• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应

    彭建兵 张永双 黄达 王飞永 王祚鹏

    彭建兵, 张永双, 黄达, 王飞永, 王祚鹏, 2023. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114. doi: 10.3799/dqkx.2023.137
    引用本文: 彭建兵, 张永双, 黄达, 王飞永, 王祚鹏, 2023. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114. doi: 10.3799/dqkx.2023.137
    Peng Jianbing, Zhang Yongshuang, Huang Da, Wang Feiyong, Wang Zuopeng, 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114. doi: 10.3799/dqkx.2023.137
    Citation: Peng Jianbing, Zhang Yongshuang, Huang Da, Wang Feiyong, Wang Zuopeng, 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114. doi: 10.3799/dqkx.2023.137

    青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应

    doi: 10.3799/dqkx.2023.137
    详细信息
      作者简介:

      彭建兵(1953-),男,教授,中国科学院院士,主要从事工程地质与灾害地质方面的科研与教学工作. E-mail:dicexy_1@chd.edu.cn

    • 中图分类号: P684

    Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau

    • 摘要: 青藏高原板块强烈碰撞和持续变形的本质是地球圈层作用,地壳浅表关键带圈层作用研究是探索持续构造变形与浅表响应、巨灾孕育机制的关键.在简要分析青藏高原圈层作用动力背景的基础上,从工程地质视角,将地壳浅表关键带划分为四类圈层:构造变形圈、岩体松动圈、地表冻融圈和工程扰动圈,并分析研究了圈层岩土体变形破坏形式、圈层岩体稳定状态与工程安全性、圈层灾害行为与机制. 研究表明,四类圈层的互馈作用深刻影响着不同尺度地质体的稳定性和灾害动力学机制. 即:板块构造动力作用形成构造变形圈,制约区域地质体稳定性,控制灾害的孕育;高原隆升动力形成岩体松动圈,制约工程地质体稳定性,控制灾害的形成;气候变化动力形成地表冻融圈,制约工程岩土体稳定性,控制灾害链的演化;人类工程营力形成工程扰动圈,制约工程结构体稳定性,控制工程灾变发生. 下级圈层对上级圈层具有包容性,且自下而上存在递进演化规律,使得岩体结构更加复杂,工程地质问题及灾害效应更加显著. 上述认识为重大工程建设的地质安全风险防范提供了新思路.

       

    • 图  1  青藏高原深部与地壳浅表关键带互馈效应示意图

      Cui et al.(2022)修改

      Fig.  1.  Schematic illustration of the interaction effect between the deep interior and shallow crustal key spheres of the Tibetan Plateau

      图  2  构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈之间的关系示意图

      Fig.  2.  Schematic illustration of the relationships between the spheres of tectonic deformation, rock mass loosening, surface freeze-thaw, and engineering disturbance

      图  3  青藏高原动力驱动-圈层控制-稳定性制约的灾害动力学研究框架

      Fig.  3.  Research framework on the disaster dynamics driven by the dynamics of the Tibetan Plateau, layer control, and stability constraints

      图  4  构造变形圈复式褶皱典型特征

      a. 昌都盆地煤系地层的强烈复式褶皱变形;b. 雅鲁藏布江下游花岗片麻岩强烈褶皱断裂组合变形

      Fig.  4.  Features of compound folds in tectonic deformation sphere.

      图  5  岩体松动圈主要变形破坏特征

      a. 深切河谷岸坡卸荷带与应力分布特征;b. 金沙江中游河谷岸坡卸荷带;c. 南祁连山石灰岩浅表岩体沿节理的松动变形;d. 怒江上游花岗岩边坡岩体松动变形

      Fig.  5.  Main deformation and failure characteristics of rock mass loosening sphere

      图  6  冻融圈岩土体冻融破坏现象及演进示意图

      a. 高原山前带冻融圈浅表坡体滑移破坏;b. 冻融圈岩体破坏演进的力学模式

      Fig.  6.  Freeze-thaw induced failure phenomena and evolution schematic diagram of frozen rock-soil mass

