Occurrence State of Fe-Ti Oxides and Its Response to Uranium Mineralization Process in Interlayer Oxidation Zone of Qianjiadian Uranium Deposit
-
摘要: 铁钛氧化物对氧化-还原环境的变化极为敏感,是砂岩型铀矿成矿作用研究极为重要的标型矿物.然而,国内外对铁钛氧化物在砂岩型铀矿层间氧化带不同分带中形貌、含量及组合特征的研究却缺少量化数据的约束.鉴于此,本文以松辽盆地钱家店铀矿床层间氧化带中铁钛氧化物为研究对象,通过偏光显微镜、扫描电镜、电子探针等手段,识别出6种铁钛氧化物:钛铁矿、钛赤铁矿、钛磁铁矿、白钛石、金红石和锐钛矿,其中完全氧化亚带和部分氧化亚带以钛赤铁矿、钛磁铁矿为主,微弱氧化亚带以金红石、锐钛矿、钛磁铁矿为主,过渡带以白钛石、锐钛矿为主,还原带以金红石、锐钛矿、钛铁矿与白钛石为主.从钛铁矿氧化物与铀矿物的产出关系来看,锐钛矿、白钛石与金红石与铀成矿关系最为密切.根据各个分带中铁钛氧化物之间的穿插包裹关系,识别出7种蚀变序列,其中,完全氧化亚带、部分氧化亚带与微弱氧化亚带中以钛铁矿→钛磁铁矿→磁铁矿、钛铁矿→钛赤铁矿、白钛石→钛磁铁矿→磁铁矿以及白钛石→钛赤铁矿4种蚀变序列为主,记录了铀矿床的大规模层间氧化事件;过渡带中主要表现为白钛石→锐钛矿和金红石→锐钛矿两种蚀变序列,体现了晚期成矿阶段该矿床受到低温热液流体改造事件;还原带中主要表现为钛铁矿→白钛石的蚀变序列,反映了成岩时期弱酸性-弱碱性的环境.研究成果为铁钛氧化物作为标型矿物研究砂岩型铀矿床层间氧化带精细分带及铀成矿作用过程奠定了基础.Abstract: Fe-Ti oxides are extremely sensitive to changes in the redox environment and are extremely important indicator minerals for studying the mineralization of sandstone-type uranium deposits. However, there are few quantitative data constraints on morphology, contents and compositions of Fe-Ti oxides in the interlayer oxidation zone of sandstone-type uranium deposits. Therefore, in this study it focuses on illustrating Fe-Ti oxides in the interlayer oxidation zone of Qianjiadian uranium deposit in Songliao basin. Six types of Fe-Ti oxides including ilmenite, titanohematite, titanomagnetite, leucoxene, rutile and anatase have been identified by polarizing microscope, SEM and electron probe microanalyzer. The titanohematite and titanomagnetite mainly occur in the strong oxidised subzone and weak oxidised subzone; the leucoxene, anatase and titanium magnetite are mainly distributed in the faint oxidised subzone; the leucoxene and anatase are primarily formed in the transition zone, and the rutile, ilmenite and leucoxene are frequently found in the reduction zone. Seven alteration sequences are identified according to the interspersed wrapping relationship between Fe-Ti oxides in each zone. Four alteration sequences composed of ilmenite →titanomagnetite→magnetite, ilmenite→titanohematite, leucoxene→ titanomagnetite → magnetite and leucoxene → titanohematite are mainly found in the strong oxidised subzone, weak oxidised subzone and faint oxidised subzone, and these sequences record a large-scale interlayer oxidation event. Two alteration sequences including leucoxene → anatase and rutile → anatase primarily occur in the transition zone, these sequences reveal that the deposit was transformed by low-temperature hydrothermal fluids. The last alteration sequence is ilmenite→anatase which mainly occur in the reduction zone, and this sequence reflects a weakly acidic-weakly alkaline environment during diagenesis. The research provides a foundation for the studying Fe-Ti oxides as indicator minerals to study fine zoning of interlayer oxidation zones and mineralization process of sandstone-type uranium deposits.
