• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    珠江口盆地开平凹陷核杂岩拆离结构及其动力学成因

    彭光荣 张丽丽 许新明 何金海 姜大朋 叶青

    彭光荣, 张丽丽, 许新明, 何金海, 姜大朋, 叶青, 2024. 珠江口盆地开平凹陷核杂岩拆离结构及其动力学成因. 地球科学, 49(9): 3306-3317. doi: 10.3799/dqkx.2023.151
    引用本文: 彭光荣, 张丽丽, 许新明, 何金海, 姜大朋, 叶青, 2024. 珠江口盆地开平凹陷核杂岩拆离结构及其动力学成因. 地球科学, 49(9): 3306-3317. doi: 10.3799/dqkx.2023.151
    Peng Guangrong, Zhang Lili, Xu Xinming, He Jinhai, Jiang Dapeng, Ye Qing, 2024. Core Complex and Detachment Structure in the Kaiping Sag, Pearl River Mouth Basin and a Discussion on the Dynamics. Earth Science, 49(9): 3306-3317. doi: 10.3799/dqkx.2023.151
    Citation: Peng Guangrong, Zhang Lili, Xu Xinming, He Jinhai, Jiang Dapeng, Ye Qing, 2024. Core Complex and Detachment Structure in the Kaiping Sag, Pearl River Mouth Basin and a Discussion on the Dynamics. Earth Science, 49(9): 3306-3317. doi: 10.3799/dqkx.2023.151

    珠江口盆地开平凹陷核杂岩拆离结构及其动力学成因

    doi: 10.3799/dqkx.2023.151
    基金项目: 

    中国海洋石油有限公司前瞻基础研究项目 KJQZ-2023-2001

    详细信息
      作者简介:

      彭光荣(1978-),男,高级工程师,硕士,从事油气地质研究.ORCID:0000-0003-2014-4653. E-mail:penggr@cnooc.com.cn

      通讯作者:

      许新明,E-mail: xuxm3@cnooc.com.cn

    • 中图分类号: P545

    Core Complex and Detachment Structure in the Kaiping Sag, Pearl River Mouth Basin and a Discussion on the Dynamics

    • 摘要: 南海北部大陆边缘珠江口盆地开平凹陷裂陷结构复杂,裂陷结构及其成因机制是制约该地区油气地质认识与勘探进程的主要因素.基于新采集的三维地震反射资料,对开平凹陷结构、边界断层几何学与运动学特征以及岩石圈深部结构等方面进行了研究.结果表明,开平凹陷为核杂岩拆离结构,凹陷中部近EW向展布的穹隆构造是一个标准的核杂岩构造.开平凹陷核杂岩的形成与韧性地壳的隆升有关,其中核杂岩在KP9部位发生剥露去顶.核杂岩隆升背景下的拆离作用控制了开平凹陷的裂陷结构和沉积充填过程.开平凹陷核杂岩的发育过程为标准的滚动枢纽模式,地壳内部上拱的层状地震反射界面代表了地质历史时期的古脆‒韧性转换面,其迁移方向与拆离断层上盘滑动方向一致.开平凹陷主拆离断面呈“勺状”,拆离断面上发育大量不同规模的SN向波瓦状构造,指示了拆离断层上盘自北向南滑动.开平凹陷核杂岩的发育与该区域裂陷初始前岩石圈内部先存的薄弱中地壳层密切相关.该研究成果对开平凹陷的裂陷结构与成因机制进行了全新的解释,推动了对烃源岩与成藏规律的认识,为开平凹陷40年油气勘探的首个商业突破提供了关键指导.