      图  7  冻融作用下花岗岩的破坏模式

      戚利荣等(2021)

      Fig.  7.  Failure mode of granite under freeze-thaw action

      图  8  川藏交通廊道活动断裂分布图

      张永双等(2016)

      Fig.  8.  Distribution map of active faults in the Sichuan-Tibet transportation corridor

      图  9  深切河谷斜坡地应力分布特征

      a. 河谷地应力一般特征(据黄润秋, 2007, 修改);b.大渡河中游河谷地应力分布模拟结果

      Fig.  9.  Characteristics of stress distribution in a deep-cut valley slopes

      图  10  水电工程施工诱发的坝基开裂破坏

      伍法权(2009);a.某水电工程坝基岩体开挖卸荷回弹破坏;b.某水电工程坝基右岸累计张开量位移曲线及卸荷带分区

      Fig.  10.  Cracking damage induced by hydropower construction

      图  11  青藏高原构造变形控制下的重大地质灾害孕育过程

      a. 深部构造作用的地表地质过程响应;b. 西藏扎木弄沟上游易滑地质结构(镜向NW)

      Fig.  11.  Incubation process of major geohazards under the control of tectonic deformation on the Tibetan Plateau

      图  12  金沙江上游岸坡松动圈与高位滑坡发育特征图

      a.高位滑坡分布图;b.肖莫久滑坡;c.白格滑坡;d.雄巴滑坡;e.色拉滑坡;f. 熊果滑坡;g. 特米滑坡

      Fig.  12.  Development characteristics of loosening sphere and high-level landslide on the upstream slope of the Jinsha River

      图  13  冻融圈浅表地质灾害链演化过程

      Fig.  13.  The evolution process of shallow geohazard chains induced by freeze-thaw action

      图  14  工程扰动与边坡防护破坏特征

      a. 公路切坡导致滑坡失稳破坏;b.滑坡变形导致挡墙开裂;c.滑坡变形导致抗滑桩错位

      Fig.  14.  Characteristics of engineering disturbance and slope protection damage

      图  15  青藏高原地壳浅表关键带“四圈”与“三性”的关联机制

      Fig.  15.  Correlation mechanism between the "four spheres" and "three properties" of the shallow crustal key zones on the Tibetan Plateau

