• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    石油污染场地土壤-地下水系统介质场中微生物群落结构垂向分布和功能差异

    丁妍 周爱国 李小倩 何宁洁 邢新丽

    丁妍, 周爱国, 李小倩, 何宁洁, 邢新丽, 2025. 石油污染场地土壤-地下水系统介质场中微生物群落结构垂向分布和功能差异. 地球科学, 50(5): 2011-2022. doi: 10.3799/dqkx.2023.156
    引用本文: 丁妍, 周爱国, 李小倩, 何宁洁, 邢新丽, 2025. 石油污染场地土壤-地下水系统介质场中微生物群落结构垂向分布和功能差异. 地球科学, 50(5): 2011-2022. doi: 10.3799/dqkx.2023.156
    Ding Yan, Zhou Aiguo, Li Xiaoqian, He Ningjie, Xing Xinli, 2025. Vertical Distribution and Functional Differences of Microbial Community Structure in the Soil-Groundwater System Media Field of a Petroleum Contaminated Site. Earth Science, 50(5): 2011-2022. doi: 10.3799/dqkx.2023.156
    Citation: Ding Yan, Zhou Aiguo, Li Xiaoqian, He Ningjie, Xing Xinli, 2025. Vertical Distribution and Functional Differences of Microbial Community Structure in the Soil-Groundwater System Media Field of a Petroleum Contaminated Site. Earth Science, 50(5): 2011-2022. doi: 10.3799/dqkx.2023.156

    石油污染场地土壤-地下水系统介质场中微生物群落结构垂向分布和功能差异

    doi: 10.3799/dqkx.2023.156
    基金项目: 

    国家重点研发计划项目 2020YFC1807101

    详细信息
      作者简介:

      丁妍(1990-),女,博士研究生,主要研究方向为土壤‒地下水污染与生物地球化学作用.ORCID:0009-0000-8602-6807. E-mail:yanding@cug.edu.cn

      通讯作者:

      李小倩,E-mail:lixiaoqian@cug.edu.cn

    • 中图分类号: P64

    Vertical Distribution and Functional Differences of Microbial Community Structure in the Soil-Groundwater System Media Field of a Petroleum Contaminated Site

    • 摘要: 重点行业场地土壤-地下水有机污染是水土环境治理修复亟待解决的重要问题,微生物群落在土壤-地下水系统中的分布对有机污染物迁移转化与生物降解具有重要作用.选取西北黄土高原某石化场地典型垂向剖面,基于16S rRNA基因高通量测序技术,精细刻画土壤-包气带-潜水含水层-弱透水层连续非均质介质场中微生物群落结构、多样性的垂向分布特征及其代谢功能差异,揭示岩性、深度因素对微生物群落结构和功能垂向分布的影响.研究表明,土壤-地下水系统介质场中微生物群落结构与多样性的垂向分布存在显著差异,并表现出不同的代谢功能和石油污染物降解模式.包气带层中的丙酸杆菌目、潜水含水层中的β-变形菌目既是优势菌种,又是组间的标志差异菌种,贡献了相关主要差异代谢功能.深度和岩性分别影响了不同的代谢功能,包气带、含水层及其下伏弱透水层中微生物以协同作用形式分别围绕芳香族化合物降解、暗氢氧化功能实现石油污染物的降解.

       

    • 图  1  采样点钻孔柱状图

      Fig.  1.  Bar charts of boreholes at sampling sites

      图  2  不同类型介质场目水平下的微生物群落结构与共有ASV韦恩图

      a.土壤层;b.包气带层;c.潜水含水层;d.弱透水层;e.层组内平均相对丰度;f.共有ASV韦恩图

      Fig.  2.  Microbial community structure and shared ASVs Venn diagrams at order level in different types of media field

      图  3  介质场剖面中不同层组内微生物群落的Alpha多样性指数箱形图

      Fig.  3.  Alpha diversity index box plots of microbial communities in different layer groups in the media field profile

      图  4  介质场剖面微生物群落β多样性的主坐标分析(a)与物种聚类图(b)

      Fig.  4.  Principal coordinate analysis of beta diversity (a) and species clustering diagram (b) of microbial community in the media vertical profile

      图  5  不同介质场剖面差异代谢功能及细菌功能贡献图

      a.土壤层与包气带层;b.土壤层与潜水含水层;c.土壤层与弱透水层;d.包气带层与潜水含水层;e.包气带层与弱透水层;f.代谢功能细菌贡献率

      Fig.  5.  Differential metabolic function and bacterial function contribution diagram of each media field profile

