Natural Fractures and Their Effectiveness in Deep Continental Shale Reservoirs of Permian Fengcheng Formation in Mahu Sag
-
摘要: 准噶尔盆地玛湖凹陷二叠系风城组陆相页岩最大埋深超过5 000 m,油气资源丰富,其中广泛发育的天然裂缝对烃类聚集和储层勘探开发具有关键作用.通过岩心、成像测井、薄片和扫描电镜观察,建立了基于地质成因和裂缝产状的深层陆相页岩天然裂缝分类方案,阐明了不同类型天然裂缝的发育特征和有效性,并讨论了深层陆相页岩天然裂缝的非均质性及其对储层的贡献.深层陆相页岩天然裂缝依据地质成因分为构造裂缝、成岩裂缝和异常高压相关裂缝.按照裂缝产状构造裂缝细分为穿层和顺层剪切裂缝、及层内张裂缝,成岩裂缝划分为层理缝、缝合线和收缩裂缝.构造裂缝规模相对较大,组系特征明显,主要以高角度和近直立为主.成岩裂缝主要为近水平发育,缝面弯曲、易分叉.层内张裂缝、层理缝和缝合线是深层陆相页岩储层的优势裂缝类型.天然裂缝可被方解石和含有机质的细粒混合物等矿物不同程度充填,其中构造裂缝和层理缝的充填程度较低,缝合线更易被充填.微观构造裂缝的开度较小,而成岩裂缝的开度通常较大.推测认为构造裂缝主要为储层中流体渗流提供了有效通道,层理缝发育程度更高,不仅是储层流体的渗流通道,也是其有效储集空间的重要组成部分.研究成果对于完善深层陆相页岩天然裂缝分类方案及深入认识这类储层天然裂缝分布规律具有重要的借鉴意义.Abstract: The continental shale in the Permian Fengcheng Formation of the Mahu Sag in the Junggar Basin has a maximum burial depth exceeding 5 000 m, rich in oil and gas resources. The widely developed natural fracture plays a crucial role in the accumulation and exploration of hydrocarbons in these reservoirs. A classification scheme is established for natural fractures in deep continental shale based on their geological genesis and occurrence by observing cores, image logs, thin sections, and SEM samples. Moreover, the development characteristics and effectiveness of different types of natural fractures Were analyzed, and the natural fracture heterogeneity and their contributions to reservoirs are discussed. Accordingly, natural fractures in deep continental shale are divided into tectonic, diagenetic, and abnormal high-pressure related fractures based on their geological genesis. Tectonic fractures can be subdivided into translayer shear, bed-parallel shear, and intralayer open fractures based on their occurrence, while diagenetic fractures are divided into bedding, stylolite, and shrinkage fractures. Tectonic fractures have relatively large scales, obvious groups, and high dipping and nearly vertical angles. Diagenetic fractures mainly develop horizontally, with curved surfaces and easily branched extensions. Intralayer open, bedding, and stylolite fractures are the dominant types of fractures in deep continental shale reservoirs. Natural fractures can be filled in varying degrees by minerals such as calcite and fine-grained mixtures containing organic matter, among which tectonic and bedding fractures are less filled, and stylolites are easier to be filled. Microscopic tectonic fractures have smaller apertures, while diagenetic fractures usually have larger apertures. This study speculates that tectonic fractures mainly provide effective pathways for fluid flow in reservoirs, while bedding fractures are more developed, which are not only seepage channels for reservoir fluid but also an important part of the effective storage space. The research results provide an important reference for improving the classification scheme of natural fractures in deep continental shale and for better understanding of the natural fracture distribution in such reservoirs.
