su, Q., Kirby, E., Ren, Z., et al., 2020. Chronology of the Yellow River Terraces at Qingtong Gorge (NE Tibet): Insights into Evolution of the Yellow River since the Middle Pleistocene. Geomorphology, 349: 106889. https://doi.org/10.1016/j.geomorph.2019.106889
      Su, Q., Wang, X. Y., Yuan, D. Y., et al., 2023. Fluvial Entrenchment of the Gonghe Basin and Integration of the Upper Yellow River - Evidence from the Cosmogenically Dated Geomorphic Surfaces. Geomorphology, 429: 108654. https://doi.org/10.1016/j.geomorph.2023.108654
      Sun, J., Guo, F., Wu, H. C., et al., 2022. The Sedimentary Succession of the Last 2.25 Myr in the Bohai Strait: Implications for the Quaternary Paleoenvironmental Evolution of the Bohai Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 585: 110704. https://doi.org/10.1016/j.palaeo.2021.110704
      Tandon, S. K., Sinha, R., 2022. Geology of Large River Systems. Large Rivers: Geomorphology and Management, Second Edition. Wiley Blackwell, Oxford, UK.
      Wang, S. M., Wu, X. H., Zhang, Z. K., et al., 2002. Sedimentary Records of Environmental Evolution in the Sanmen Lake Basin and the Yellow River Running through the Sanmenxia Gorge Eastward into the Sea. Science in China: Earth Sciences, 45(7): 595-608. https://doi.org/10.1360/02yd9061
      Wang, P. X., 2004. Cenozoic Deformation and the History of Sea-Land Interactions in Asia. Geophysical Monograph Series, 149: 1-22. https://doi.org/10.1029/149gm01
      Wang, E., Shi, X. H., Wang, G., et al., 2011. Structural Control on the Topography of the Laji-Jishi and Riyue Shan Belts in the NE Margin of the Tibetan Plateau: Facilitation of the Headward Propagation of the Yellow River System. Journal of Asian Earth Sciences, 40(4): 1002-1014. https://doi.org/10.1016/j.jseaes.2010.05.007
      Wang, X. Y., Lu, H. Y., Vandenberghe, J., et al., 2012. Late Miocene Uplift of the NE Tibetan Plateau Inferred from Basin Filling, Planation and Fluvial Terraces in the Huang Shui Catchment. Global and Planetary Change, 88: 10-19. https://doi.org/10.1016/j.gloplacha.2012.02.009
      Wang, B., Zheng, H. B., Wang, P., et al., 2013. The Cenozoic Strata and Depositional Evolution of Weihe Basin: Progresses and Problems. Advances in Earth Science, 28(10): 1126-1135(in Chinese with English abstract). doi: 10.11867/j.issn.1001-8166.2013.10.1126
      Wang, B., Chang, H., Duan, K. Q., 2017. The Tectonic Uplift and Its Environmental Effects of the Qinling Mountains during the Cenozoic Era: Progress and Problems. Advances in Earth Science, 32(7): 707-715(in Chinese with English abstract).
      Wang, Z. X., Shen, Y. J., Licht, A., et al., 2018. Cyclostratigraphy and Magnetostratigraphy of the Middle Miocene Ashigong Formation, Guide Basin, China, and Its Implications for the Paleoclimatic Evolution of NE Tibet. Paleoceanography and Paleoclimatology, 33(10): 1066-1085. https://doi.org/10.1029/2018pa003409
      Wang, Z., Nie, J. S., Wang, J. P., et al., 2019a. Testing Contrasting Models of the Formation of the Upper Yellow River Using Heavy-Mineral Data from the Yinchuan Basin Drill Cores. Geophysical Research Letters, 46(17-18): 10338-10345. https://doi.org/10.1029/2019gl084179
      Wang, K. S., Shi, X. F., Yao, Z. Q., et al., 2019b. Heavy-Mineral-Based Provenance and Environment Analysis of a Pliocene Series Marking a Prominent Transgression in the South Yellow Sea. Sedimentary Geology, 382: 25-35. https://doi.org/10.1016/j.sedgeo.2019.01.005
      Wang, D. D., Zhang, J. D., Liu, X. F., et al. 2021. Structural Framework of Sanmenxia Basin, Henan Province and Its Oil and Gas Resources Potential Analysis. Geology in China(in press)(in Chinese with English abstract).
