Quaternary Pollen Assemblages, Paleoclimate Evolution Sequence and Regional Correlation in Hengsha Island, Shanghai City
-
摘要: 为了解长江三角洲地区第四纪植被与气候演化历史,通过对上海横沙岛LZK1钻孔第四纪沉积地层和孢粉的分析,揭示出该地区第四纪孢粉组合代表的植被面貌自下而上表现为:针叶阔叶混交林-灌丛草甸→针叶落叶阔叶混交林-灌丛草甸→针叶林-灌丛草甸→常绿落叶阔叶混交林→针叶落叶阔叶混交林→落叶阔叶林→针叶林→阔叶针叶混交林→针叶落叶阔叶混交林-灌丛草甸→常绿落叶阔叶混交林-灌丛草甸→常绿落叶阔叶混交林→落叶阔叶针叶混交林.受地貌、海侵、第四纪冰期/间冰期的冷暖交替事件及新构造运动等影响,研究区第四纪以来气候、环境变化频繁.钻孔岩心的沉积环境特征和孢粉组合所反映的气候变化可响应昆仑冰期、大间冰期、古乡冰期、末次间冰期等气候阶段.末次冰消期气候表现为温凉略干,晚更新世末期研究区对Oldest Dryas、IACP事件和Younger Dryas等冷事件反应敏感.进入全新世后,研究区气候整体回暖,湿度增大,海平面持续上升,其间经历了~8.2 ka和~4.2 ka的冷事件,发生了短暂的降温和干旱事件.至全新世晚期受小冰期事件影响,研究区气温和湿度有所降低,海水东退.Abstract: In order to understand the evolution history of Quaternary vegetation and climate in Yangtze delta, the study of Core LZK1 from Hengshan Island, Shanghai on sediment lithology and high resolution spore-pollen data suggests that the changes in pollen assemblage in Quaternary have resulted from the joint effect of topography, transgression and, which show a regular pattern of variation, including coniferous and broad-leaved mixed forest-shrub meadow, coniferous and deciduous broad-leaved mixed forest-shrub meadow, coniferous forest-shrub meadow, evergreen and deciduous broad-leaved mixed forest, coniferous and deciduous broad-leaved mixed forest, deciduous broad-leaved forest, coniferous forest, broad-leaved and coniferous mixed forest, coniferous and deciduous broad-leaved mixed forest-shrub meadow, evergreen and deciduous broad-leaved mixed forest-shrub meadow, evergreen and deciduous broad-leaved mixed forest, deciduous broad-leaved and coniferous mixed forest. The climate changes reflected by the sedimentary environment and palynological assemblages of Core LZK1 can be responded to the climatic events such as the Kunlun glaciation, the great interglaciation, the Guxiang glaciation and the last interglaciation. The climate of the last deglaciation period was cool and slightly dry. At the end of the Late Pleistocene, the study area was sensitive to the cold events such as Oldest Dryas, IACP events, and Younger Dryas. When entering the Holocene, the climate warmed up, the humidity increased, and the sea level continued to rise. During this period, there were cold events of -8.2 ka and -4.2 ka, and a brief process of cooling and drought occurred. Influenced by the Little Ice Age in the Late Holocene, the temperature and humidity decreased and the sea water retreated eastward.