       

    • 图  1  变质核杂岩与其相关拆离断层模式

      a. 立体模式图,据Fossen(2010)修改;b. 剖面模式,据Arca et al.(2010)修改

      Fig.  1.  Schematic model of a metamorphic core complex and related detachment fault

      图  2  南海北部陆缘珠江口盆地构造单元及开平凹陷位置平面

      Fig.  2.  Structural units of the Pearl River Mouth basin and location of the Kaiping sag in the northern South China Sea margin

      图  3  开平凹陷基底顶界面地貌

      Fig.  3.  High-precision geomorphic map of the top basement of the Kaiping sag

      图  4  过W6井地震解释剖面(位置见图 3

      Fig.  4.  Interpreted seismic profile across the Well W6 (location from Fig. 3)

      图  5  开平凹陷KP9构造至阳江东地区的长地震剖面(a, 剖面位置见图 2)和F1断层断距恢复结果(b)

      Fig.  5.  Long seismic section from the KP9 in the Kaiping sag to the eastern Yangjiang area (a, location from Fig. 2), fault displacement restoration of the F1 fault (b)

      图  6  开平凹陷及周边区域自由空气重力异常

      Fig.  6.  Free-air gravity anomaly map around the Kaiping sag

      图  7  开平凹陷主拆离断层断面3D图

      Fig.  7.  3D structure of main detachment fault section in Kaiping depression

      图  8  开平凹陷主拆离断面波瓦状构造与地震横切剖面(剖面位置见图8a)

      Fig.  8.  Fault corrugations on the main detachment fault of the Kaiping sag and seismic cross section

      图  9  变质核杂岩发育的两种运动学模型(据Little et al., 2019; Mizera et al., 2019修改)

      Fig.  9.  Two kinematic models for the development of metamorphic core complex (modified from Little et al., 2019; Mizera et al., 2019)

      图  10  开平凹陷核杂岩核部次生正断层与裂缝地震剖面(剖面位置见图 8a

      Fig.  10.  Secondary normal faults and fractures in the core of the Kaiping core complex(see Fig. 8a for location)

      图  11  开平凹陷地壳内部层状反射面迁移特征与解释模型

      Fig.  11.  Migration characteristics and interpretation model of layered reflectors in the crust of the Kaiping sag

      图  12  开平凹陷核杂岩拆离结构3D结构模型

      Fig.  12.  3D structural model of detachment structure with core complex in the Kaiping sag