      图  6  土壤‒地下水系统介质场中微生物群落共发生网络

      蓝色的线表示正相关;红色的线表示负相关;线条的粗细与相关性系数值正相关;Module表示微生物群落模块;每个节点按照目水平上色;节点的大小与其度正相关

      Fig.  6.  Co-occurrence network diagram of microbial communities in the media field of the soil-groundwater system

      表  1  W3钻孔剖面石油烃浓度的垂向分布

      Table  1.   Vertical distribution of petroleum hydrocarbon concentration in W3 borehole section

      采样深度(m) 1 2 3 4 5 6 6.5 7
      石油烃(C10-C40)浓度(mg/kg) 28 15 16 15 13 9 25 17
      下载: 导出CSV
    • Abdu, N., Abdullahi, A. A., Abdulkadir, A., 2017. Heavy Metals and Soil Microbes. Environmental Chemistry Letters, 15(1): 65-84. https://doi.org/10.1007/s10311-016-0587-x
      Bruckberger, M., Gleeson, D., Bastow, T., et al., 2021. Unravelling Microbial Communities Associated with Different Light Non-Aqueous Phase Liquid Types Undergoing Natural Source Zone Depletion Processes at a Legacy Petroleum Site. Water, 13(7): 898. https://doi.org/10.3390/w13070898
      Bruckberger, M. C., Morgan, M. J., Bastow, T. P., et al., 2020. Investigation into the Microbial Communities and Associated Crude Oil-Contamination along a Gulf War Impacted Groundwater System in Kuwait. Water Research, 170: 115314. https://doi.org/10.1016/j.watres.2019.115314
      Cai, P. P., Ning, Z., He, Z., et al., 2018. Microbial Community Distributions in Soils of an Oil Exploitation Site. Environmental Science, 39(7): 3329-3338 (in Chinese with English abstract).
      Cavelan, A., Golfier, F., Colombano, S., et al., 2022. A Critical Review of the Influence of Groundwater Level Fluctuations and Temperature on LNAPL Contaminations in the Context of Climate Change. Science of the Total Environment, 806: 150412. https://doi.org/10.1016/j.scitotenv.2021.150412
      Gao, S., Liang, J. D., Teng, T. T., et al., 2019. Petroleum Contamination Evaluation and Bacterial Community Distribution in a Historic Oilfield Located in Loess Plateau in China. Applied Soil Ecology, 136: 30-42. https://doi.org/10.1016/j.apsoil.2018.12.012
      Griebler, C., Lueders, T., 2009. Microbial Biodiversity in Groundwater Ecosystems. Freshwater Biology, 54(4): 649-677. https://doi.org/10.1111/j.1365-2427.2008.02013.x
      Guo, Y. L., Zhang, C., Wu, Q., et al., 2021. Natural Attenuation Mechanisms of Petroleum Hydrocarbons in a Fractured Karst Aquifer. Earth Science, 46(6): 2258-2266 (in Chinese with English abstract).
      Huang, L. P., Ye, J. Y., Jiang, K. M., et al., 2021. Oil Contamination Drives the Transformation of Soil Microbial Communities: Co-Occurrence Pattern, Metabolic Enzymes and Culturable Hydrocarbon-Degrading Bacteria. Ecotoxicology and Environmental Safety, 225: 112740. https://doi.org/10.1016/j.ecoenv.2021.112740
      Karimi, B., Terrat, S., Dequiedt, S., et al., 2018. Biogeography of Soil Bacteria and Archaea across France. Science Advances, 4(7): eaat1808. https://doi.org/10.1126/sciadv.aat1808
      Li, X., Wen, Z., Zhan, H. B., et al., 2021. Laboratory Observations for Two-Dimensional Solute Transport in an Aquifer-Aquitard System. Environmental Science and Pollution Research International, 28(29): 38664-38678. https://doi.org/10.1007/s11356-021-13123-1
      Liao, W. F., Tong, D., Li, Z. W., et al., 2021. Characteristics of Microbial Community Composition and Its Relationship with Carbon, Nitrogen and Sulfur in Sediments. Science of the Total Environment, 795: 148848. https://doi.org/10.1016/j.scitotenv.2021.148848
      Lin, Y. B., Ye, Y. M., Hu, Y. M., et al., 2019. The Variation in Microbial Community Structure under Different Heavy Metal Contamination Levels in Paddy Soils. Ecotoxicology and Environmental Safety, 180: 557-564. https://doi.org/10.1016/j.ecoenv.2019.05.057
