A Study on Hydrocarbon Sources and Accumulation Time in the Northern Fault Zone, Songnan-Baodao Sag of Qiongdongnan Basin
-
摘要: 琼东南盆地松南-宝岛凹陷北部断阶带发现多个含气构造,对该区带油气来源等认识存在很大争议,深水区烃源岩规模研究方面还比较薄弱,阻碍了下一步勘探方向的决策.采集了研究区共84个泥岩、7个天然气、3个原油样品进行岩石热解、干酪根同位素、生物标志化合物、天然气轻烃与碳同位素等分析,系统对比研究区不同层系烃源岩地化特征,认为松南-宝岛凹陷北部断阶带油气来源于崖城组海相泥岩,以陆源有机质的生烃贡献最大. 结合古环境、古生物与显微组分分析推测崖城组整体为浅海沉积,有利于好烃源岩的形成,在此基础上通过地震相的精细刻画厘清研究区崖城组烃源岩分布特征,结果表明研究区崖城组发育大规模煤系三角洲-浅海相沉积体系,其中前三角洲亚相、浅海相是好烃源岩主要赋存单元,烃源岩沿近凹断阶带分布. 流体包裹体证据表明,松南-宝岛凹陷北部断阶带深水区至少存在两期烃类充注,主要成藏的是晚期高熟煤型气(7.8 Ma之后),证实煤系三角洲-浅海相沉积体系下发育的烃源岩能够为油气成藏提供充足的烃类,晚期更容易大量生成天然气,其东侧的深水区断阶带存在类似的烃源岩分布、热演化特征及输导体系,应是下一步天然气勘探首选.Abstract: A number of gas-bearing structures were discovered in the northern fault zone of Songnan-Baodao Sag in Qiongdongnan Basin, but great disputes on the understanding of hydrocarbon source in the northern fault zone, the research on the scale of source rocks in deep-water is still weak, which hindered the decision of the next exploration direction. A total of 84 mudstone, 7 natrual gases, 3 crudoil samples from the study area were collected for rock pyrolysis, kerrogen carbon isotope, biomarkers, light hydrocarbon and carbon isotope analysis of natural gas in this paper, Geochemical characteristics of source rock from different strata in the study area systematic comparison, it is believed that the oil and gas in the norhern fault-step zone of Songnan-Baodao depression derived from marine mudstone of yacheng formation, and land-based organic hydrocarbon generation is dominant, combined with the paleoenvironment paleontology and microscopic components analysis, it is predicted that the whole yacheng formation is a shallow sea sedimentary environment, and conductive to the enrichment of organic matter form good source rocks, On this basis, the distribution characteristics of hydrocarbon source rocks of the yacheng formation in the study area are clarified through the seismic facies. The results show that the yacheng formation in the study area develop a large-scale coal-bearing delta、marine sedimentary system, which is the main occurrence unit of good hydrocarbon source rocks, distributed along the near concave and fault step zone. Fluid inclusion evidence shows that there are at least two stages of hydrocarbon filling in the deep-water area of the northern fault step zone of Songnan-Baodao depression, and the main accumulation is the high mature coal-type gas. It is confirmed that source rocks deposited on the coal-bearing delta and marine facies have rich gas supply, and a large amount of natural gas will be easier generated in the later stage, it is speculated that there are similar source rock distribution, thermal evolution characteristics and transport system in the fault step zone of deep-water area on the east side, which should be the first choice for next natural gas exploration.