-
图 1 区域地质背景
a.钱家店铀矿床区域构造位置;b.钱家店地区地层综合柱状图;c.钱家店铀矿床层间氧化带位置展布;据 荣辉等(2016) 修改
Fig. 1. Regional geological background
图 4 钱家店铀矿床中钛铁矿与钛赤铁矿的形貌特征
a.碎屑状钛铁矿蚀变为白钛石,QC17-22;b.碎屑状钛铁矿表面发生蚀变局部形成白钛石,发育大量裂纹,4-14911-2;c.钛铁矿由裂隙处蚀变为白钛石,QC17-22;d.碎屑状钛铁矿局部区域发生蚀变,4-11311-6;e.钛铁矿发生微弱蚀变表面发育大量裂纹,4-11311-6;f.碎屑状钛铁矿被赤铁矿交代,残留钛铁矿呈条状分布,QC90-20;g.钛赤铁矿交代铁钛氧化物,蚀变边缘可见锐钛矿,4-56-08-11;h.钛赤铁矿交代白钛石再氧化为赤铁矿,4-17-120;i.完全交代铁钛氧化物的钛赤铁矿,裂纹中填充锐钛矿,4-56-08-1
Fig. 4. Morphological characteristics of ilmenite and titanium hematite in Qianjiadian uranium deposit
图 5 钱家店铀矿床中钛磁铁矿与白钛石的形貌特征
a.布纹状钛磁铁矿解理缝中充填胶状锐钛矿,4-56-08-10;b.条状的钛铁矿从边缘被钛磁铁矿交代并呈现出不规则片层,4-17-120;c.钛磁铁矿内部残留少量白钛石,边缘逐渐蚀变为磁铁矿并以网格状生长,4-56-08-11;d.钛磁铁矿边缘氧化为磁铁矿,QC90-20;e.白钛石边缘蚀变为锐钛矿,外侧发育草莓状黄铁矿,4-WT3-U3;f.白钛石内部残留部分钛铁矿,表面发育裂隙呈叶片状,4-56-08-11;g.碎屑状白钛石边缘向锐钛矿蚀变,锐钛矿呈胶状、絮状,4-14911-3;h.白钛石被菱铁矿包裹,QC17-22;i.白钛石被菱铁矿包裹,QC17-22
Fig. 5. Morphological characteristics of titanomagnetite and leucoxene in Qianjiadian uranium deposit
图 6 钱家店铀矿床中金红石与锐钛矿的形貌特征
a.针状自形金红石被高岭石包裹充填,4-14911-3;b.针状金红石间隙中发育了粒状黄铁矿,4-WT3-U6;c.金红石与碎屑颗粒之间生长了大面积胶状黄铁矿,金红石间隙被少量黄铁矿充填,4-14911-3;d.金红石逐渐被菱铁矿包裹,QC17-26;e.针状金红石边缘溶蚀形成锐钛矿,QC17-22;f.黄铁矿在锐钛矿表面生长后期被高岭石包裹,QC17-26;g.锐钛矿在高岭石表面生长,IV29-02-1;h.白钛石边缘蚀变为锐钛矿,QC17-26;i.颗粒间自生的粒状锐钛矿吸附少量铀,其中锐钛矿表面存在少量亮斑为铀矿物,4-WT3-U2
Fig. 6. Morphological characteristics of rutile and anatase in Qianjiadian uranium deposit
图 8 钱家店铀矿床铁钛氧化物蚀变类型及组合特征
铁钛氧化物数据源于本文,其他矿物数据源于 荣辉等(2016) 和 贾俊民等(2018)
Fig. 8. Alteration types and assemblage characteristics of Fe-Ti oxides in Qianjiadian uranium deposit
图 10 钱家店铀矿床中铁钛氧化物与铀矿物的关系
a.含铀锐钛矿被沥青铀矿包裹,4-WT3-U2;b.含铀锐钛矿部分被沥青铀矿包裹,IV29-02-1;c.含铀锐钛矿表面充填沥青铀矿,4-WT3-U2;d.含铀锐钛矿内部残留部分白钛石,边缘被沥青铀矿逐渐包裹,4-WT3-U2;e.碎屑状白钛石与邻近锆石吸附少量铀,4-WT3-U2;f.自形六边形白钛石裂隙中吸附少量铀,4-WT3-U2;g.含铀白钛石局部被铀交代形成铀石,IV29-02-1;h.网格状结构的钛铀矿,4-WT3-U2;i.网格状金红石吸附铀,铀矿物呈星点状分布在表面,IV29-02-1
Fig. 10. Relationship between Fe-Ti oxides and uranium minerals in Qianjiadian uranium deposit
图 11 钱家店铀矿床中典型矿物蚀变演化序列
铁钛氧化物资料源于本文,其他矿物数据源于 荣辉等(2016) 和 贾俊民等(2018)
Fig. 11. Alteration sequence of typical minerals in the Qianjiadian uranium deposit
表 1 钱家店铀矿床中铁钛氧化物电子探针分析结果
Table 1. Analysis results of Fe-Ti oxides electron probe in Qianjiadian uranium deposit
序号 CaO K2O UO2 ThO2 TiO2 SO3 Na2O MgO SiO2 Al2O3 TFeO MnO Cr2O3 Total Ti/[Ti+Fe] 类型 1 0.03 0.04 0.00 0.00 1.17 0.00 0.00 0.03 0.15 0.37 86.01 0.39 0.17 88.36 0.01 赤铁矿 2 0.00 0.00 0.05 0.01 4.23 0.00 0.00 0.00 0.11 0.16 85.36 0.00 0.05 89.96 0.04 3 0.02 0.00 0.00 0.04 29.15 0.01 0.03 0.20 0.25 0.43 61.96 0.00 0.12 92.21 0.27 钛赤铁矿 4 0.00 0.01 0.03 0.01 7.42 0.01 0.00 0.07 0.05 0.61 82.94 0.10 0.06 91.30 0.07 磁铁矿 5 0.02 0.01 0.00 0.00 12.73 0.00 0.03 0.12 0.07 0.76 77.36 0.31 0.10 91.52 0.11 钛磁铁矿 6 0.02 0.01 0.03 0.00 19.40 0.00 0.03 0.03 0.22 0.16 