      Liu, Q. L., Tang, J. C., Liu, X. M., et al., 2019. Vertical Response of Microbial Community and Degrading Genes to Petroleum Hydrocarbon Contamination in Saline Alkaline Soil. Journal of Environmental Sciences, 81: 80-92. https://doi.org/10.1016/j.jes.2019.02.001
      Ma, Y., Zhao, H. Z., Shan, Q. J., et al., 2021. K-Strategy Species Plays a Pivotal Role in the Natural Attenuation of Petroleum Hydrocarbon Pollution in Aquifers. Journal of Hazardous Materials, 420: 126559. https://doi.org/10.1016/j.jhazmat.2021.126559
      Ma, Y. J., Wang, Y. T., Chen, Q., et al., 2020. Assessment of Heavy Metal Pollution and the Effect on Bacterial Community in Acidic and Neutral Soils. Ecological Indicators, 117: 106626. https://doi.org/10.1016/j.ecolind.2020.106626
      Mineo, S., 2023. Groundwater and Soil Contamination by LNAPL: State of the Art and Future Challenges. Science of the Total Environment, 874: 162394. https://doi.org/10.1016/j.scitotenv.2023.162394
      Ogutcu, H., Kantar, F., Alaylar, B., et al., 2022. Isolation and Characterization of Hydrocarbon and Petroleum Degrading Bacteria from Polluted Soil with Petroleum and Derivatives by MALDI-TOF MS Method. Geomicrobiology Journal, 39: 757-766. https://doi.org/10.1080/01490451.2022.2074575
      Qu, G. Y., Li, M. J., Zheng, J. H., et al., 2022. The Promoting Effects and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science, 47(2): 652-661 (in Chinese with English abstract).
      Rakoczy, J., Schleinitz, K. M., Müller, N., et al., 2011. Effects of Hydrogen and Acetate on Benzene Mineralisation under Sulphate-Reducing Conditions. Fems Microbiology Ecology, 77(2): 238-247. https://doi.org/10.1111/j.1574-6941.2011.01101.x
      Semenova, E. M., Babich, T. L., Sokolova, D. S., et al., 2021. Microbial Diversity of Hydrocarbon- Contaminated Soils of the Franz Josef Land Archipelago. Microbiology, 90(6): 721-730. https://doi.org/10.1134/S0026261721060138
      Sheng, Y. Z., Li, G. H., Dong, H. L., et al., 2021. Distinct Assembly Processes Shape Bacterial Communities along Unsaturated, Groundwater Fluctuated, and Saturated Zones. Science of the Total Environment, 761: 143303. https://doi.org/10.1016/j.scitotenv.2020.143303
      Stewart, L. D., Chambon, J. C., Widdowson, M. A., et al., 2022. Upscaled Modeling of Complex DNAPL Dissolution. Journal of Contaminant Hydrology, 244: 103920. https://doi.org/10.1016/j.jconhyd.2021.103920
      Sun, S., Badgley, B. D., 2019. Changes in Microbial Functional Genes within the Soil Metagenome during Forest Ecosystem Restoration. Soil Biology and Biochemistry, 135: 163-172. https://doi.org/10.1016/j.soilbio.2019.05.004
      Sun, Y. J., Ding, A. Z., Zhao, X. H., et al., 2022. Response of Soil Microbial Communities to Petroleum Hydrocarbons at a Multi-Contaminated Industrial Site in Lanzhou, China. Chemosphere, 306: 135559. https://doi.org/10.1016/j.chemosphere.2022.135559
      van der Zaan, B. M., Saia, F. T., Stams, A. J. M., et al., 2012. Anaerobic Benzene Degradation under Denitrifying Conditions: Peptococcaceae as Dominant Benzene Degraders and Evidence for a Syntrophic Process. Environmental Microbiology, 14(5): 1171-1181. https://doi.org/10.1111/j.1462-2920.2012.02697.x
      Wang, J. L., Zhang, Y. L., Ding, Y., et al., 2023a. Comparing the Indigenous Microorganism System in Typical Petroleum-Contaminated Groundwater. Chemosphere, 311: 137173. https://doi.org/10.1016/j.chemosphere.2022.137173
      Wang, Y., Bian, J. M., Sun, X. Q., et al., 2023b. Sensitivity-Dependent Dynamic Searching Approach Coupling Multi-Intelligent Surrogates in Homotopy Mechanism for Groundwater DNAPL-Source Inversion. Journal of Contaminant Hydrology, 255: 104151. https://doi.org/10.1016/j.jconhyd.2023.104151