-
图 1 准噶尔盆地构造单元图(a);玛湖凹陷风城组沉积厚度分布等值线图(b)
图a据Liu et al.,2020;图b据支东明等,2021
Fig. 1. The tectonic units of the Junggar Basin in northwestern China (a); sedimentary thickness contour of the Fengcheng Formation in the Mahu Sag (b)
图 3 风城组深层陆相页岩不同类型的构造裂缝
a.含碱矿页岩中的穿层剪切裂缝,MY2井,4 154.18 m;b.砂质条带中的层内张裂缝,MY1井,4 574.85 m;c.粉砂质页岩中的顺层剪切裂缝,FN14井,4 528.74 m;d.薄片尺度下纹层状页岩中的层内张裂缝,MY1井,4 852.59 m(曾联波等,2023);e.薄片中纹层状页岩中的穿层剪切裂缝,MY1井,4 579.64 m
Fig. 3. Different types of tectonic fractures in deep continental shales of the Fengcheng Formation
图 6 风城组陆相页岩中的异常高压相关裂缝(MY1井)
a.岩心中被方解石充填的异常高压相关裂缝,4 885.37 m(金之钧等,2022);b.薄片中被方解石充填的异常高压相关裂缝,4 667.25 m
Fig. 6. Abnormally high pressure-related fractures in continental shales of the Fengcheng Formation in Well MY1
图 11 风城组深层陆相页岩中被矿物充填的天然裂缝(MY1井)
a.岩心中被方解石充填的穿层剪切裂缝,4 540.32 m;b.岩心中被硅硼钠石充填的层内张裂缝,3 350.70 m;c.岩心中被方解石充填的层理缝,4 613.96 m;d.薄片中被石英充填的穿层剪切裂缝,4 823.69 m;e.薄片中被含有机质细粒混合物充填的层理缝,4 807.89 m;f.薄片中被含有机质细粒混合物充填的缝合线,4 903.01 m
Fig. 11. Natural fractures filled with minerals in deep continental shales of the Fengcheng Formation in Well MY1
表 1 玛湖凹陷风城组深层陆相页岩天然裂缝分类方案
Table 1. Natural fracture classification of deep continental shale in the Fengcheng Formation of the Mahu Sag
地质成因类型 裂缝产状类型 主要特征 构造裂缝 穿层剪切裂缝 贯穿岩层界面,缝面平直,倾角较高 顺层剪切裂缝 与层面近平行,缝面具镜面和划痕特征 层内张裂缝 发育在岩层内部,受力学界面限制,倾角较高 成岩裂缝 层理缝 顺层理发育,缝面弯曲、分叉,发育程度高 缝合线 主要为近水平方向,多被细粒混合物充填 收缩裂缝 延伸短,方向性不明显 异常高压相关裂缝 产状不稳定,延伸较短,多被矿物充填 -
Aghli, G., Moussavi-Harami, R., Mohammadian, R., 2020. Reservoir Heterogeneity and Fracture Parameter Determination Using Electrical Image Logs and Petrophysical Data (a Case Study, Carbonate Asmari Formation, Zagros Basin, SW Iran). Petroleum Science, 17(1): 51-69. https://doi.org/10.1007/s12182-019-00413-0 Baud, P., Rolland, A., Heap, M., et al., 2016. Impact of Stylolites on the Mechanical Strength of Limestone. Tectonophysics, 690: 4-20. https://doi.org/10.1016/j.tecto.2016.03.004 Cao, Z., Liu, G. D., Kong, Y. H., et al., 2016. Lacustrine Tight Oil Accumulation Characteristics: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin. International Journal of Coal Geology, 153: 37-51. https://doi.org/10.1016/j.coal.2015.11.004 Ding, W. L., Xu, C. C., Jiu, K., et al., 2011. The Research Progress of Shale Fractures. Advances in Earth Science, 26(2): 135-144 (in Chinese with English abstract). Gale, J. F. W., Lander, R. H., Reed, R. M., et al., 2010. Modeling Fracture Porosity Evolution in Dolostone. Journal of Structural Geology, 32(9): 1201-1211. https://doi.org/10.1016/j.jsg.2009.04.018 Gale, J. F. W., Laubach, S. E., Olson, J. E., et al., 2014. Natural Fractures in Shale: A Review and New Observations. AAPG Bulletin, 98(11): 2165-2216. https://doi.org/10.1306/08121413151 Gong, L., Zeng, L. B., Du, Y. J., et al., 2015. Influences of Structural Diagenesis on Fracture Effectiveness: A Case Study of the Cretaceous Tight Sandstone Reservoirs of Kuqa Foreland Basin. Journal of China University of Mining & Technology, 44(3): 514-519 (in Chinese with English abstract). He, W. J., Qian, Y. X., Zhao, Y., et al., 2021. Exploration Implications of Total Petroleum System in Fengcheng Formation, Mahu Sag, Junggar