    • [1] Allen, S. K., Linsbauer, A., Randhawa, S. S., et al., 2016. Glacial Lake Outburst Flood Risk in Himachal Pradesh, India: An Integrative and Anticipatory Approach Considering Current and Future Threats. Natural Hazards, 84(3): 1741-1763. https://doi.org/10.1007/s11069-016-2511-x
      [2] Chen, D. L., Xu, B. Q., Yao, T. D., et al., 2015. Assessment of Past, Present and Future Environmental Changes on the Tibetan Plateau. Chin Sci Bull, 60: 3025-3035 (in Chinese with English abstract).
      [3] Chen, F. H., Xia, H., Gao, Y., et al., 2022. The Processes of Prehistoric Human Activities in the Tibetan Plateau: Occupation, Adaptation and Permanent Settlement. Scientia Geographica Sinica, 42(1): 1-14 (in Chinese with English abstract).
      [4] Cheng, G. D., Zhao, L., Li, R., et al., 2019. Characteristic, Changes and Impacts of Permafrost on Qinghai-Tibet Plateau. Chin Sci Bull, 64: 2783-2795 (in Chinese with English abstract). doi: 10.1360/TB-2019-0191
      [5] Clair, J. S., Moon, S., Holbrook, W. S., et al., 2015. Geophysical Imaging Reveals Topographic Stress Control of Bedrock Weathering. Science, 350(6260): 534-538. https://doi.org/10.1126/science.aab2210
      [6] Cui, P., Jia, Y., Su, F. H., et al., 2017. Natural Hazards in Tibetan Plateau and Key Issue for Feature Research. Progress of Comprehensive Scientific Research on Tibetan Plateau, China. Bulletin of Chinese Academy of Sciences, 32(9): 985-992 (in Chinese with English abstract).
      [7] Cui, P., Su, F. H., Chu, Q., et al., 2015. Risk Assessment and Disaster Reduction Strategies for Mountainous and Meteorological Hazards in Tibetan Plateau. Chin Sci Bull, 60: 3067-3077 (in Chinese with English abstract). doi: 10.1360/N972015-00849
      [8] Cui, P., Ge, Y. G., Li, S. J., et al., 2022. Scientific Challenges in Disaster Risk Reduction for the Sichuan-Tibet Railway. Engineering Geology, 309(D5): 106837. https://doi.org/10.1016/j.enggeo.2022.106837
      [9] Ding, L., Zhong, D. L., 2013. The Tectonic Evolution of the Eastern Himalaya Syntaxis since the Collision of the Indian and Eurasian Plates. Chinese Journal of Geology, 48(2): 317-333 (in Chinese with English abstract).
      [10] Duan, K., Yao, T., Wang, N., et al., 2022. Changes in Equilibrium-Line Altitude and Implications for Glacier Evolution in the Asian High Mountains in the 21st Century. Science China Earth Sciences, 65(7): 1308-1316 (in Chinese). doi: 10.1007/s11430-021-9923-6
      [11] Duo, J., Zhang, J. S., Li, G. M., et al., 2017. Study on the Comparing the Mineralization Conditions between the Western Part of the Bangong Lake-Nujiang Metallogenic Belt in Tibet and the Andean Super-Large Deposits in South America. Plateau Science Research, 1(1): 1-10 (in Chinese with English abstract).
      [12] Feng, X. T., Xiao, Y. X., Feng, G. L., et al., 2019. Study on the Development Process of Rockbursts. Chinese Journal of Rock Mechanics and Engineering, 38(4): 649-673 (in Chinese with English abstract).
      [13] Guo, C. B., Zhang, Y. S., Jiang, L. W., et al., 2017. Discussion on the Environmental and Engineering Geological Problems Along the Sichuan-Tibet Railway and Its Adjacent Area. Geoscience, 31(5): 877-889 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2017.05.001