      Wang, W. T., Zhang, P. Z., Garzione, C. N., et al., 2022a. Pulsed Rise and Growth of the Tibetan Plateau to Its Northern Margin since ca. 30 Ma. Proceedings of the National Academy of Sciences of the United States of America, 119(8): e2120364119. https://doi.org/10.1073/pnas.2120364119
      Wang, M. M., Tian, Y. T., Zhou, B. G., et al., 2022b. Instant Far-Field Effects of Continental Collision: An Example Study in the Qinling Orogen, Northeast of the Tibetan Plateau. Tectonophysics, 833: 229334. https://doi.org/10.1016/j.tecto.2022.229334
      Wang, X., Hu, G., Saito, Y., et al., 2022c. Did the Modern Yellow River Form at the Mid-Pleistocene Transition? Science Bulletin, 67(15): 1603-1610. https://doi.org/10.1016/j.scib.2022.06.003
      Wang, Z. X., Mao, Y. D., Geng, J. Z., et al., 2022d. Pliocene-Pleistocene Evolution of the Lower Yellow River in Eastern North China: Constraints on the Age of the Sanmen Gorge Connection. Global and Planetary Change, 213: 103835. https://doi.org/10.1016/j.gloplacha.2022.103835
      Wang, Z., Nie, J. S., Peng, W. B., et al., 2022. Late Pliocene Sedimentary Provenance of the Yinchuan Basin and Its Constraints on the Formation Age of the Upper Yellow River. Acta Sedimentologica Sinica, 40(4): 924-930(in Chinese with English abstract).
      Wen, Y. X., Zhang, L. M., Holbourn, A. E., et al., 2023. CO2-Forced Late Miocene Cooling and Ecosystem Reorganizations in East Asia. Proceedings of the National Academy of Sciences of the United States of America, 120(5): e2214655120. https://doi.org/10.1073/pnas.2214655120
      Wu, L., Wang, F., Yang, J. H., et al., 2020. Meso-Cenozoic Uplift of the Taihang Mountains, North China: Evidence from Zircon and Apatite Thermochronology. Geological Magazine, 157(7): 1097-1111. https://doi.org/10.1017/s0016756819001377
      Xiao, G. Q., Sun, Y. Q., Yang, J. L., et al., 2020. Early Pleistocene Integration of the Yellow River Ⅰ: Detrital-Zircon Evidence from the North China Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 546: 109691. https://doi.org/10.1016/j.palaeo.2020.109691
      Xiao, G. Q., Pan, Q., Zhao, Q. Y., et al., 2021. Early Pleistocene Integration of the Yellow River Ⅱ: Evidence from the Plio-Pleistocene Sedimentary Record of the Fenwei Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110550. https://doi.org/10.1016/j.palaeo.2021.110550
      Xu, L. Q., Li, S. Z., Guo, L. L., et al., 2016. Impaction of the Tan-Lu Fault Zone on Uplift of the Luxi Rise: Constraints from Apatite Fission Track Thermochronology. Acta Petrologica Sinica, 32(4): 1153-1170(in Chinese with English abstract).
      Xu, Q. M., Yuan, G. B., Yang, J. L., et al., 2017. Plio-Pleistocene Magnetostratigraphy of Northern Bohai Bay and Its Implications for Tectonic Events since ca. 2.0 Ma. Journal of Geodynamics, 111: 1-14. https://doi.org/10.1016/j.jog.2017.08.002
      Xu, Q. Q., Ji, J. Q., Zhao, W. T., et al., 2017. Uplift-Exhumation History of Daqing Mountain, Inner Mongolia since Late Mesozoic. Acta Scientiarum Naturalium Universitatis Pekinensis, 53(1): 57-65(in Chinese with English abstract).