Basin. Xinjiang Petroleum Geology, 42(6): 641-655 (in Chinese with English abstract). Huang, Y. Y., Wang, G. W., Song, L. T., et al., 2022. Fracture Logging Identification and Effectiveness Analysis of Shale Reservoir of the Permian Fengcheng Formation in Mahu Sag, Junggar Basin. Journal of Palaeogeography (Chinese Edition), 24(3): 540-555 (in Chinese with English abstract). Jin, J., Yang, Z., Yilihamu, E., et al., 2018. Nanopore Characteristics and Oil-Bearing Properties of Tight Oil Reservoirs in Jimsar Sag, Junggar Basin. Earth Science, 43(5): 1594-1601 (in Chinese with English abstract). Jin, Z. J., Bai, Z. R., Gao, B., et al., 2019. Has China Ushered in the Shale Oil and Gas Revolution? Oil & Gas Geology, 40(3): 451-458 (in Chinese with English abstract). Jin, Z. J., Liang, X. P., Wang, X. J., et al., 2022. Shale Oil Enrichment Mechanism and Sweet Spot Selection of Fengcheng Formation in Mahu Sag, Junggar Basin. Xinjiang Petroleum Geology, 43(6): 631-639 (in Chinese with English abstract). Jin, Z. J., Zhu, R. K., Liang, X. P., et al., 2021. Several Issues Worthy of Attention in Current Lacustrine Shale Oil Exploration and Development. Petroleum Exploration and Development, 48(6): 1276-1287 (in Chinese with English abstract). Ju, W., You, Y., Feng, S. B., et al., 2020. Characteristics and Genesis of Bedding-Parallel Fractures in Tight Sandstone Reservoirs of Chang 7 Oil Layer, Ordos Basin. Oil & Gas Geology, 41(3): 596-605 (in Chinese with English abstract). Kuang, L. C., Tang, Y., Lei, D. W., et al., 2012. Formation Conditions and Exploration Potential of Tight Oil in the Permian Saline Lacustrine Dolomitic Rock, Junggar Basin, NW China. Petroleum Exploration and Development, 39(6): 657-667 (in Chinese with English abstract). Kuang, L. C., Zhi, D. M., Wang, X. J., et al., 2021. Oil and Gas Accumulation Assemblages in Deep to Ultra-Deep Formations and Exploration Targets of Petroliferous Basins in Xinjiang Region. China Petroleum Exploration, 26(4): 1-16 (in Chinese with English abstract). Laubach, S. E., Reed, R. M., Olson, J. E., et al., 2004. Coevolution of Crack-Seal Texture and Fracture Porosity in Sedimentary Rocks: Cathodoluminescence Observations of Regional Fractures. Journal of Structural Geology, 26(5): 967-982. https://doi.org/10.1016/j.jsg.2003.08.019 Lei, H. Y., Guo, P., Meng, Y., et al., 2022. Pore Structure and Classification Evaluation of Shale Oil Reservoirs of Permian Fengcheng Formation in Mahu Sag. Lithologic Reservoirs, 34(3): 142-153 (in Chinese with English abstract). Li, M. W., Jin, Z. J., Dong, M. Z., et al., 2020. Advances in the Basic Study of Lacustrine Shale Evolution and Shale Oil Accumulation. Petroleum Geology & Experiment, 42(4): 489-505 (in Chinese with English abstract). Li, Y. L., Lu, S. L., Xia, D. L., et al., 2022. Development Characteristics and Main Controlling Factors of Natural Fractures in Shale Series of the Seventh Member of the Yanchang Formation, Southern Ordos Basin. Chinese Journal of Geology (Scientia Geologica Sinica), 57(1): 73-87 (in Chinese with English abstract). Liu, G. P., Jin, Z. J., Zeng, L. B., et al., 2023. Natural