      [14] Guo, J. J., Han, W. F., Li, X. F., 2009. The Cenozoic Tectonic Evolution of the West Qinling: Constraints on the Uplift and Deformation of the Qinghai-Tibet Plateau. Earth Science Frontiers, 16(6): 215-225. https://doi.org/10.1016/s1872-5791(8)60117-7
      [15] Guo, Z. T., 2019. Earth System and Evolution: A Future Frame of Earth Sciences. Science Bulletin, 64(9): 882-883 (in Chinese).
      [16] Gao, R., Lu, Z. W., Klemperer, S. L., et al., 2016. Crustal-Scale Duplexing beneath the Yarlung Zangbo Suture in the Western Himalaya. Nature Geoscience, 9(7): 555-560. https://doi.org/10.1038/ngeo2730
      [17] Huang, L. Q., Si, X. F., Li, X. B., et al., 2022. Influence of Maximum Principal Stress Direction on the Failure Process and Characteristics of D-Shaped Tunnels. International Journal of Mining Science and Technology, 32(5): 1125-1143. https://doi.org/10.1016/j.ijmst.2022.07.004
      [18] Huang, R. Q., 2007. Large-Scale Landslides and Their Sliding Mechanisms in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454 (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2007.03.001
      [19] Hou, Z. Q., Xu, B., Zheng, Y. C., et al., 2021. Mantle Flow: The Deep Mechanism of Large-Scale Growth in Tibetan Plateau (in Chinese). Chin Science Bulletin, 66: 2671-2690 (in Chinese with English abstract). doi: 10.1360/TB-2020-0817
      [20] Jiang, N., Li, H. B., Kou, Q. J., et al., 2021. Quantitative Monitoring Method for Analyzing the Erosion of a Landslide Dam Discharge Channel Using Three-Dimensional Terrestrial Laser Scanning. Geomatics, Natural Hazards and Risk, 12(1): 1905-1930. https://doi.org/10.1080/19475705.2021.1953157
      [21] Lan, H. X., Peng, J. B., Zhu, Y. B., et al., 2022. Research on Geological and Surfacial Processes and Major Disaster Effects in the Yellow River Basin. Science China Earth Sciences, 65(2): 234-256 (in Chinese with English abstract). doi: 10.1007/s11430-021-9830-8
      [22] Li, H. B., Qi, S. C., Chen, H., et al., 2019. Mass Movement and Formation Process Analysis of the Two Sequential Landslide Dam Events in Jinsha River, Southwest China. Landslides, 16(11): 2247-2258. https://doi.org/10.1007/s10346-019-01254-z
      [23] Li, J. J., 1999. Studies on the Geomorphological Evolution of the Qinghai-Xizang Plateau and Asian Monsoon. Marine Geology and Quatenary Geology, 19(1): 1-12 (in Chinese with English abstract).
      [24] Li, T. D., Liu, Y., Ding, X. Z., et al., 2022. Ten Advances in Regional Geological Research of China in Recent Years. Acta Geologica Sinica (100th Aniversary), 96(5): 1544-1581 (in Chinese with English abstract).
      [25] Li, W., Dong, Y. P., Guo, A. L., et al., 2013. Chronology and Tectonic Significance of Cenozoic Faults in the Liupanshan Arcuate Tectonic Belt at the Northeastern Margin of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 73(Suppl. 2): 103-113. https://doi.org/10.1016/j.jseaes.2013.04.026
      [26] Liu, Z. H., Chen, B., Wang, S. Q., et al., 2021. The Impacts of Vegetation on the Soil Surface Freezing-Thawing Processes at Permafrost Southern Edge Simulated by an Improved Process-Based Ecosystem Model. Ecological Modelling, 456: 109663. https://doi.org/10.1016/j.ecolmodel.2021.109663
      [27] Ni, J., Chen, Y. L., Wang, P., et al., 2017. Effect of Chemical Erosion and Freeze-Thaw Cycling on the Physical and Mechanical Characteristics of Granites. Bulletin of Engineering Geology and the Environment, 76(1): 169-179. https://doi.org/10.1007/s10064-016-0891-5