-
Key words:
- Quaternary /
- pollen /
- paleoclimate /
- paleoenvironment /
- Yangtze delta /
- stratigraphy
-
图 1 研究区交通位置图(a);上海晚新生代沉积盆地构造图(b);研究区地质图(c); 研究区大地构造位置图(d)
图b据邱金波和李晓(2007)修改;图c据江苏省地质调查研究院(2011)上海市幅、川沙县幅建造构造图(1∶25万)修改;图d据江苏省地质调查研究院(2011)上海市幅、川沙县幅建造构造图(1∶25万)修改
Fig. 1. Location of the study area (a); the tectonic map of the Late Cenozoic sedimentary basin in Shanghai (b); the geological map of the study area (c); tectonic location of the study area (d)
图 2 上海横沙岛LZK1钻孔岩性特征、磁性地层(据谢建磊等, 2017; Ke et al., 2020)与全球气候变化记录
Fig. 2. The lithology, paleomagnetic polarity records (after Xie et al., 2017; Ke et al., 2020) in Core LZK1 of Hengsha Island, Shanghai City and the records of the global climate change
图 3 上海横沙岛LZK1钻孔部分代表性孢粉化石
1. Carpinus;2.Betula;3.Corylus;4.Alnus;5.Castanopsis;6.Juglans;7. Pterocarya;8.Amaranthaceae;9.Artemisia;10.Compositae;11.Ephedraceae;12.Ulmus;13.Gramineae;14.Tilia;15.Carya;16.Quercus (D);17.Ilex;18.Cyperaceae;19.Polygonum;20.Meliaceae;21.Polypodiaceae;22.Hicriopteris;23.Pteridium;24.Dennstaedtiaceae;25.Castanea;26. Pteris;27. Pinus;28. Podocarpus;29.Abies;30.Picea
Fig. 3. Major representatives of spore and pollen in Core LZK1 of Hengsha Island, Shanghai City
图 5 LZK1钻孔粉砂含量、介形虫及有孔虫丰度(Ke et al., 2020)、孢粉统计数、气候阶段及其与中国东部第四纪海侵及全球气候事件的对比
Fig. 5. Down-core changes of the percentage of silt, ostracod abundance, foraminifera abundance (Ke et al., 2020), pollen abundances, and the climatic stage of Core LZK1 and their comparison with the Quaternary transgressions in eastern China and global climatic events
-
An, Z. S., Lui, T. S., Lu, Y. C., et al., 1990. The Long-Term Paleomonsoon Variation Recorded by the Loess-Paleosol Sequence in Central China. Quaternary International, 7/8: 91-95. https://doi.org/10.1016/1040-6182(90)90042-3 An, Z. S., Wei, L. Y., 1980. The Fifth Layer Paleosol in the Lishi Loess and Their Paleoclimatic Significance. Acta Pedologica Sinica, 17(1): 1-10, 101-102(in Chinese with English abstract). Chen, J. X., Shi, X. F., Qiao, S. Q., 2012. Holocene Palynological Sequences and Palaeoenvironmental Changes in the Bohai Sea Area. Acta Oceanologica Sinica, 34(3): 99-105(in Chinese with English abstract). Chen, Z. Y., Wang, Z. H., Jill, S., et al., 2005. Holocene Climate Fluctuations in the Yangtze Delta of Eastern China and the Neolithic Response. The Holocene, 15(6): 915-924. https://doi.org/10.1191/0959683605hl862rr Dai, L. C., Weng, C. Y., Mao, L. M., 2015. Patterns of Vegetation and Climate Change in the Northern South China Sea during the Last Glaciation Inferred from Marine Palynological Records. Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 249-258. https://doi.org/10.1016/j.palaeo.2015.08.041 Ding, Z. L., Derbyshire, E., Yang, S. L., et al., 2002. Stacked 2.6 Ma Grain Size Record from the Chinese Loess Based on Five Sections and Correlation with the Deep-Sea δ18O Record. Paleoceanography, 17(3): 5-1-5-21. https://doi.org/10.1029/2001pa000725 Ding, Z. L., Derbyshire, E., Yang, S. L., et al., 2005. Stepwise Expansion of Desert Environment across Northern