    • Arca, M. S., Kapp, P., Johnson, R. A., 2010. Cenozoic Crustal Extension in Southeastern Arizona and Implications for Models of Core-Complex Development. Tectonophysics, 488(1-4): 174-190. https://doi.org/10.1016/j.tecto.2010.03.021
      Brun, J. P., Gutscher, M. A., Teams, D. E., 1992. Deep Crustal Structure of the Rhine Graben from DEKORP-ECORS Seismic Reflection Data: A Summary. Tectonophysics, 208(1): 139-147. https://doi.org/10.1016/0040-1951(92)90340-C
      Brun, J. P., Sokoutis, D., Tirel, C., et al., 2018. Crustal Versus Mantle Core Complexes. Tectonophysics, 746: 22-45. https://doi.org/10.1016/j.tecto.2017.09.017
      Carcione, J. M., Poletto, F., 2013. Seismic Rheological Model and Reflection Coefficients of the Brittle–Ductile Transition. Pure and Applied Geophysics, 170(12): 2021-2035. https://doi.org/10.1007/s00024-013-0643-4
      Coney, P. J., Harms, T. A., 1984. Cordilleran Metamorphic Core Complexes: Cenozoic Extensional Relics of Mesozoic Compression. Geology, 12(9): 550-554. https://doi.org/10.1130/0091-7613(1984)12550: cmccce>2.0.co;2 doi: 10.1130/0091-7613(1984)12550:cmccce>2.0.co;2
      Davis, G. H., Coney, P. J., 1979. Geologic Development of the Cordilleran Metamorphic Core Complexes. Geology, 7(3): 120-124. https://doi.org/10.1130/0091-7613(1979)7<120: GDOTCM>2.0.CO;2 doi: 10.1130/0091-7613(1979)7<120:GDOTCM>2.0.CO;2
      Deng, H. D., Ren, J. Y., Pang, X., et al., 2020. South China Sea Documents the Transition from Wide Continental Rift to Continental Break up. Nature Communications, 11: 4583. https://doi.org/10.1038/s41467-020-18448-y
      Deng, P., 2018. The Nature and Tectonic Transition of the Multiphase Rifting in the Northern Margin of the South China Sea: Base on the Study of the Zhu I Depression in Pearl River Mouth Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Escartín, J., Mével, C., Petersen, S., et al., 2017. Tectonic Structure, Evolution, and the Nature of Oceanic Core Complexes and Their Detachment Fault Zones (13°20'N and 13°30'N, Mid Atlantic Ridge). Geochemistry, Geophysics, Geosystems, 18(4): 1451-1482. https://doi.org/10.1002/2016gc006775
      Fossen, H., 2010. Structural Geology. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511777806
      Huang, H. B., Klingelhoefer, F., Qiu, X. L., et al., 2021. Seismic Imaging of an Intracrustal Deformation in the Northwestern Margin of the South China Sea: The Role of a Ductile Layer in the Crust. Tectonics, 40(2): e2020TC006260. https://doi.org/10.1029/2020TC006260
      Ji, M., Hu, L., Liu, J. L., et al., 2008. Features and Mechanism of Corrugation Structure in the Liaonan (Southern Liaoning) Metamorphic Core Complex. Chinese Journal of Geology, 43(1): 12-22 (in Chinese with English abstract).
      Klemperer, S. L., 1987. A Relation Between Continental Heat Flow and the Seismic Reflectivity of the Lower Crust. Journal of Geophysics-Zeitschrift Fur Geophysik, 61(1): 1–11.
      Li, L., Wang, B., Lei, C., et al., 2021. Tectonic Framework in the Xisha Area and Its Differential Evolution. Earth Science, 46(9): 3321-3337 (in Chinese with English abstract).
      Li, S. Z., Lü, H. Q., Hou, F. H., et al., 2006. Oceanic Core Complex. Marine Geology & Quaternary Geology, 26(1): 47-52 (in Chinese with English abstract).
      Liotta, D., Ranalli, G., 1999. Correlation between Seismic Reflectivity and Rheology in Extended Lithosphere: Southern Tuscany, Inner Northern Apennines, Italy. Tectonophysics, 315(1-4): 109-122. https://doi.org/10.1016/s0040-1951(99)00292-9