Fractures in Deep Continental Shale Oil Reservoirs: A Case Study from the Permian Lucaogou Formation in the Eastern Junggar Basin, Northwest China. Journal of Structural Geology, 174(1): 104913. https://doi.org/10.1016/j.jsg.2023.104913 Liu, G. P., Zeng, L. B., Wang, X. J., et al., 2020. Natural Fractures in Deep Tight Gas Sandstone Reservoirs in the Thrust Belt of the Southern Junggar Basin, Northwestern China. Interpretation, 8(4): SP81-SP93. https://doi.org/10.1190/int-2020-0051.1 Liu, G. P., Zeng, L. B., Zhu, R. K., et al., 2021. Effective Fractures and Their Contribution to the Reservoirs in Deep Tight Sandstones in the Kuqa Depression, Tarim Basin, China. Marine and Petroleum Geology, 124: 104824. https://doi.org/10.1016/j.marpetgeo.2020.104824 Liu, J. S., Ding, W. L., Yang, H. M., et al., 2023. Natural Fractures and Rock Mechanical Stratigraphy Evaluation in Huaqing Area, Ordos Basin: A Quantitative Analysis Based on Numerical Simulation. Earth Science, 48(7): 2572-2588 (in Chinese with English abstract). Tian, H., Zeng, L. B., Xu, X., et al., 2020. Characteristics of Natural Fractures in Marine Shale in Fuling Area, Sichuan Basin, and Their Influence on Shale Gas. Oil & Gas Geology, 41(3): 474-483 (in Chinese with English abstract). Toussaint, R., Aharonov, E., Koehn, D., et al., 2018. Stylolites: A Review. Journal of Structural Geology, 114: 163-195. https://doi.org/10.1016/j.jsg.2018.05.003 Wang, J., Zhou, L., Liu, J., et al., 2022. Genetic Mechanism of the Huxiang Hydrothermal Dolomite: A Case Study of the Permian Fengcheng Formation in the Mahu Sag, Junggar Basin. Acta Sedimentologica Sinica, 42(1): 1-16 (in Chinese with English abstract). doi: 10.1016/j.chnaes.2020.10.010 Wang, X. J., Cui, B. W., Feng, Z. H., et al., 2023. In- Situ Hydrocarbon Formation and Accumulation Mechanisms of Micro- and Nano-Scale Pore-Fracture in Gulong Shale, Songliao Basin, NE China. Petroleum Exploration and Development, 50(6): 1269-1281. https://doi.org/10.1016/s1876-3804(24)60465-9 Wu, S. T., Zhu, R. K., Cui, J. G., et al., 2015. Characteristics of Lacustrine Shale Porosity Evolution, Triassic Chang 7 Member, Ordos Basin, NW China. Petroleum Exploration and Development, 42(2): 167-176 (in Chinese with English abstract). doi: 10.1016/S1876-3804(15)30003-3 Yang, Z., Zou, C. N., Wu, S. T., et al., 2019. Formation, Distribution and Resource Potential of the "Sweet Areas (Sections)" of Continental Shale Oil in China. Marine and Petroleum Geology, 102: 48-60. https://doi.org/10.1016/j.marpetgeo.2018.11.049 Zeng, L. B., Lyu, W. Y., Li, J., et al., 2016. Natural Fractures and Their Influence on Shale Gas Enrichment in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 30: 1-9. https://doi.org/10.1016/j.jngse.2015.11.048 Zeng, L. B., Gong, L., Zu, K. W., et al., 2012. Influence Factors on Fracture Validity of the Paleogene Reservoir, Western Qaidam Basin. Acta Geologica Sinica, 86(11): 1809-1814 (in Chinese with English abstract). Zeng, L. B., Ma, S. J., Tian, H., et al., 2023. Research Progress of Natural Fractures in Organic Rich Shale. Earth Science, 48(7): 2427-2442 (in Chinese