China in the Past 3.5 Ma and Implications for Monsoon Evolution. Earth and Planetary Science Letters, 237(1/2): 45-55. https://doi.org/10.1016/j.epsl.2005.06.036 Fan, S. X., Liu, H. K., Zhao, H., et al., 2009. Palynology Stratigraphy and Palaeoclimate Evolution in Huanghua District of Hebei Province since 3.2 Ma BP. Acta Micropalaeontologica Sinica, 26(2): 173-180(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0674.2009.02.008 Innes, J. B., Zong, Y. Q., Wang, Z. H., et al., 2014. Climatic and Palaeoecological Changes during the Mid- to Late Holocene Transition in Eastern China: High-Resolution Pollen and Non-Pollen Palynomorph Analysis at Pingwang, Yangtze Coastal Lowlands. Quaternary Science Reviews, 99: 164-175. https://doi.org/10.1016/j.quascirev.2014.06.013 Jiang, L. Z., Zhang, Y. L., Wang, K. F., et al., 2000. Palynological Assemblages of Pleistocence from Shanghai Region and Its Palaeovegetation and Palaeoclimate. Shanghai Geology, 21(4): 34-41(in Chinese with English abstract). Ke, X., Li, B. H., Zhang, Z. Y., et al., 2017. Post-Glacial Foraminifera of the Incised Yangtze Paleo-Valley and Paleoenvironmental Implications. Journal of Paleontology, 91(6): 1102-1122. https://doi.org/10.1017/jpa.2017.66 Ke, X., Xie, J. L., Zhang, Z. Y., et al., 2020. Quaternary Stratigraphic Division and Paleoenvironmental Evolution Observed from Core LZK1 on Hengsha Island, Shanghai. Acta Geologica Sinica, 94(4): 1167-1177. https://doi.org/10.1111/1755-6724.14564 Li, C. X., Chen, Q. Q., Zhang, J. Q., et al., 2000. Stratigraphy and Paleoenvironmental Changes in the Yangtze Delta during the Late Quaternary. Journal of Asian Earth Sciences, 18(4): 453-469. https://doi.org/10.1016/S1367-9120(99)00078-4 Li, G. Y., Qian, Z. S., Hu, Y., 1995. Palynological Analysis Manual. Geological Publishing House, Beijing(in Chinese). Lin, Z. Y., Zhao, X. D., Jin, X. L., et al., 2019. Palaeoenvironmental Evolution and Multi-Stratigraphic Division and Correlation of Yangtze River Delta Plain since Pleistocene: Evidence from BZK03 Borehole. Northwestern Geology, 52(4): 115-126(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2019.04.009 Lisiecki, L. E., Raymo, M. E., 2005. A Pliocene-Pleistocene Stack of 57 Globally Distributed Benthic δ18O Records. Paleoceanography, 20(1): PA1003. https://doi.org/10.1029/2004pa001071 Liu, E. F., Zhang, Z. L., Shen, J., 2004. Spore-Pollen Records of Environmental Change on South Coast Plain of Laizhou Bay since the Late Pleistocene. Journal of Palaeogeography, 6(1): 78-84(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1505.2004.01.009 Liu, J., Qiu, J. D., Saito, Y., et al., 2020. Formation of the Yangtze Shoal in Response to the Post-Glacial Transgression of the Paleo-Yangtze (Changjiang) Estuary, China. Marine Geology, 423: 106080. https://doi.org/10.1016/j.margeo.2019.106080 Liu, J., Saito, Y., Kong, X. H., et al., 2010. Sedimentary Record of Environmental Evolution off the Yangtze River Estuary, East China Sea, during the Last ∼13 000 Years, with Special Reference to the Influence