      Lister, G. S., Davis, G. A., 1989. The Origin of Metamorphic Core Complexes and Detachment Faults Formed during Tertiary Continental Extension in the Northern Colorado River Region, U. S. A. Journal of Structural Geology, 11(1-2): 65-94. https://doi.org/10.1016/0191-8141(89)90036-9
      Little, T. A., Webber, S. M., Mizera, M., et al., 2019. Evolution of a Rapidly Slipping, Active Low-Angle Normal Fault, Suckling-Dayman Metamorphic Core Complex, SE Papua New Guinea. GSA Bulletin, 131(7-8): 1333-1363. https://doi.org/10.1130/b35051.1
      Liu, D. M., 2003. Review of the Basic Characteristics of the Metamorphic Core Complexs in China. Geoscience, 17(2): 125-130 (in Chinese with English abstract).
      Malavieille, J., 1993. Late Orogenic Extension in Mountain Belts: Insights from the Basin and Range and the Late Paleozoic Variscan Belt. Tectonics, 12(5): 1115-1130. https://doi.org/10.1029/93tc01129
      Mizera, M., Little, T. A., Biemiller, J., et al., 2019. Structural and Geomorphic Evidence for Rolling-Hinge Style Deformation of an Active Continental Low-Angle Normal Fault, SE Papua New Guinea. Tectonics, 38(5): 1556-1583. https://doi.org/10.1029/2018tc005167
      Parnell-Turner, R., Escartín, J., Olive, J. A., et al., 2018. Genesis of Corrugated Fault Surfaces by Strain Localization Recorded at Oceanic Detachments. Earth and Planetary Science Letters, 498: 116-128. https://doi.org/10.1016/j.epsl.2018.06.034
      Platt, J. P., Behr, W. M., Cooper, F. J., 2015. Metamorphic Core Complexes: Windows into the Mechanics and Rheology of the Crust. Journal of the Geological Society, 172(1): 9-27. https://doi.org/10.1144/jgs2014-036
      Ren, J. Y., Luo, P., Gao, Y. Y., et al., 2022. Structural, Sedimentary and Magmatic Records during Continental Breakup at Southwest Sub-Basin of South China Sea. Earth Science, 47(7): 2287-2302 (in Chinese with English abstract).
      Ring, U., 2014. Metamorphic Core Complexes. In: Harff, J., Meschede, M., Petersen, S., et al., eds., Encyclopedia of Marine Geosciences. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-007-6644-0_104-4
      Seyfert, C. K., 1987. Cordilleran Metamorphic Core Complexes. In: Seyfert, C. K., ed., Encyclopedia of Structural Geology and Plate Tectonics. Van Nortrand Reinhold Company, New York, 113-130.
      Shi, H. S., Du, J. Y., Mei, L. F., et al., 2020. Huizhou Movement and Its Significance in Pearl River Mouth Basin, China. Petroleum Exploration and Development, 47(3): 447-461 (in Chinese with English abstract).
      Tirel, C., Brun, J. P., Burov, E., 2008. Dynamics and Structural Development of Metamorphic Core Complexes. Journal of Geophysical Research: Solid Earth, 113(B4): B04403. https://doi.org/10.1029/2005jb003694
      Wang, J., Luan, X. W., He, B. S., et al., 2021. Characteristics and Genesis of Faults in Southwestern Pearl River Mouth Basin, Northern South China Sea. Earth Science, 46(3): 916-928 (in Chinese with English abstract).
      Wang, X. S., Zheng, Y. D., Zhang, J. J., et al., 2002. Extensional Kinematics and Shear Type of the Hohhot Metamorphic Core Complex, Inner Mongolia. Geological Bulletin of China, 21(4-5): 238-245 (in Chinese with English abstract).
      Webber, S., Little, T. A., Norton, K. P., et al., 2020. Progressive Back-Warping of a Rider Block Atop an Actively Exhuming, Continental Low-Angle Normal Fault. Journal of Structural Geology, 130: 103906. https://doi.org/10.1016/j.jsg.2019.103906
      Whitney, D. L., Teyssier, C., Rey, P., et al., 2013. Continental and Oceanic Core Complexes. Geological Society of America Bulletin, 125(3-4): 273-298. https://doi.org/10.1130/b30754.1
      Yang, B. F., Xiong, C., Cao, J. H., et al., 2020. Constrains of Sliding Wave Phases on the Low-Velocity Layer in the Pearl River Estuary. Journal of Tropical Oceanography, 39(1): 106-119 (in Chinese with English abstract).