      [28] Pan, G. T., Ren, F., Yin, F. G., et al., 2020. The Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project. Earth Science, 45 (7): 2293-2304 (in Chinese with English abstract).
      [29] Peng, J. B., Ma, R. Y., Lu, Q. Z., et al., 2004. Geological Hazards Effects of Qinghai-Tibet Plateau. Advance in Earthsciences, 19 (3): 457-466 (in Chinese with English abstract).
      [30] Peng, J. B., Cui, P., Zhuang, J, Q., 2020. Challenges to Engineering Geology of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389 (in Chinese with English abstract).
      [31] Peng, J. B., Lan, H. X., 2022. Ecological Geology and Eco-Geological Environment System. Journal of Earth Sciences and Environment, 44(6): 877-893 (in Chinese with English abstract).
      [32] Peng, J. B., Xu, N. X., Zhuang, J. Q., et al., 2022. The Framework System for Geosafety Research. Journal of Engineering Geology, 30(6): 1798-1810 (in Chinese with English abstract).
      [33] Qi, L. R., Wang, J. D., Zhang, D. F., et al., 2021. A Study of Granite Damage in the Macro and Microscopic Scales under Freezing-Thawing Cycles. Hydrogeology and Engineering Geology, 48 (5): 65-73 (in Chinese with English abstract).
      [34] Qin, D. H., Yao, T. D., Ding, Y. J., et al., 2020. The Cryospheric Science for Sustainable Development. Journal of Glaciology and Geocryology, 42(1): 1-10 (in Chinese with English abstract).
      [35] Qu, J. S., Liu, X. X., Yao, T. D., 2013. Future Earth System research on the Qinghai-Tibet Plateau will become a Breakthrough Point in Earth Science Research. Journal of the Chinese Academy of Sciences, 28(5): 590-593 (in Chinese).
      [36] Shen, Y. J., Chen, S. W., Zhang, L., et al., 2022. High-Altitude Initiation, Dynamic Collapse and Phase Transformation of Mountain Snow-Ice Melt Geological Disaster Chain. Journal of Glaciology and Geocryology, 44(2): 643-656 (in Chinese with English abstract).
      [37] Sun, H. L., Zhen, D., Yao, T. D., et al., 2012. Protection and Construction of the National Ecological Security Shelter Zone on Tibetan Plateau. Acta Geographica Sinica, 67(1): 3-13 (in Chinese with English abstract).
      [38] Tong, L. Q., Tu, J. L., Pei, L. X., et al., 2018. Preliminary Discussion of the Frequently Debris Flow Events in Sedongpu Basin at Gyalaperi Peak, Yarlung Zangbo River. Journal of Engineering Geology, 26: 1552-1561 (in Chinese with English abstract).
      [39] Wang, C. H., Gao, G. Y., Yang, S. X., et al., 2019. Analysis and Prediction of Stress Fields of Sichuan-Tibet Railway Area Based on Contemporary Tectonic Stress Field Zoning in Western China. Chinese Journal of Rock Mechanics and Engineering, 38(11): 2242-2253 (in Chinese with English abstract).
      [40] Wang, C. S., Ding, X. L., 1998. The New Research Process of Tibet Plateau Uplift. Advance in Earthsciences, 13(6): 526-532 (in Chinese with English abstract).
      [41] Wang, H. Q., Hu, Q., Tan, C. X., et al., 2021a. The Influence Mechanism of in Situ Stress State on the Stability of Deep-Buried-Curved Tunnel in Qinghai-Tibet Plateau and its Adjacent Region. Shock and Vibration, 2021(6432): 1-18. https://doi.org/10.1155/2021/9955497
      [42] Wang, J. X., Tang, S. B., Heap, M. J., et al., 2021b. An Auto-Detection Network to Provide an Automated Real-Time Early Warning of Rock Engineering Hazards Using Microseismic Monitoring. International Journal of Rock Mechanics and Mining Sciences, 140(21): 104685. https://doi.org/10.1016/j.ijrmms.2021.104685