of the Yellow River on the Yangtze River Delta during the Last 600 Years. Quaternary Science Reviews, 29(17-18): 2424-2438. https://doi.org/10.1016/j.quascirev.2010.06.016 Lu, J. F., Liu, J., Hu, G., et al., 2022. Pollen Assemblages and Induced Palaeoenvironmental Changes in the Yellow River Delta since 1.9 Ma. Acta Sedimentologica Sinica, 40(5): 1335-1345(in Chinese with English abstract). Luo, X. Y., Guo, X. Y., Gao, Z. W., et al., 2021. Composition of Shanghai Urban Forest and of Species Diversity of Different Vegetation Types. Landscape Architecture, 38(10): 19-26(in Chinese with English abstract). Miao, Y. F., Fang, X. M., Herrmann, M., et al., 2011. Miocene Pollen Record of KC-1 Core in the Qaidam Basin, NE Tibetan Plateau and Implications for Evolution of the East Asian Monsoon. Palaeogeography, Palaeoclimatology, Palaeoecology, 299(1/2): 30-38. https://doi.org/10.1016/j.palaeo.2010.10.026 Miao, Y. F., Warny, S., Clift, P. D., et al., 2017. Evidence of Continuous Asian Summer Monsoon Weakening as a Response to Global Cooling over the Last 8 Ma. Gondwana Research, 52: 48-58. https://doi.org/10.1016/j.gr.2017.09.003 Qin, J. M., Yuan, D. X., Lin, Y. S., et al., 2005. Accurate Locating and Dating for Division of Climate Periods since the Last Deglaciation Stage. Acta Geoscientica Sinica, 26(B09): 209-212(in Chinese with English abstract). Qiu, J. B., Li, X., 2007. Quaternary Strata and Sedimentary Environment in Shanghai. Shanghai Scientific & Technical Publishers, Shanghai (in Chinese). Song, B., Li, Z., Saito, Y., et al., 2013. Initiation of the Changjiang (Yangtze) Delta and Its Response to the Mid-Holocene Sea Level Change. Palaeogeography, Palaeoclimatology, Palaeoecology, 388: 81-97. https://doi.org/10.1016/j.palaeo.2013.07.026 Song, B. W., Zhang, K. X., Xu, Y. D., et al., 2022. Neogene Tectonic-Stratigraphic Realms and Sedimentary Sequence in China. Earth Science, 47(4): 1143-1161(in Chinese with English abstract). Stuiver, M., Grootes, P. M., 2000. GISP2 Oxygen Isotope Ratios. Quaternary Research, 53(3): 277-284. https://doi.org/10.1006/qres.2000.2127 Stuiver, M., Grootes, P. M., Braziunas, T. F., 1995. The GISP2 δ18O Climate Record of the Past 16, 500 Years and the Role of the Sun, Ocean, and Volcanoes. Quaternary Research, 44(3): 341-354. https://doi.org/10.1006/qres.1995.1079 Tao, S. R., Jiang, L. F., Wu, J. H., et al., 2009. Community Characteristics and Seasonal Changes of Macrozoobenthos in Intertidal Zones of Hengsha and Changxing Islands at Yangtze River Estuary. Chinese Journal of Ecology, 28(7): 1345-1350(in Chinese with English abstract). Wang, H. J., 2022. How to Integrate Ancient and Modern Climate and Environment Research? Earth Science, 47(10): 3811-3812(in Chinese). Wang, P. X., 1998. Deformation of Asia and Global Cooling: Searching Links between Climate and Tectonics. Quaternary Sciences, 18(3): 213-221(in Chinese with English abstract). Wang, P. X., Min, Q. B., Bian, Y. H., et al., 1981. Strata of Quaternary Transgressions in East China: A Preliminary Study. Acta Geologica Sinica, 55(1): 1-13(in Chinese with English abstract). Wang, S. W., 2010. 