      Xu, Q. H., Wu, N., Wang, J., et al., 2023. Sedimentary Characteristics and Lake Basin Evolution of Salinized Lake Basin of Qingshuiying Formation in Yinchuan Basin. Earth Science, 48(1): 317-328(in Chinese with English abstract).
      Yao, Z. Q., Shi, X. F., Qiao, S. Q., et al., 2017. Persistent Effects of the Yellow River on the Chinese Marginal Seas Began at Least ~880 ka ago. Scientific Reports, 7(1): 2827. https://doi.org/10.1038/s41598-017-03140-x
      Yao, X., 2019. Residual Subsidence of the Cenozoic Rift Basin in the East Asian Continental Margin and Its Genesis Analysis (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Yan, J. Y., 2021. Late Cenozoic Tectonic-Sedimenatary, Uplifting and Denudational Process of the Yuncheng Basin and Northern Gushan Mountain (Dissertation). Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract).
      Yang, S. Y., Cai, J. G., Li, C. X., et al., 2001. New Discussion about the Run-Through Time of the Yellow River. Marine Geology & Quaternary Geology, 21(2): 15-20(in Chinese with English abstract).
      Yang, R. S., Fang, X. M., Meng, Q. Q., et al., 2017a. Paleomagnetic Constraints on the Middle Miocene-Early Pliocene Stratigraphy in the Xining Basin, NE Tibetan Plateau, and the Geologic Implications. Geochemistry, Geophysics, Geosystems, 18(11): 3741-3757. https://doi.org/10.1002/2017GC006945
      Yang, L. R., Li, J. X., Yue, L. P., et al., 2017b. Paleogene-Neogene Stratigraphic Realm and Tectonic-Sedimentary Evolution of the Qilian Mountains and Their Surrounding Areas. Science China: Earth Sciences, 60(5): 992-1009. https://doi.org/10.1007/s11430-016-9030-2
      Yang, J. L., Yuan, H. F., Hu, Y. Z., et al., 2022. Significance of Sedimentary Provenance Reconstruction Based on Borehole Records of the North China Plain for the Evolution of the Yellow River. Geomorphology, 401: 108077. https://doi.org/10.1016/j.geomorph.2021.108077
      Yi, L., Deng, C., Tian, L., et al., 2016. Plio-Pleistocene evolution of Bohai Basin (East Asia): Demise of Bohai Paleolake and Transition to Marine Environment. Scientific Reports, 6(1): 1-9.
      Yi, K. X., Cheng, F., Yang, Y. Z., et al., 2022. Pleistocene Northward Thrusting of the Danghe Nanshan: Implications for the Growth of the Qilian Shan, Northeastern Tibetan Plateau. Tectonophysics, 838: 229476. https://doi.org/10.1016/j.tecto.2022.229476
      Yin, M. S., Huang, H. P., 2020. Quaternary Exhumation History of the NE Tibetan Plateau Revealed by Peculiar Distributions of Polycyclic Aromatic Hydrocarbons in Core Extracts from the Sanhu Depression, Eastern Qaidam Basin. Journal of Quaternary Science, 35(7): 869-880. https://doi.org/10.1002/jqs.3235
      Yu, J. X., Zheng, D. W., Pang, J. Z., et al., 2022. Cenozoic Mountain Building in Eastern China and Its Correlation with Reorganization of the Asian Climate Regime. Geology, 50(7): 859-863. https://doi.org/10.1130/g49917.1
      Zhao, H. G., Liu, C. Y., Wang, F., et al., 2007. Uplift and Evolution of Helan Mountain. Science China: Earth Sciences, 50(2): 217-226. https://doi.org/10.1007/s11430-007-6010-5
      Zhao, X. T., Yang, Y., Jia, L. Y., et al., 2021. A Discussion on the Age and Evolution Process of the Late Gonghe Paleolake and Its Relations with the Crustal Movement and the Development of the Yellow River. Acta Geoscientica Sinica, 42(4): 451-471(in Chinese with English abstract).