      [43] Wang, P. X., 2009. Interactions between Earth′s Deep and Surface. Advancesin Earth Science, 24(12): 1331-1338 (in Chinese with English abstract).
      [44] Wu, F. Q., Liu, T., Tang, X. L., et al., 2009. Research on Unloading and Zonation of Rock Mass Dam Foundation Excavation: a Case Study of Xiaowan Hydropower Station. Chinese Journal of Rock Mechanics and Engineering, 28(6): 1091-1098 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2009.06.002
      [45] Wu, F. Y., Liu, Z. C., Liu, X. C., et al., 2015. Himalayan Leucogranite: Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1): 1-36 (in Chinese with English abstract).
      [46] Wu, Q. B., Zhang, Z. Q., Liu, G., 2021. Relationships between Climate Warming and Engineer Ingstability of Pemafrost on Qinghai-Tibet Plateau. Journal of Engineering Geology, 29(2): 342-352 (in Chinese with English abstract).
      [47] Xia, Y. Q., Jiang, N., Zhou, C. B., et al., 2019. Safety Assessment of Upper Water Pipeline under the Blasting Vibration Induced by Subway Tunnel Excavation. Engineering Failure Analysis, 104(9): 626-642. https://doi.org/10.1016/j.engfailanal.2019.06.047
      [48] Xie, H. P., Zhang, R., Ren, L. et al., 2022. Analysis and Thoughts on Surrounding Rock Mass Catastrophe of Deep-Buried Tunnels in Extremely Complex High Mountain Areas. Advanced Engineering Sciences, 54(2): 1-20 (in Chinese with English abstract).
      [49] Xu, Q., Li, W. L., Dong, X. J., et al., 2017. The Xinmocun Landslide on June 24, 2017 in Maoxian, Sichuan: Characteristics and Failure Mechanism. Chinese Journal of Rock Mechanics and Engineering, 36(11): 2612-2628 (in Chinese with English abstract).
      [50] Xu, Z. Q., Li, G. W., Zhang, Z. M., et al., 2022. Review Ten Key Geological Issures of the Tibetan Plateau. Acta Geologica Sinica (100th Anniversary), 96(1): 65-94 (in Chinese with English abstract).
      [51] Yang, Q., Wang, S. G., Li, C. Y., et al., 2020. Internal Driving Force of Deformation and Failure of Rock Mass Structure-Unbalanced Force. Journal of Engineering Geology, 28(2): 202-210 (in Chinese with English abstract).
      [52] Yao, T. D., 2019. A Comprehensive Study of Water-Ecosystem-Human Activities Reveals Unbalancing Asian Water Tower and Accompanying Potential Risks. Chinese Science Bulletin, 64(27): 2761-2762 (in Chinese with English abstract). doi: 10.1360/TB-2019-0532
      [53] Yin, Y. P., Li, B., Gao, Y., et al., 2023. Geostructures, Dynamics and Risk Mitigation of High-Altitude and Long-Runout Rockslides. Journal of Rock Mechanics and Geotechnical Engineering, 15(1): 66-101. https://doi.org/10.1016/j.jrmge.2022.11.001
      [54] Yin, Y. P., Li, B., Zhang, T. T., et al., 2021. The February 7 of 2021 Glacier-Rock Avalanche and the Outburst Flooding Disaster Chain in Chamoli, India. The Chinese Journal of Geological Hazard and Control, 32: 1-8 (in Chinese with English abstract).
      [55] Zhang, Y. S., Guo, C. B., Yao, X., et al., 2016. Research on the Geohazard Effect of Active Fault on the Eastern Margin of the Tibetan Plateau. Acta Geoscientica Sinica, 37(3): 277-286 (in Chinese with English abstract).
      [56] Zhang, Y. S., Li, J. Q., Ren, S. S., et al., 2022. Development Characteristics of Clayey Altered Rocks in the Sichuan-Tibet Traffic Corridor and Their Promotion to Large-Scale Landslides. Earth Science, 47(6): 1945-1956 (in Chinese with English abstract).