4.2 ka BP Event. Advances in Climate Change Research, 6(1): 75-76(in Chinese). Wang, Y., 2000. Evolution Sequences of Palaeovegetation & Palaeoclimate in the Caofeidian Area since the Last Stage of the Late Pleistocene Epoch. Marine Geology & Quaternary Geology, 20(2): 87-92(in Chinese with English abstract). Wang, Y. J., Cheng, H., Edwards, R. L., et al., 2001. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science, 294(5550): 2345-2348. https://doi.org/10.1126/science.1064618 Wang, Y. J., Cheng, H., Edwards, R. L., et al., 2005. The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science, 308(5723): 854-857. https://doi.org/10.1126/science.1106296 Wang, Z. H., Qiu, J. B., Ran, L. H., et al., 2004. Chronostratigraphy and Transgression/Regression during Late Pleistocene in the Southern Changjiang (Yangtze) River Delta Plain. Marine Geology & Quaternary Geology, 24(4): 1-8(in Chinese with English abstract). Wang, Z. H., Xu, H., Zhan, Q., et al., 2010. Lithological and Palynological Evidence of Late Quaternary Depositional Environments in the Subaqueous Yangtze Delta, China. Quaternary Research, 73(3): 550-562. https://doi.org/10.1016/j.yqres.2009.11.001 Wu, B. Y., Li, C. X., 1987. Quaternary Geology of Yangtze Delta. China Ocean Press, Beijing (in Chinese). Wu, J., Zhang, K. X., Xu, Y. D., et al., 2018. Paleoelevations in the Jianchuan Basin of the Southeastern Tibetan Plateau Based on Stable Isotope and Pollen Grain Analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, 510: 93-108. https://doi.org/10.1016/j.palaeo.2018.03.030 Xia, C. F., Zhang, X., Lin, C. M., et al., 2022. Sedimentary Environment and Palaeoclimate Evolution of the Late Quaternary from Core SE4 in Qiantang River Incised Valley. Journal of Palaeogeography, 24(3): 433-448(in Chinese with English abstract). Xie, J. L., Zhang, K. X., Ma, X. L., et al., 2017. Magnetostratigraphy and Astronomically Tuned Time Scale of Yangtze Delta since Pliocene. Earth Science, 42(10): 1760-1773(in Chinese with English abstract). Yi, S., Saito, Y., Zhao, Q. H., et al., 2003. Vegetation and Climate Changes in the Changjiang (Yangtze River) Delta, China, during the Past 13, 000 Years Inferred from Pollen Records. Quaternary Science Reviews, 22(14): 1501-1519. Yu, J. J., Peng, B., Lan, Y., et al., 2021. Palynological Record Revealed Anthropogenic Deforestation, Sea Level and Climate Changes since Marine Isotope Stage 5a in the Northeastern Coast of Fujian Province. Earth Science, 46(1): 281-292(in Chinese with English abstract). Zhang, K. X., Pan, G. T., He, W. H., et al., 2015. New Division of Tectonic-Strata Superregion in China. Earth Science, 40(2): 206-233(in Chinese with English abstract). Zhang, Y. L., 2008. Sporopollen and Algae Research on Deep-Sea Sediments of Core 184 in the South China Sea and Paleoenvironmental Analysis. Acta Micropalaeontologica Sinica, 25(1): 97-101(in Chinese with English abstract). Zhang, Y. L., Jia, L., Sun, Y. H., et al., 2003. Spore-Pollen