      Wang, X. S., Guan, X. Y., Zhang, X. J., et al., 2020. Microbial Communities in Petroleum-Contaminated Seasonally Frozen Soil and Their Response to Temperature Changes. Chemosphere, 258: 127375. https://doi.org/10.1016/j.chemosphere.2020.127375
      Wei, Z., Wang, J. J., Gaston, L. A., et al., 2020. Remediation of Crude Oil-Contaminated Coastal Marsh Soil: Integrated Effect of Biochar, Rhamnolipid Biosurfactant and Nitrogen Application. Journal of Hazardous Materials, 396: 122595. https://doi.org/10.1016/j.jhazmat.2020.122595
      Xiao, X., Zheng, Q. R., Shen, R. F., et al., 2022. Patterns of Groundwater Bacterial Communities along the Petroleum Hydrocarbon Gradient. Journal of Environmental Chemical Engineering, 10(6): 108773. https://doi.org/10.1016/j.jece.2022.108773
      Xiao, Y. N., Zhong, X. L., Wang, B. C., et al., 2020. Microbial Community Structure and Function and Their Influencing Factors in the Soil of Horqin Area of Tongliao City, Inner Mongolia. Earth Science, 45(3): 1071-1081 (in Chinese with English abstract).
      Xiong, G. Y., Wu, J. C., Yang, Y., et al., 2022. Microbial Fields and Multi-Field Coupling in Organic Contaminated Soil-Groundwater Systems. Earth Science Frontiers, 29(3): 189-199 (in Chinese with English abstract).
      Ye, X. Y., Chen, X. X., Yu, B., et al., 2022. Pollutant Distribution and Microbial Characteristics at a Petrochemical Site in the Yangtze River Economic Belt. Earth Science Frontiers, 29(3): 239-247 (in Chinese with English abstract).
      Zhang, P., Xie, X. J., Li, Q. H., et al., 2022. Microbial Community Structure and Its Response to Environment in Mangrove Sediments of Dongzhai Port. Earth Science, 47(3): 1122-1135 (in Chinese with English abstract).
      Zhang, Q., Wang, G. C., Sugiura, N., et al., 2014. Distribution of Petroleum Hydrocarbons in Soils and the Underlying Unsaturated Subsurface at an Abandoned Petrochemical Site, North China. Hydrological Processes, 28(4): 2185-2191. https://doi.org/10.1002/hyp.9770
      Zhao, F. Z., Ren, C. J., Zhang, L., et al., 2018. Changes in Soil Microbial Community are Linked to Soil Carbon Fractions After Afforestation. European Journal of Soil Science, 69(2): 370-379. https://doi.org/10.1111/ejss.12525
      Zhou, A. X., Zhang, Y. L., Dong, T. Z., et al., 2015. Response of the Microbial Community to Seasonal Groundwater Level Fluctuations in Petroleum Hydrocarbon-Contaminated Groundwater. Environmental Science and Pollution Research, 22(13): 10094-10106. https://doi.org/10.1007/s11356-015-4183-6
      Zhu, B. L., Friedrich, S., Wang, Z., et al., 2020. Availability of Nitrite and Nitrate as Electron Acceptors Modulates Anaerobic Toluene-Degrading Communities in Aquifer Sediments. Frontiers in Microbiology, 11: 1867. https://doi.org/10.3389/fmicb.2020.01867
      蔡萍萍, 宁卓, 何泽, 等, 2018. 采油井场土壤微生物群落结构分布. 环境科学, 39(7): 3329-3338.
      郭永丽, 章程, 吴庆, 等, 2021. 岩溶裂隙含水层中石油类有机物的自然衰减机制. 地球科学, 46(6): 2258-2266. doi: 10.3799/dqkx.2021.020
      屈国颖, 李民敬, 郑剑涵, 等, 2022. 受污染湖泊沉积物中氮素转化对有机污染物降解的促进效应与机制. 地球科学, 47(2): 652-661. doi: 10.3799/dqkx.2021.095
      肖玉娜, 钟信林, 王北辰, 等, 2020. 通辽科尔沁地区土壤微生物群落结构和功能及其影响因素. 地球科学, 45(3): 1071-1081. doi: 10.3799/dqkx.2019.067
      熊贵耀, 吴吉春, 杨蕴, 等, 2022. 有机污染土壤-地下水系统中的微生物场及多场耦合研究. 地学前缘, 29(3): 189-199.
      叶翔宇, 陈雪霞, 于波, 等, 2022. 长江经济带某石化场地土壤中污染物分布与微生物特征. 地学前缘, 29(3): 239-247.
      张攀, 谢先军, 黎清华, 等, 2022. 东寨港红树林沉积物中微生物群落结构特征及其对环境的响应. 地球科学, 47(3): 1122-1135. doi: 10.3799/dqkx.2022.025
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  30
    • HTML全文浏览量:  9
    • PDF下载量:  5
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-03-14
    • 网络出版日期:  2025-06-06
    • 刊出日期:  2025-05-25

    目录

      /

      返回文章
      返回