      Ye, Q., Mei, L. F., Shi, H. S., et al., 2018. The Late Cretaceous Tectonic Evolution of the South China Sea Area: An Overview, and New Perspectives from 3D Seismic Reflection Data. Earth Science Reviews, 187: 186-204. https://doi.org/10.1016/j.earscirev.2018.09.013
      Ye, Q., Mei, L. F., Shi, H. S., et al., 2020. The Influence of Pre-Existing Basement Faults on the Cenozoic Structure and Evolution of the Proximal Domain, Northern South China Sea Rifted Margin. Tectonics, 39(3): e2019TC005845. https://doi.org/10.1029/2019TC005845
      Zhao, M. H., Qiu, X. L., Xu, H. L., 2007. The Distribution and Identification of Low-Velocity Layer within the Sedimentary Layer and Crust in the Northern South China Sea. Progress in Natural Science, 17(4): 471-479 (in Chinese).
      Zheng, Y., Wang, Y., Liu, R., et al., 1988. Sliding-Thrusting Tectonics Caused by Thermal Uplift in the Yunmeng Mountains, Beijing, China. Journal of Structural Geology, 10(2): 135-144. https://doi.org/10.1016/0191-8141(88)90111-3
      Zheng, J. Y., Gao, Y. D., Zhang, X. T., et al., 2022. Tectonic Evolution Cycles and Cenozoic Sedimentary Environment Changes in Pearl River Mouth Basin. Earth Science, 47(7): 2374-2390 (in Chinese with English abstract).
      Zheng, Y. D., 1999. Kinematic Vorticity Number and Shear Type Related to the Yagan Metamorphic Core Complex on Sino-Mongolian Border. Chinese Journal of Geology, 34(3): 273-280 (in Chinese with English abstract).
      Zheng, Y. D., Zhang, Q., 1993. The Yagan Metamorphic Core Complex and Extensional Detachment Fault in Inner Mongolia. Acta Geologica Sinica, 67(4): 301-309 (in Chinese with English abstract).
      Zhou, P. X., Xia, S. H., Hetényi, G., et al., 2020. Seismic Imaging of a Mid-Crustal Low-Velocity Layer Beneath the Northern Coast of the South China Sea and Its Tectonic Implications. Physics of the Earth and Planetary Interiors, 308: 106573. https://doi.org/10.1016/j.pepi.2020.106573
      Zhou, Z. C., Mei, L. F., Liu, J., et al., 2018. Continentward-Dipping Detachment Fault System and Asymmetric Rift Structure of the Baiyun Sag, Northern South China Sea. Tectonophysics, 726: 121-136. https://doi.org/10.1016/j.tecto.2018.02.002
      邓棚, 2018. 南海北部陆缘古近纪多幕裂陷作用属性及转换——以珠江口盆地珠一坳陷为例(博士学位论文). 武汉: 中国地质大学.
      纪沫, 胡玲, 刘俊来, 等, 2008. 辽南变质核杂岩主拆离断层的波瓦状构造(corrugation)及其成因. 地质科学, 43(1): 12-22.
      李林, 王彬, 雷超, 等, 2021. 西沙海域盆地构造格局及其差异演化过程分析. 地球科学, 46(9): 3321-3337. doi: 10.3799/dqkx.2021.098
      李三忠, 吕海青, 侯方辉, 等, 2006. 海洋核杂岩. 海洋地质与第四纪地质, 26(1): 47-52.
      刘德民, 2003. 中国变质核杂岩的基本特征. 现代地质, 17(2): 125-130.
      任建业, 罗盼, 高圆圆, 等, 2022. 南海西南次海盆地壳岩石圈伸展破裂过程的构造、沉积和岩浆作用记录. 地球科学, 47(7): 2287-2302. doi: 10.3799/dqkx.2022.135
      施和生, 杜家元, 梅廉夫, 等, 2020. 珠江口盆地惠州运动及其意义. 石油勘探与开发, 47(3): 447-461.
      王嘉, 栾锡武, 何兵寿, 等, 2021. 南海北部珠江口盆地西南段断裂特征与成因讨论. 地球科学, 46(3): 916-928. doi: 10.3799/dqkx.2020.381
      王新社, 郑亚东, 张进江, 等, 2002. 呼和浩特变质核杂岩伸展运动学特征及剪切作用类型. 地质通报, 21(4-5): 238-245.
      杨碧峰, 熊成, 曹敬贺, 等, 2020. 滑行波震相对珠江口地区壳内低速层的约束作用. 热带海洋学报, 39(1): 106-119.
      赵明辉, 丘学林, 徐辉龙, 等, 2007. 南海北部沉积层和地壳内低速层的分布与识别. 自然科学进展, 17(4): 471-479.
      郑金云, 高阳东, 张向涛, 等, 2022. 珠江口盆地构造演化旋回及其新生代沉积环境变迁. 地球科学, 47(7): 2374-2390. doi: 10.3799/dqkx.2021.258
      郑亚东, 1999. 亚干变质核杂岩的运动学涡度与剪切作用类型. 地质科学, 34(3): 273-280.
      郑亚东, 张青, 1993. 内蒙古亚干变质核杂岩与伸展拆离断层. 地质学报, 67(4): 301-309.
    • 加载中
    图(12)
    计量
    • 文章访问数:  319
    • HTML全文浏览量:  194
    • PDF下载量:  48
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-11-26
    • 网络出版日期:  2024-10-16
    • 刊出日期:  2024-09-25

    目录

      /

      返回文章
      返回