with English abstract). Zeng, L. B., Tang, X. M., Wang, T. C., et al., 2012. The Influence of Fracture Cements in Tight Paleogene Saline Lacustrine Carbonate Reservoirs, Western Qaidam Basin, Northwest China. AAPG Bulletin, 96(11): 2003-2017. https://doi.org/10.1306/04181211090 Zhang, Y. Z., Zeng, L. B., Luo, Q., et al., 2018. Research on the Types and Genetic Mechanisms of Tight Reservoir in the Lucaogou Formation in Jimusar Sag, Junggar Basin. Natural Gas Geoscience, 29(2): 211-225 (in Chinese with English abstract). Zhang, Y. Z., Zeng, L. B., Luo, Q., et al., 2020. Effects of Diagenesis on Natural Fractures in Tight Oil Reservoirs: A Case Study of the Permian Lucaogou Formation in Jimusar Sag, Junggar Basin, NW China. Geological Journal, 55(9): 6562-6579. https://doi.org/10.1002/gj.3822 Zhang, Z. C., Liu, K. Q., Wang, Z. L., et al., 2024. Detailed Characterization of Pore Results of Continental Shale Reservoir in Fengcheng Formation, Mahu Sag. ACS Omega, 9(21): 22923-22940. https://doi.org/10.1021/acsomega.4c02056 Zhao, W. Z., Hu, S. Y., Hou, L. H., et al., 2020. Types and Resource Potential of Continental Shale Oil in China and Its Boundary with Tight Oil. Petroleum Exploration and Development, 47(1): 1-10 (in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60001-5 Zhi, D. M., Tang, Y., He, W. J., et al., 2021. Orderly Coexistence and Accumulation Models of Conventional and Unconventional Hydrocarbons in Lower Permian Fengcheng Formation, Mahu Sag, Junggar Basin. Petroleum Exploration and Development, 48(1): 38-51 (in Chinese with English abstract). Zhi, D. M., Tang, Y., Zheng, M. L., et al., 2019. Geological Characteristics and Accumulation Controlling Factors of Shale Reservoirs in Fengcheng Formation, Mahu Sag, Junggar Basin. China Petroleum Exploration, 24(5): 615-623 (in Chinese with English abstract). Zhou, T., Wang, H. B., Li, F. X., et al., 2020. Numerical Simulation of Hydraulic Fracture Propagation in Laminated Shale Reservoirs. Petroleum Exploration and Development, 47(5): 1039-1051 (in Chinese with English abstract). Zolitschka, B., Francus, P., Ojala, A. E. K., et al., 2015. Varves in Lake Sediments: A Review. Quaternary Science Reviews, 117: 1-41. https://doi.org/10.1016/j.quascirev.2015.03.019 Zou, C. N., Yang, Z., Wang, H. Y., et al., 2019. "Exploring Petroleum Inside Source Kitchen": Jurassic Unconventional Continental Giant Shale Oil & Gas Field in Sichuan Basin, China. Acta Geologica Sinica, 93(7): 1551-1562 (in Chinese with English abstract). Zou, Y. S., Zhang, S. C., Zhou, T., et al., 2016. Experimental Investigation into Hydraulic Fracture Network Propagation in Gas Shales Using CT Scanning Technology. Rock Mechanics and Rock Engineering, 49(1): 33-45. https://doi.org/10.1007/s00603-015-0720-3 丁文龙, 许长春, 久凯, 等, 2011. 泥页岩裂缝研究进展. 地球科学进展, 26(2): 135-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201102003.htm 巩磊, 曾联波, 杜宜静, 等, 2015. 构造成岩作用对裂缝有效性的影响: 以库车前陆盆地白垩系致密砂岩储层为例. 中国矿业大学学报, 44(3): 514-519. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503017.htm 何文军, 钱永新, 赵毅, 等, 2021. 玛湖凹陷风城组全油气系统勘探启示. 新疆石油地质, 42(6): 641-655. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202106002.htm 黄玉越, 王贵文, 宋连腾, 等, 2022. 准噶尔盆地玛湖凹陷二叠系风城组页岩储集层裂缝测井识别与有效性分析. 古地理学报, 24(3): 540-555. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202203010.htm 靳军, 杨召, 依力哈木·尔西丁, 等, 2018. 准噶尔盆地吉木萨尔凹陷致密油储层纳米孔隙特征及其含油性. 地球科学, 43(5): 1594-1601. doi: 10.3799/dqkx.2018.415 金之钧, 白振瑞, 高波, 等, 2019. 中国迎来页岩油气革命了吗? 石油与天然气地质, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm 金之钧, 梁新平, 王小军, 等, 2022. 玛湖凹陷风城组页岩油富集机制与甜点段优选. 新疆石油地质, 43(6): 631-639. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202206001.htm 金之钧, 朱如凯, 梁新平, 等, 2021. 当前陆相页岩油勘探开发值得关注的几个问题. 石油勘探与开发, 48(6): 1276-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202106021.htm 鞠玮, 尤源, 冯胜斌, 等, 2020. 鄂尔多斯盆地延长组长7油层组致密砂岩储层层理缝特征及成因. 石油与天然气地质, 41(3): 596-605. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003016.htm 匡立春, 唐勇, 雷德文, 等, 2012. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力. 石油勘探与开发, 39(6): 657-667. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206004.htm 匡立春, 支东明, 王小军, 等, 2021. 新疆地区含油气盆地深层‒超深层成藏组合与勘探方向. 中国石油勘探, 26(4): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202104001.htm 雷海艳, 郭佩, 孟颖, 等, 2022. 玛湖凹陷二叠系风城组页岩油储层孔隙结构及分类评价. 岩性油气藏, 34(3): 142-153. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202203013.htm 黎茂稳, 金之钧, 董明哲, 等, 2020. 陆相页岩形成演化与页岩油富集机理研究进展. 石油实验地质, 42(4): 489-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004004.htm 李彦录, 陆诗磊, 夏东领, 等, 2022. 鄂尔多斯盆地南部延长组长7油组页岩层系天然裂缝发育特征及主控因素. 地质科学, 57(1): 73-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202201004.htm 刘敬寿, 丁文龙, 杨海盟, 等, 2023. 鄂尔多斯盆地华庆地区天然裂缝与岩石力学层演化——基于数值模拟的定量分析. 地球科学, 48(7): 2572-2588. doi: 10.3799/dqkx.2022.234 田鹤, 曾联波, 徐翔, 等, 2020. 四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响. 石油与天然气地质, 41(3): 474-483. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003005.htm 王剑, 周路, 刘金, 等, 2022. 湖相热液白云岩成因机理——以准噶尔盆地玛湖凹陷二叠系风城组为例. 沉积学报, 42(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202401010.htm 吴松涛, 朱如凯, 崔京钢, 等, 2015. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征. 石油勘探与开发, 42(2): 167-176. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201502006.htm 曾联波, 巩磊, 祖克威, 等, 2012. 柴达木盆地西部古近系储层裂缝有效性的影响因素. 地质学报, 86(11): 1809-1814. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201211011.htm 曾联波, 马诗杰, 田鹤, 等, 2023. 富有机质页岩天然裂缝研究进展. 地球科学, 48(7): 2427-2442. doi: 10.3799/dqkx.2022.190 张云钊, 曾联波, 罗群, 等, 2018. 准噶尔盆地吉木萨尔凹陷芦草沟组致密储层裂缝特征和成因机制. 天然气地球科学, 29(2): 211-225. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201802007.htm 赵文智, 胡素云, 侯连华, 等, 2020. 中国陆相页岩油类型、资源潜力及与致密油的边界. 石油勘探与开发, 47(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001002.htm 支东明, 唐勇, 何文军, 等, 2021. 准噶尔盆地玛湖凹陷风城组常规‒非常规油气有序共生与全油气系统成藏模式. 石油勘探与开发, 48(1): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101006.htm 支东明, 唐勇, 郑孟林, 等, 2019. 准噶尔盆地玛湖凹陷风城组页岩油藏地质特征与成藏控制因素. 中国石油勘探, 24(5): 615-623. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905008.htm 周彤, 王海波, 李凤霞, 等, 2020. 层理发育的页岩气储集层压裂裂缝扩展模拟. 石油勘探与开发, 47(5): 1039-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005021.htm 邹才能, 杨智, 王红岩, 等, 2019. "进源找油": 论四川盆地非常规陆相大型页岩油气田. 地质学报, 93(7): 1551-1562. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201907001.htm -