      Zhang, Y. Q., Mercier, J. L., Vergély, P., 1998. Extension in the Graben Systems around the Ordos (China), and Its Contribution to the Extrusion Tectonics of South China with Respect to Gobi-Mongolia. Tectonophysics, 285(1-2): 41-75. https://doi.org/10.1016/s0040-1951(97)00170-4
      Zhang, Z. K., Wang, S. M., Yang, X. D., et al., 2004. Evidence of a Geological Event and Environmental Change in the Catchment Area of the Yellow River at 0.15 Ma. Quaternary International, 117(1): 35-40. https://doi.org/10.1016/s1040-6182(03)00114-9
      Zhang, H. P., Craddock, W. H., Lease, R. O., et al., 2012. Magnetostratigraphy of the Neogene Chaka Basin and Its Implications for Mountain Building Processes in the North-Eastern Tibetan Plateau. Basin Research, 24(1): 31-50. https://doi.org/10.1111/j.1365-2117.2011.00512.x
      Zhang, H., Zhang, P., Champagnac, J. D., et al., 2014. Pleistocene Drainage Reorganization Driven by the Isostatic Response to Deep Incision into the Northeastern Tibetan Plateau. Geology, 42(4): 303-306. https://doi.org/10.1130/g35115.1
      Zhang, W. L., Zhang, T., Song, C. H., et al., 2017. Termination of Fluvial-Alluvial Sedimentation in the Xining Basin, NE Tibetan Plateau, and Its Subsequent Geomorphic Evolution. Geomorphology, 297: 86-99. https://doi.org/10.1016/j.geomorph.2017.09.008
      Zhang, P., Ao, H., Dekkers, M. J., et al., 2018. Magnetochronology of the Oligocene Mammalian Faunas in the Lanzhou Basin, Northwest China. Journal of Asian Earth Sciences, 159: 24-33. https://doi.org/10.1016/j.jseaes.2018.03.021
      Zhang, X. Y., He, M. Y., Wang, B., et al., 2019a. Provenance Evolution of the Northern Weihe Basin as an Indicator of Environmental Changes during the Quaternary. Geological Magazine, 156(11): 1915-1923. https://doi.org/10.1017/s0016756819000244
      Zhang, J., Wan, S. M., Clift, P. D., et al., 2019b. History of Yellow River and Yangtze River Delivering Sediment to the Yellow Sea since 3.5 Ma: Tectonic or Climate Forcing? Quaternary Science Reviews, 216: 74-88. https://doi.org/10.1016/j.quascirev.2019.06.002
      Zhang, R. F., Yu, F. S., Liu, X. H., et al., 2020. Evolutionary Characteristics of Linhe Depression and Its Surrounding Areas in Hetao Basin from the Mesozoic to Cenozoic. Oil & Gas Geology, 41(6): 1139-1150(in Chinese with English abstract).