-
图 3 δ13CH4与C1/(C2+C3)判断天然气成因图
底图据戴金星(1993)
Fig. 3. δ13CH4与C1/(C2+C3) to determine the genetic map of natural gas
-
[1] Cramer, B., Faber, E., Gerling, P., et al., 2001. Reaction Kinetics of Stable Carbon Isotopes in Natural GasInsights from Dry, Open System Pyrolysis Experiments. Energy & Fuels, 15(3): 517-532. https://doi.org/10.1021/ef000086h [2] Chen, H. H., 2007. Advances in Geochronology of Hydrocarbon Accumulation. Oil & Gas Geology, 28(2): 143-150(in Chinese with English abstract). [3] Dai, J. X., 1993. Identification of Coal Formed Gas and Oil Type Gas by Light Hydrocarbons. Petroleum Exploration and Development, 20(5): 26-32(in Chinese with English abstract). [4] Dai, J. X., 2011. Significance of the Study on Carbon Isotopes of Alkane Gases. Natural Gas Industry, 31(12): 1-6(in Chinese with English abstract). [5] Deng, Y., Pei, J. X., Hu, L., et al., 2022. Discovery and Hydrocarbon Accumulation Models of Baodao 21-1 Gas Field in the Western South China Sea. China Offshore Oil and Gas, 34(5): 13-22(in Chinese with English abstract). [6] Gan, J., Zhang, Y. Z., Liang, G., et al., 2019. Deposition Pattern and Differential Thermal Evolution of Source Rocks, Deep Water Area of Qiongdongnan Basin. Earth Science, 44(8): 2627-2635(in Chinese with English abstract). [7] Guo, S. S., Liao, G. L., Liang, H., et al., 2021. Major Breakthrough and Significance of Deep-Water Gas Exploration in Well BD21 in Qiongdongnan Basin. China Petroleum Exploration, 26(5): 49-59(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2021.05.005 [8] Huang, B. J., Li, l., Huang, H. T., et al., 2012a. Origin and Accumulation Mechanism of Shallow Gas in the North Baodao Slope, Qiongdongnan Basin, South China Sea. Petroleum Exploration and Development, 39(5): 530-536(in Chinese with English abstract). [9] Huang, B. J., Li, X. S., Wang, Z. F., et al., 2012b. Source Rock Geochemistry and Gas Potential in the Deep Water Area, Qiongdongnan Basin. China Offshore Oil and Gas, 24(4): 1-7(in Chinese with English abstract). [10] Jang, Y. L., Liu, X. J., Zhao, X. Z., et al., 2020. Comprehensive Identification of Oil and Gas Accumulation Period by Fluid Inclusion Technique and Reservoir Bitumen Characteristics: A Case Study of the Paleozoic Buried Hill in Beidagang, Huanghua Depression. Earth Science, 45(3): 980-988(in Chinese with English abstract). [11] Li, X. J., Chen, F., Chen, C. Y., 2004. Quantitative Reserch on Relationship between Planktonic Formation Content and Water Depth in Western South China Sea. Journal of Palaeogeography, 6(4): 442-447(in Chinese with English abstract). [12] Li, X. X., 2004. Study on Structural Dynamics and Hydrocarbon Accumulation in Qiongdongnan Basin(Dissertation), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou((in Chinese with English abstract). [13] Liu, D. H., Lu, H. Z., Xiao, X. M., 2007. Oil and Gas Inclusions and Their Application in Petroleum Exploration and Development. Guangdong Science and Technology Press, Guanzhou(in Chinese). [14] Liu, Z. H., Chen, H. H., 2011. Hydrocarbon Charging Orders and Times in the Eastern Area of Qiongdongnan Bain. Geoscience, 25(2): 279-288(in Chinese with English abstract). [15] Liang, G., Gan, J., Li, X., et al., 2015. Genetic Types and Origin of Natural Gas in Lingshui Sag, Qiongdongnan Basin. China Offshore Oil and Gas, 27(4): 47-53(in Chinese with English abstract). [16] Liu, Y. H., Chen, H. H., Su, A., et al., 2016. Eocene Source Rock Determination in Qiongdongnan Basin, the South China Sea: A Hydrocarbon Detection Perspective. Earth Science, 41(9): 1539-1547 (in Chinese with English abstract). [17] Sun, R., Han, Y. X., Zeng, Q. B., et al., 2019. Sedimentary Characteristics of Yacheng Formation in the Eastern Deepwater Area in Qiongdongnan Basin and Their Control on Marine Source Rocks. Acta Petrolei Sinica, , 40(S2): 57-66(in Chinese with English abstract). [18] Tang, Y., Perry, J. K., Jenden, P. D., et al., 2000. Mathematical Modeling of Stable Carbon Isotope Ratios in Natural Gases. Geochimica et Cosmochimica Acta, 64(15): 2673-2687. https://doi.org/10.1016/s0016-7037(00)00377-x [19] Wu, P., Hou, D. J., Gan, J., et al., 2019. Development Model of Oligocene Source Rock in the Eastern Deep-Water Area of Qiongdongnan Basin. Acta Sedimentologica. 