      [57] Zhang, P. Z., Deng, Q. D., Zhang, G. M., et al., 2003. Intensive Earthqukae Activities and Active Block in Chinese Continent. Science in China (Series D), 33(B04): 12~20 (in Chinese with English abstract).
      [58] Zheng, D., Yao, T. D., 2006. Uplifting of Tibetan Plateau with Its Environmental Effects. Advances in Earth Science, 21(5): 451-458 (in Chinese with English abstract). doi: 10.3321/j.issn:1001-8166.2006.05.002
      [59] 陈德亮, 徐柏青, 姚檀栋, 等, 2015. 青藏高原环境变化科学评估: 过去、现在与未来. 科学通报, 60(32): 3025-3035. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202323010.htm
      [60] 程国栋, 赵林, 李韧, 等, 2019. 青藏高原多年冻土特征、变化及影响. 科学通报, 64(27): 2783-2795. https://www.cnki.com.cn/Article/CJFDTOTAL-JXTW202311005.htm
      [61] 陈发虎, 夏欢, 高玉, 等, 2022. 史前人类探索、适应和定居青藏高原的历程及其阶段性讨论. 地理科学, 42(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX202201001.htm
      [62] 崔鹏, 贾洋, 苏凤环, 等, 2017. 青藏高原自然灾害发育现状与未来关注的科学问题. 中国科学院院刊, 32(9): 985-992. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201709014.htm
      [63] 崔鹏, 苏凤环, 邹强, 等, 2015. 青藏高原山地灾害和气象灾害风险评估与减灾对策. 科学通报, 60(32): 3067-3077. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201532007.htm
      [64] 多吉, 张金树, 李光明, 等, 2017. 西藏班公湖-怒江成矿带西段与南美洲安第斯型超大型矿床成矿条件对比研究. 高原科学研究, 1(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-PTSR201701007.htm
      [65] 丁林, 钟大赉, 2013. 印度与欧亚板块碰撞以来东喜马拉雅构造结的演化. 地质科学, 48(2): 317-333. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201302003.htm
      [66] 段克勤, 姚檀栋, 王宁练, 等, 2022. 21世纪亚洲高山区冰川平衡线高度变化及冰川演化趋势. 中国科学: 地球科学, 52(8): 1603-1612 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202208017.htm
      [67] 冯夏庭, 肖亚勋, 丰光亮, 等, 2019. 岩爆孕育过程研究. 岩石力学与工程学报, 38(4): 649-673. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904002.htm
      [68] 郭长宝, 张永双, 蒋良文, 等, 2017. 川藏铁路沿线及邻区环境工程地质问题概论. 现代地质, 31 (5): 877-889. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201705001.htm
      [69] 郭正堂, 2019. 地球系统与演变: 未来地球科学的脉络. 科学通报, 64(9): 882-883. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201909003.htm
      [70] 侯增谦, 许博, 郑远川, 等, 2021. 地幔通道流: 青藏高原大规模生长的深部机制. 科学通报, 66(21): 2671-2690. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202121004.htm
      [71] 黄润秋, 2007. 20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报, 26(3): 433-454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703000.htm
      [72] 兰恒星, 彭建兵, 祝艳波, 等, 2021. 黄河流域地质地表过程与重大灾害效应研究与展望. 中国科学: 地球科学, 52 (2): 199-221. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202202001.htm
      [73] 李杭州, 廖红建, 2010. 复杂应力状态下岩体强度的各向异性研究. 岩石力学与工程学报, 29(7): 1397-1403. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201007015.htm
      [74] 李廷栋, 刘勇, 丁孝忠, 等, 2022. 中国区域地质研究的十大进展. 地质学报, 96(5): 1544-1581. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202205004.htm
      [75] 李吉均, 1999. 青藏高原的地貌演化与亚洲季风. 海洋地质与第四纪地质, 19(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ901.001.htm
      [76] 潘桂棠, 任飞, 尹福光, 等, 2020. 洋板块地质与川藏铁路工程地质关键区带. 地球科学, 45 (7): 2293-2304. doi: 10.3799/dqkx.2020.070
      [77] 彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012001.htm
      [78] 彭建兵, 兰恒星, 2022. 略论生态地质学与生态地质环境系统. 地球科学与环境学报, 44(6): 877-893. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202206001.htm
      [79] 彭建兵, 马润勇, 卢全中, 等, 2004. 青藏高原隆升的地质灾害效应. 地球科学进展, 19(3): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200403017.htm