      Zhang, J., Wang, Y. N., Zhang, B. H., et al., 2021a. Tectonothermal Events in the Central North China Craton since the Mesozoic and Their Tectonic Implications: Constraints from Low-Temperature Thermochronology. Tectonophysics, 804: 228769. https://doi.org/10.1016/j.tecto.2021.228769
      Zhang, H. Z., Lu, H. Y., Zhou, Y. L., et al., 2021b. Heavy Mineral Assemblages and UPb Detrital Zircon Geochronology of Sediments from the Weihe and Sanmen Basins: New Insights into the Pliocene-Pleistocene Evolution of the Yellow River. Palaeogeography, Palaeoclimatology, Palaeoecology, 562: 110072. https://doi.org/10.1016/j.palaeo.2020.110072
      Zhang, J., Geng, H. P., Pan, B. T., et al., 2022. Coupling of Tectonic Uplift and Climate Change as Influences on Drainage Evolution: A Case Study at the NE Margin of the Tibetan Plateau. CATENA, 216: 106433. https://doi.org/10.1016/j.catena.2022.106433
      Zheng, D., Wang, W. T., Wan, J. L., et al., 2017. Progressive Northward Growth of the Northern Qilian Shan-Hexi Corridor (Northeastern Tibet) during the Cenozoic. Lithosphere, 9: 408-416. https://doi.org/10.1130/l587.1
      Zhou, S. Z., Wang, X. L., Wang, J., et al., 2006. A Preliminary Study on Timing of the Oldest Pleistocene Glaciation in Qinghai-Tibetan Plateau. Quaternary International, 154: 44-51. https://doi.org/10.1016/j.quaint.2006.02.002
      Zhou, Z. C., 2020. Fault Structural Style Analysis and Favorable Tectonic Zone Evaluation of Linhe Depression in Hetao Basin (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      蔡向民, 郭高轩, 栾英波, 等, 2010. 永定河形成时代研究. 第四纪研究, 30(1): 167-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201001017.htm
      常宏, 金章东, 安芷生, 2009. 青海南山隆起的沉积证据及其对青海湖—共和盆地构造分异演化的指示. 地质论评, 55(1): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200901008.htm
      国家地震局, 1988. 鄂尔多斯周缘活动断裂系. 北京: 地震出版社.
      何梦颖, 梅西, 张训华, 等, 2019. 南黄海陆架区CSDP-1孔沉积物碎屑锆石U-Pb年龄物源判别. 吉林大学学报(地球科学版), 49(1): 85-95. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201901010.htm
      黄兴富, 2014. 鄂尔多斯地块西北缘新生代断陷盆地构造演化(硕士学位论文). 北京: 中国地质大学.
      黄贤妹, 2022. 黄河上游河流、湖泊和风成沉积年代学与流域演化(博士学位论文). 汕头: 汕头大学.
      李理, 钟大赉, 2006. 泰山新生代抬升的裂变径迹证据. 岩石学报, 22(2): 457-464. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602018.htm
      李智超, 2017. 渭河盆地新生代岩相古地理及环境演化(博士学位论文). 西安: 西北大学.
      李智佩, 王洪亮, 陈隽璐, 等, 2019. 中华人民共和国地质图(西北, 1∶1 500 000). 北京: 地质出版社.
      李维东, 赵希涛, 杨艳, 等, 2020. 黄河河套盆地段阶地砾石层的形成时代和物源分析. 地球学报, 41(4): 515-524. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202004008.htm
      李雪梅, 2020. 内蒙古大青山地区基岩河流地貌研究—对河套盆地晚新生代构造和黄河演化的启示(博士学位论文). 北京: 中国地震局地质研究所.
      李兆雨, 李永项, 李文厚, 等, 2021. 汾渭盆地古近系—新近系沉积特征. 地质科学, 56(4): 1120-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202104009.htm
      林旭, 李玲玲, 刘海金, 等, 2022a. 黄河上游物质在新近纪未流入晋陕峡谷. 古地理学报, 24(3): 568-582. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202203012.htm
      林旭, 刘海金, 刘静, 等, 2022b. 黄河中新世未进入渤海湾盆地: 来自碎屑锆石U-Pb年龄的约束. 地质学报, 96(7): 2506-2518. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202207017.htm
      林旭, 吴林, Jolivet, M., 等, 2022c. 苏鲁造山带东段新生代两阶段剥露事件的磷灰石(U-Th)/He热年代学证据. 地球科学, 47(4): 1162-1176. doi: 10.3799/dqkx.2021.083
      林旭, 李玲玲, 刘静, 等, 2022d. 长江早更新世向江汉盆地输送碎屑物质: 来自碎屑锆石U-Pb年龄的约束. 地球科学(待刊).