72.58 0.47 0.04 93.01 0.17 7 0.02 0.00 0.00 0.03 50.03 0.00 0.02 0.26 0.05 0.00 38.94 0.99 0.03 90.37 0.50 钛铁矿 8 0.04 0.03 0.01 0.03 53.02 0.00 0.02 0.61 0.09 0.20 40.09 0.31 0.10 94.54 0.51 9 0.04 0.04 0.00 0.02 55.18 0.00 0.01 0.04 0.00 0.01 37.47 2.60 0.05 95.46 0.53 10 0.06 0.03 0.00 0.05 54.42 0.00 0.01 0.07 0.00 0.02 36.15 6.23 0.07 97.11 0.54 11 0.38 0.05 0.04 0.04 61.32 0.02 0.13 0.10 0.48 0.28 27.60 0.20 0.06 90.69 0.63 白钛石 12 0.19 0.08 0.01 0.00 80.37 0.00 0.16 0.02 1.29 1.43 8.69 0.04 0.13 92.41 0.88 13 0.05 0.01 0.02 0.01 59.55 0.02 0.02 0.05 0.14 0.05 30.26 1.11 0.00 91.29 0.60 14 0.23 0.03 0.02 0.03 61.33 0.01 0.17 0.05 0.62 0.49 25.93 0.12 0.03 89.06 0.65 15 0.14 0.02 0.04 0.01 60.76 0.01 0.08 0.04 0.42 0.22 28.49 0.19 0.07 90.50 0.62 16 0.20 0.10 1.72 0.03 84.06 0.00 0.21 0.03 0.89 0.85 1.99 0.03 0.09 90.18 0.97 锐钛矿 17 0.09 0.02 0.00 0.00 91.16 0.00 0.02 0.20 0.07 0.03 1.57 0.00 0.01 93.17 0.98 18 0.01 0.00 0.00 0.00 97.36 0.00 0.00 0.02 0.00 0.00 1.16 0.03 0.01 98.60 0.99 注:TFeO为全铁含量,Ti/[Ti+Fe]为质量百分数换算成原子百分数的比值结果. 表 2 铁钛氧化物分类依据
Table 2. Classification basis of Fe-Ti oxides
矿物
名称TiO2
(%)[Ti]/
[Ti+Fe]形态 化学组成 钛铁矿 48~60 0.48~0.60 碎屑状、板状、叶片状 FeTiO3 钛磁
铁矿< 48 < 0.48 网格状、布纹状、块状 TiO2+Fe3O4 钛赤
铁矿< 48 < 0.48 胶状、它形 TiO2+Fe2O3 白钛石 60~90 0.6~0.9 胶状、叶片状、六边形 Fe2Ti3O9+FeO 锐钛矿 > 90 > 0.9 胶状、絮状、粒状 TiO2 金红石 > 90 > 0.9 网格状、针状、块状 TiO2 注:TiO2%为质量百分比. 表 3 铁钛氧化物的矿物含量
Table 3. Mineral content of Fe-Ti oxides
样品号 深度(m) 矿物平均含量(μm2/mm2) 分带 钛铁矿 钛赤铁矿 钛磁铁矿 白钛石 金红石 锐钛矿 4-56-08-1 431.5 97.28 1 113.90 1 972.48 236.18 144.58 0.00
完全氧化亚带4-56-08-2 438.0 0.00 487.41 1 398.83 131.96 15.41 0.00 QC90-20 499.7 404.54 1 115.51 732.47 611.63 20.01 24.46 QC90-24 536.0 76.08 279.96 318.78 152.13 408.35 134.13 5-56-25 278.5 0.00 32.65 40.14 47.63 87.54 130.38 4-56-08-09 331.3 6.23 164.83 498.42 0.00 218.24 8.97 4-56-08-10 342.6 45.91 34.81 543.09 72.96 479.72 6.52 部分氧化亚带 4-56-08-11 333.3 123.93 277.47 244.51 40.16 585.02 0.00 5-56-41-7 232.8 4.52 3.63 425.56 0.00 84.91 44.41 4-17-120 301.6 598.55 263.85 1 515.53 224.97 43.40 77.42 4-WT3-U6 467.5 0.00 0.00 2.61 64.02 393.46 0.00 微弱氧化亚带 5-56-41-15 350.2 14.39 460.26 0.00 61.29 424.35 47.69 4-56-08-03 300.4 0.00 0.00 0.00 293.63 1631.33 30.68 4-56-08-08 299.4 10.95 0.00 24.14 15.25 147.74 820.37 4-11303-8 301.7 16.06 0.00 1 028.87 85.62 170.14 780.02 4-WT3-U2 420.6 0.00 0.00 0.00 126.24 46.27 256.73 过渡带 4-WT3-U3 500.8 37.89 84.41 0.00 768.58 419.21 241.08 4-56-08-4 316.8 44.42 0.00 0.00 124.58 369.02 647.01 4-56-08-5 317.4 130.52 0.00 105.79 192.27 1 072.48 908.48 IV29-02-01 405.1 12.45 0.00 3.78 220.33 224.53 324.06 4-17-120 431.0 0.00 0.00 0.00 202.15 137.54 33.59 5-56-25 288.2 0.00 0.00 0.00 0.00 371.01 484.67 4-14911-2 240.2 282.02 0.00 92.70 817.94 1 569.09 119.00 还原带 4-14911-3 257.5 216.37 0.00 162.34 1 185.02 1 658.66 9.78 4-11303-9 306.4 0.00 0.00 125.66 0.00 8 347.40 718.32 QC17-22 221 7 095.41 0.00 0.00 2 316.66 3 398.43 944.86 QC17-34 272.3 15.82 0.00 0.00 109.35 417.26 164.55 -