      [80] 彭建兵, 徐能雄, 张永双, 等, 2022. 论地质安全研究的框架体系. 工程地质学报, 30(6): 1798-1810. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202206003.htm
      [81] 戚利荣, 王家鼎, 张登飞, 等, 2021. 冻融循环作用下花岗岩损伤的宏微观尺度研究. 水文地质工程地质, 48 (5): 65-73. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105007.htm
      [82] 秦大河, 姚檀栋, 丁永建, 2022. 面向可持续发展的冰冻圈科学. 冰川冻土, 42(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202001001.htm
      [83] 曲建升, 刘学, 姚檀栋, 2013. 青藏高原未来地球系统研究将成为地球科学研究突破点. 中国科学院院刊, 28(5): 590-593. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201305021.htm
      [84] 申艳军, 陈思维, 张蕾, 等, 2022. 冰雪型地质灾害链高位萌生、动力溃散及物相转化过程剖析. 冰川冻土, 44: 643-656. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202202027.htm
      [85] 孙鸿烈, 郑度, 姚檀栋, 等, 2012. 青藏高原国家生态安全屏障保护与建设. 地理学报, 67(1): 3-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201201003.htm
      [86] 童立强, 涂杰楠, 裴丽鑫, 等, 2018. 雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨. 工程地质学报, 26: 1552-1561. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806017.htm
      [87] 汪品先, 2009. 地球深部与表层的相互作用. 地球科学进展, 24(12): 1331-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200912012.htm
      [88] 王成虎, 高桂云, 杨树新, 等, 2019. 基于中国西部构造应力分区的川藏铁路沿线地应力的状态分析与预估. 岩石力学与工程学报, 38(11): 2242-2253. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911009.htm
      [89] 王成善, 丁学林, 1998. 青藏高原隆升研究新进展综述. 地球科学进展, 13(6): 526-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ806.002.htm
      [90] 伍法权, 刘彤, 汤献良, 等, 2009. 坝基岩体开挖卸荷与分带研究: 以小湾水电站坝基岩体开挖为例. 岩石力学与工程学报, 28(6): 1091-1098. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200906004.htm
      [91] 吴福元, 刘志超, 刘小驰, 等, 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202207009.htm
      [92] 吴青柏, 张中琼, 刘戈, 2021. 青藏高原气候转暖与冻土工程的关系. 工程地质学报, 29(2): 342-352. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102005.htm
      [93] 谢和平, 张茹, 任利, 等, 2022. 川藏铁路深埋隧道围岩灾变分析与思考. 工程科学与技术, 54(2): 1-20.
      [94] 许强, 李为乐, 董秀军, 等, 2017. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究. 岩石力学与工程学报, 36(11): 2612-2628. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711002.htm
      [95] 许志琴, 李广伟, 张泽明, 等, 2022. 再探青藏高原十大关键地学科学问题. 地质学报, 96(1): 65-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201005.htm
      [96] 杨强, 王守光, 李超毅, 等, 2022. 岩体结构变形破坏的内在驱动力-不平衡力. 工程地质学报, 28(2): 202-210. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002002.htm
      [97] 姚檀栋, 2019. 青藏高原水-生态-人类活动考察研究揭示"亚洲水塔"的失衡及其各种潜在风险. 科学通报, 64(27): 2761-2762. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201927001.htm
      [98] 殷跃平, 李滨, 张田田, 等, 2021. 印度查莫利"度查莫利冰岩山崩堵江溃决洪水灾害链研究. 中国地质灾害与防治学报, 32: 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202103001.htm
      [99] 张培震, 邓起东, 张国民, 等, 2003. 中国大陆的强震活动与活动地块. 中国科学: D辑, 33(B04): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200407000.htm
      [100] 张永双, 郭长宝, 姚鑫, 等, 2016. 青藏高原东缘活动断裂地质灾害效应研究. 地球学报, 37(3): 277-286. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201603004.htm
      [101] 张永双, 李金秋, 任三绍, 等, 2022. 川藏交通廊道黏土化蚀变岩发育特征及其对大型滑坡的促滑作用. 地球科学, 47(6): 1945-1956. doi: 10.3799/dqkx.2022.155
      [102] 郑度, 姚檀栋, 2006. 青藏高原隆升及其环境效应. 地球科学进展, 21(5): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200605001.htm
    • 加载中
    图(15)
    计量
    • 文章访问数:  714
    • HTML全文浏览量:  114
    • PDF下载量:  255
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-05-01
    • 刊出日期:  2023-08-25

    目录

      /

      返回文章
      返回