      林旭, 刘静, 刘维明, 等, 2023. 黄河和长江发育与演化. 北京: 地质出版社.
      刘静, 张金玉, 葛玉魁, 等, 2018. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究. 科学通报, 63(30): 3070-3088. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201830003.htm
      潘保田, 1994. 贵德盆地地貌演化与黄河上游发育研究. 干旱区地理, 17(3): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL199403005.htm
      潘保田, 胡振波, 胡小飞, 等, 2012. 晋陕峡谷北段晚新生代河流演化初步研究. 第四纪研究, 32(1): 111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201201018.htm
      邱燕, 王立飞, 黄文凯, 2016. 中国海域中新生代沉积盆地. 北京: 地质出版社.
      舒良树, 王博, 王良书, 等, 2005. 苏北盆地晚白垩世—新近纪原型盆地分析. 高校地质学报, 11(4): 534-543. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200504009.htm
      王斌, 郑洪波, 王平, 等, 2013. 渭河盆地新生代地层与沉积演化研究: 现状和问题. 地球科学进展, 28(10): 1126-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201601003.htm
      王斌, 常宏, 段克勤, 2017. 秦岭新生代构造隆升与环境效应: 进展与问题. 地球科学进展, 32(7): 707-715. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202305001.htm
      王丹丹, 张交东, 刘旭锋, 等, 2021. 河南三门峡盆地构造格架及其油气资源远景分析. 中国地质(待刊).
      王钊, 聂军胜, 彭文彬, 等, 2022. 银川盆地晚上新世物质来源及其对黄河上游形成年代的约束. 沉积学报, 40(4): 924-930. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202204006.htm
      许立青, 李三忠, 郭玲莉, 等, 2016. 郯庐断裂带对鲁西隆升过程的影响: 磷灰石裂变径迹证据. 岩石学报, 32(4): 1153-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202303010.htm
      徐芹芹, 季建清, 赵文韬, 等, 2017. 内蒙古大青山晚中生代以来的隆升-剥露过程. 北京大学学报(自然科学版), 53(1): 57-65. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201701007.htm
      徐清海, 吴楠, 王健, 等, 2023. 银川盆地清水营组咸化湖盆沉积特征与湖盆演化. 地球科学, 48(1): 317-328. doi: 10.3799/dqkx.2021.257
      姚翔, 2019. 东亚陆缘新生代裂谷盆地残余沉降及其成因(博士学位论文). 北京: 中国地质大学.
      闫纪元, 2021. 运城盆地及北侧孤山晚新生代构造-沉积与隆升-剥蚀过程研究(博士学位论文). 北京: 中国地质科学院.
      杨守业, 蔡进功, 李从先, 等, 2001. 黄河贯通时间的新探索. 海洋地质与第四纪地质, 21(2): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200102003.htm
      赵希涛, 杨艳, 贾丽云, 等, 2021. 论晚期共和古湖时代、演化过程及其与地壳运动和黄河发育的关系. 地球学报, 42(4): 451-471. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202104001.htm
      张锐锋, 于福生, 刘喜恒, 等, 2020. 河套盆地临河坳陷及其周边地区中-新生代成盆演化特征. 石油与天然气地质, 41(6): 1139-1150. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202006004.htm
      周志成, 2020. 河套盆地临河坳陷断裂构造样式分析与有利构造区带评价(博士学位论文). 北京: 中国地质大学.
    • 加载中
    图(18)
    计量
    • 文章访问数:  1366
    • HTML全文浏览量:  359
    • PDF下载量:  243
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-04-20
    • 网络出版日期:  2024-07-11
    • 刊出日期:  2024-06-25

    目录

      /

      返回文章
      返回