Anand, R. R., Gilkes, R. J., 1984. Weathering of Ilmenite in a Lateritic Pallid Zone. Clays and Clay Minerals, 32(5): 363-374. https://doi.org/10.1346/ccmn.1984.0320504 Boulesteix, T., Cathelineau, M., Deloule, E., et al., 2019. Ilmenites and Their Alteration Products, Sinkholes for Uranium and Radium in Roll-Front Deposits after the Example of South Tortkuduk (Kazakhstan). Journal of Geochemical Exploration, 206: 106343. https://doi.org/10.1016/j.gexplo.2019.106343 Bonnetti, C., Cuney, M., Michels, R., et al., 2015. The Multiple Roles of Sulfate-Reducing Bacteria and Fe-Ti Oxides in the Genesis of the Bayinwula Roll Front-Type Uranium Deposit, Erlian Basin, NE China. Economic Geology, 110(4): 1059-1081. https://doi.org/10.2113/econgeo.110.4.1059 Bonnetti, C., Liu, X. D., Yan, Z. B., et al., 2017. Coupled Uranium Mineralisation and Bacterial Sulphate Reduction for the Genesis of the Baxingtu Sandstone-Hosted U Deposit, SW Songliao Basin, NE China. Ore Geology Reviews, 82: 108-129. https://doi.org/10.1016/j.oregeorev.2016.11.013 Cai, G. Q., Huang, Z. Z., Li, S. X., 2006. Alteration Mineral Assemblages in Interlayer Oxidation Zone of the Shihongtan In-Situ Leachable Sandstone-Type Uranium Deposit. Acta Geologica Sinica, 80(1): 119-125, 173(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2006.01.013 Cao, M. Q., Rong, H., Chen, Z. Y., et al., 2021. Quantitative Characterization and Controlling Factors of the Interlayer Oxidation Zone of Qianjiadian Uranium Deposit, Songliao Basin. Earth Science, 46(10): 3453-3466(in Chinese with English abstract). Chen, F. H., Zhang, M. Y., Lin, C. S., 2005. Sedimentary Environments and Uranium Enrichment in the Yaojia Formation, Qianjiadian Depression, Kailu Basin, Nei Mongol. Sedimentary Geology and Tethyan Geology, 25(3): 74-79(in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2005.03.012 Chen, L. L., Chen, Y., Guo, H., et al., 2022. Characteristics of Altered Ilmenite in Uranium-Bearing Sandstone and Its Relationship with Uranium Minerals in the Northeastern Ordos Basin. Journal of Earth Science, 33(2): 342-357. https://doi.org/10.1007/s12583-021-1468-1 Chen, X. L., Xiang, W. D., Li, T. G., et al., 2006. Distribution Characteristics of Interlayer Oxidation Zone and Its Relationship with Sedimentary Facies and Uranium Mineralization in QJD Uranium Deposit, Songliao Basin, NE China. World Nuclear Geoscience, 23(3): 