37(3): 633-644(in Chinese with English abstract). [20] Xu, C. G., You L., 2022. North Slope Transiton Zone of Songnan-Baodao Sag in Qiongdongnan Basin and Its Control on Medium and Large Gas Fields, South China Sea. Petroleum Explortion and Development. 49(6): 1061-1072(in Chinese with English abstract). [21] Zhu, W. L., Huang, B. J., Mi, L. J., et al., 2009. Geochemistry, Origin, and Deep-Water Exploration Potential of Natural Gases in the Pearl River Mouth and Qiongdongnan Basins, South China Sea. AAPG Bulletin, 93(6): 741-761. https://doi.org/10.1306/02170908099 [22] Zhang, Y. Z., Qi, J F., Wu, J. F., et al., 2019. Cenozoic Faults Systems and Its Geodynamics of the Continental Margin Basins in the Northern of South China Sea. Earth Science, 44(2): 603-625(in Chinese with English abstract). [23] Zhang, Y. Z., Fan, C. W., Xu, X. D., et al., 2015. Genesis and Sources of Natural Gas in Eastern Qiongdongnan Basin, South China Sea. Petroleum Geology & Experiment, 37(4): 466-472, 478(in Chinese with English abstract). [24] Zhang, Y. Z., Gan, J., Xu, X. D., et al., 2019. The Source and Natural Gas Lateral Migration Accumulation Model of Y 8-1 Gas Bearing Structure, East Deep Water in the Qiongdongnan Basin. Earth Science, 44(8): 2610-2616(in Chinese with English abstract). [25] 陈红汉, 2007. 油气成藏年代学研究进展. 石油与天然气地质, 28(2): 143-150. doi: 10.3321/j.issn:0253-9985.2007.02.003 [26] 戴金星, 1993. 利用轻烃鉴别煤成气和油型气. 石油勘探与开发, 20(5): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199305003.htm [27] 戴金星, 2011. 天然气中烷烃气碳同位素研究的意义. 天然气工业, 31(12): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201112003.htm [28] 邓勇, 裴健翔, 胡林, 等, 2022. 南海西部海域宝岛21-1气田的发现与成藏模式. 中国海上油气, 34(5): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202205002.htm [29] 甘军, 张迎朝, 梁刚, 等, 2019. 琼东南盆地深水区烃源岩沉积模式及差异热演化. 地球科学, 44(8): 2627-2635. doi: 10.3799/dqkx.2019.202 [30] 郭书生, 廖高龙, 梁豪, 等, 2021. 琼东南盆地BD21井深水区天然气勘探重大突破及意义. 中国石油勘探, 26(5): 49-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202105005.htm [31] 黄保家, 李里, 黄合庭. 等, 2012a. 琼东南盆地宝岛北坡浅层天然气成因与成藏机制. 石油勘探与开发. 39(5): 530-536. [32] 黄保家, 李绪深, 王振峰, 等, 2012b. 琼东南盆地深水区烃源岩地球化学特征与天然气潜力. 中国海上油气, 24(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201204002.htm [33] 蒋有录, 刘学嘉, 赵贤正, 等, 2020. 根据储层沥青和流体包裹体综合判识油气成藏期. 地球科学, 45(3): 980-988. doi: 10.3799/dqkx.2019.016 [34] 李学杰, 陈芳, 陈超云. 等, 2004. 南海西部浮游有孔虫含量与水深关系定量研究. 古地理学报. 6(4): 442-447. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200404005.htm [35] 李绪宣, 2004. 琼东南盆地构造动力学演化及油气成藏研究(博士学位论文). 广州: 中国科学院研究生院(广州地球化学研究所). [36] 刘德汉, 卢焕章, 肖贤明, 2007. 油气包裹体及其在石油勘探和开发中的应用. 广州: 广东科技出版社. [37] 刘正华, 陈红汉, 2011. 琼东南盆地东部地区油气形成期次和时期. 现代地质. 25(2): 279-288. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201102012.htm [38] 梁刚, 甘军, 李兴, 等, 2015. 琼东南盆地陵水凹陷天然气成因类型及来源. 中国海上油气, 27(4): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201504006.htm [39] 刘妍鷨, 陈红汉, 苏奥, 等, 2016. 从含油气检测来洞悉琼东南盆地东部发育始新统烃源岩的可能性. 地球科学, 41(9): 1539-1547. doi: 10.3799/dqkx.2016.521 [40] 孙瑞, 韩银学, 曾清波, 等, 2019. 琼东南盆地深水区东段崖城组沉积特征及对海相烃源岩的控制. 石油学报, 40(S2): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S2008.htm [41] 吴飘, 侯读杰, 甘军, 等, 2019. 琼东南盆地深水东区渐新统烃源岩发育模式. 沉积学报, 37(3): 633-644. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201903018.htm [42] 徐长贵, 尤丽, 2022. 琼东南盆地松南-宝岛凹陷北部转换带特征及其对大中型气田的控制. 石油勘探与开发, 49(6): 1061-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202206001.htm [43] 张新顺, 黄志龙, 范彩伟. 等, 2014. 琼东南盆地宝岛凹陷北斜坡油气运聚模式探讨. 高校地质学报. 20(4): 602-610. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201404012.htm [44] 张远泽, 漆家福, 吴景富, 2019. 南海北部新生代盆地断裂系统及构造动力学影响因素. 地球科学, 44(2): 603-625 doi: 10.3799/dqkx.2018.542 [45] 张迎朝, 范彩伟, 徐新德, 等, 2015. 南海琼东南盆地东区天然气成因类型与烃源探讨. 石油实验地质, 37(4): 466-472, 478. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201504010.htm [46] 张迎朝, 甘军, 徐新德, 等, 2019. 琼东南盆地深水东区Y8-1含气构造天然气来源及侧向运聚模式. 地球科学, 44(8): 2609-2618. doi: 10.3799/dqkx.2019.159 -