and Algae Research of Core 294 in the South China Sea and Its Paleoenvironment Significance. Donghai Marine Science, 21(1): 5-12(in Chinese with English abstract). Zhang, Z. Y., Yu, J. J., Jiang, R., et al., 2014. Palynological Assemblages from the Borehole ZKA4AT Daqiao Town, Jiangdu City, Jiangsu Province and Their Environmental Meanings. Acta Micropalaeontologica Sinica, 31(1): 64-74(in Chinese with English abstract). Zhao, J. D., Shi, Y. F., Wang, J., 2011. Comparison between Quaternary Glaciations in China and the Marine Oxygen Isotope Stage (MIS): An Improved Schema. Acta Geographica Sinica, 66(7): 867-884(in Chinese with English abstract). Zhou, X., Sun, L. G., Zhan, T., et al., 2016. Time-Transgressive Onset of the Holocene Optimum in the East Asian Monsoon Region. Earth and Planetary Science Letters, 456: 39-46. https://doi.org/10.1016/j.epsl.2016.09.052 Zhou, Y. J., Wang, Z. H., Li, X., et al., 2011. Late Cenozoic Diagnostic Pollen-Spore Distribution in Southern Yangtze Delta Plain: Depositional Geomorphological Implications. Journal of Palaeogeography, 13(3): 287-297(in Chinese with English abstract). 安芷生, 魏兰英, 1980. 离石黄土中的第五层古土壤及其古气候的意义. 土壤学报, 17(1): 1-10, 101-102. 陈金霞, 石学法, 乔淑卿, 2012. 渤海地区全新世孢粉序列及古环境演化. 海洋学报, 34(3): 99-105. 范淑贤, 刘海坤, 赵华, 等, 2009. 3.2 Ma BP以来河北黄骅地区孢粉地层学与古气候变迁. 微体古生物学报, 26(2): 173-180. 姜立征, 张玉兰, 王开发, 等, 2000. 上海地区更新世孢粉组合及其古植被、古气候. 上海地质, 21(4): 34-41. 李光瑜, 钱泽书, 胡昀, 1995. 孢粉分析技术手册. 北京: 地质出版社. 林钟扬, 赵旭东, 金翔龙, 等, 2019. 长江三角洲平原BZK03孔更新世以来古环境演变及多重地层划分对比. 西北地质, 52(4): 115-126. 刘恩峰, 张祖陆, 沈吉, 2004. 莱州湾南岸滨海平原晚更新世以来古环境演变的孢粉记录. 古地理学报, 6(1): 78-84. 路晶芳, 刘健, 胡刚, 等, 2022. 现代黄河三角洲北岸1.9 Ma以来孢粉组合及古环境变化. 沉积学报, 40(5): 1335-1345. 罗心怡, 郭雪艳, 高志文, 等, 2021. 上海城市森林区系组成及不同植被类型物种多样性差异. 园林, 38(10): 19-26. 覃嘉铭, 袁道先, 林玉石, 等, 2005. 末次冰消期以来气候期划分的准确定位与定年. 地球学报, 26(B09): 209-212. 邱金波, 李晓, 2007. 上海市第四纪地层与沉积环境. 上海: 上海科学技术出版社. 宋博文, 张克信, 徐亚东, 等, 2022. 中国新近纪构造-地层区划及地层格架. 地球科学, 47(4): 1143-1161. doi: 10.3799/dqkx.2021.072 陶世如, 姜丽芬, 吴纪华, 等, 2009. 长江口横沙岛、长兴岛潮间带大型底栖动物群落特征及其季节变化. 生态学杂志, 28(7): 1345-1350. 王会军, 2022. 古今气候环境研究怎样融合? 地球科学, 47(10): 3811-3812. 汪品先, 1998. 亚洲形变与全球变冷: 探索气候与构造的关系. 第四纪研究, 18(3): 213-221. 汪品先, 闵秋宝, 卞云华, 等, 1981. 我国东部第四纪海侵地层的初步研究. 地质学报, 55(1): 1-13. 王邵武, 2010. 4.2 ka BP事件. 气候变化研究进展, 6(1): 75-76. 王艳, 2000. 渤海湾曹妃甸晚更新世末期以来古植被与古气候演变序列. 海洋地质与第四纪地质, 20(2): 87-92. 王张华, 丘金波, 冉莉华, 等, 2004. 长江三角洲南部地区晚更新世年代地层和海水进退. 海洋地质与第四纪地质, 24(4): 1-8. 吴标云, 李从先, 1987. 长江三角洲第四纪地质. 北京: 海洋出版社. 夏长发, 张霞, 林春明, 等, 2022. 钱塘江下切河谷SE4孔晚第四纪沉积环境与古气候演化. 古地理学报, 24(3): 433-448. 谢建磊, 张克信, 马小林, 等, 2017. 长江三角洲上新世以来磁性地层及天文调谐年代标尺. 地球科学, 42(10): 1760-1773. 于俊杰, 彭博, 兰佑, 等, 2021. 孢粉证据揭示MIS5a以来福建东北沿海地区人类活动、海平面及气候变化. 地球科学, 46(1): 281-292. 张克信, 潘桂棠, 何卫红, 等, 2015. 中国构造-地层大区划分新方案. 地球科学, 40(2): 206-233. 张玉兰, 2008. 南海184站深海沉积中孢粉、藻类研究及古环境分析. 微体古生物学报, 25(1): 97-101. 张玉兰, 贾丽, 孙煜华, 等, 2003. 南海294站柱状沉积孢粉、藻类研究及古环境意义. 东海海洋, 21(1): 5-12. 张宗言, 于俊杰, 蒋仁, 等, 2014. 江苏省江都市大桥镇ZKA4钻孔第四纪孢粉组合及其环境变化研究. 微体古生物学报, 31(1): 64-74. 赵井东, 施雅风, 王杰, 2011. 中国第四纪冰川演化序列与MIS对比研究的新进展. 地理学报, 66(7): 867-884. 周园军, 王张华, 李晓, 等, 2011. 长江三角洲南部平原晚新生代特征孢粉分布及其对沉积地貌演变的意义. 古地理学报, 13(3): 287-297. -