137-144(in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2006.03.003 Chen, X. L., Xiang, W. D., Li, T. G., et al., 2007. Lithofacies Characteristics of Ore-Hosting Horizon and Its Relationship to Uranium Mineralization in Qianjiadian Uranium Deposit, Songliao Basin. Uranium Geology, 23(6): 335-341, 355(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2007.06.003 Chen, X. L., Fang, X. H., Guo, Q. Y., et al., 2008a. Re-Disscussion on Uranium Metallogenesis in Qianjiadian Sag, Songliao Basin. Acta Geologica Sinica, 82(4): 553-561(in Chinese with English abstract). Chen, X. L., Guo, Q. Y., Fang, X. H., et al., 2008b. Discussion on the Differences between Epigenetic Oxidized and Primary Red Beds. World Nuclear Geoscience, 25(4): 187-194(in Chinese with English abstract). Cheng, Y. H., Wang, S. Y., Zhang, T. F., et al., 2020. Regional Sandstone-Type Uranium Mineralization Rooted in Oligo-Miocene Tectonic Inversion in the Songliao Basin, NE China. Gondwana Research, 88: 88-105. https://doi.org/10.1016/j.gr.2020.08.002 Deng, L. M., Ge, X. K., Liu, Z. Y., et al., 2021. The Occurrence and Mineral Composition of Uranium Ore of DL Mineralized Zone in Southwestern Songliao Basin. Uranium Geology, 37(2): 192-204(in Chinese with English abstract). Ding, B., Liu, H. X., Zhang, B., et al., 2020. Study on Ilmenite Alteration and Its Process of Uranium Enrichment in Sandstone-Type Uranium Deposits in Northern Ordos Basin. Geological Review, 66(2): 467-474(in Chinese with English abstract). Ding, X., He, J. J., Liu, Z. Y., 2018. Experimental Studies on Crystal Growth of Anatase under Hydrothermal Conditions. Earth Science, 43(5): 1763-1772(in Chinese with English abstract). Force, E. R., 2001. Magnetic Ilmenite-Hematite Detritus in Mesozoic-Tertiary Placer and Sandstone-Hosted Uranium Deposits of the Rocky Mountains. Economic Geology, 96(6): 1445-1453. https://doi.org/10.2113/96.6.1445 Frost, M. T., Grey, I. E., Harrowfield, I. R., et al., 1983. The Dependence of Alumina and Silica Contents on the Extent of Alteration of Weathered Ilmenites from Western Australia. Mineralogical Magazine, 47(343): 201-208. https://doi.org/10.1180/minmag.1983.047.343.10 Fuchs, S., Schumann, D., Williams-Jones, A. E., et al., 2015. The Growth and Concentration of Uranium and Titanium Minerals in Hydrocarbons of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Chemical Geology, 393: 55-66. https://doi.org/10.1016/j.chemgeo.2014.11.018 Gao, Y. Y., Yu, B. L., Yu, W. B., et al., 2008. Analysis on Uranium Metallogenic Conditions and Ore-Controlling Factors of Qianjiadian-Jiamatu Area, Southwest of Songliao Basin. World Nuclear Geoscience, 25(3): 150-156(in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2008.03.005 Grey, I. E., Reid, A. F., 1975. The Structure of Pseudorutile and Its Role in the Natural Alteration of Ilmenite. American Mineralogist, 60: 898-906. Granger, H. C., Warren, C. G., 1979. The Importance of Dissolved Free Oxygen during Formation of Sandstone Type Uranium Deposits. Open-File Report. United States Department of the Interior Geological Survey, U. S. A., 79-1603, 1-19. Hall, S. M., Mihalasky, M. J., Tureck, K. R., et al., 2017. Genetic and Grade and Tonnage Models for Sandstone-Hosted Roll-Type Uranium Deposits, Texas Coastal Plain, USA. Ore Geology Reviews, 80: 716-753. https://doi.org/10.1016/j.oregeorev.2016.06.013 He, J. J., Ding, X., Wang, Y. R., et al., 2015. The Effect of Temperature and Concentration on Hydrolysis of Fluorinerich Titanium Complexes in Hydrothermal Fluids: Constraints on Titanium Mobility in Deep Geological Processes. Acta Petrologica Sinica, 31(3): 802-810(in Chinese with English abstract). Jia, J. M., Rong, H., Jiao, Y. Q., et al., 2018. Occurrence of Carbonate Cements and Relationship between Carbonate Cementation and Uranium Mineraization of Qianjiadian Uranium Deposit, Songliao Basin. Earth Science, 43(2): 149-161(in Chinese with English abstract). Jia, J. M., Rong, H., Jiao, Y. Q., et al., 2020. Mineralogy and Geochemistry of Carbonate Cement in Sandstone and Implications for Mineralization of the Qianjiadian Sandstone-Hosted Uranium Deposit, Southern Songliao Basin, China. Ore Geology Reviews, 123: 103590. https://doi.org/10.1016/j.oregeorev.2020.103590 Jiao, Y. Q., Wu, L. Q., Peng, Y. B., et al., 2015. Sedimentary-Tectonic Setting of the Deposition-Type Uranium Deposits Forming in the Paleo-Asian Tectonic Domain, North China. Earth Science Frontiers, 22(1): 189-205(in Chinese with English abstract). Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2021. Review of Basin Uranium Resources in China. Earth Science, 46(8): 2675-2696(in Chinese with English abstract). Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2022. Sedimentation, Diagenesis and Uranium Mineralization: Innovative Discoveries and Cognitive Challenges in Study of Sandstone-Type Uranium Deposits in China. Earth Science, 47(10): 3580-3602(in Chinese with English abstract). Lehmann, B., 2008. Uranium Ore Deposits. Economic Geology, 2: 16-26. https://doi.org/10.13140/rg.2.1.2870.8723 Li, P., Wang, J. J., Peng, T., et al., 2019. Heterostructure of Anatase-Rutile Aggregates Boosting the Photoreduction of U(Ⅵ). Applied Surface Science, 483: 670-676. https://doi.org/10.1016/j.apsusc.2019.03.330 Li, X. D., Liu, J. G., Yi, C., 2017. The Genesis of Uranium Ore with Red Alterations in the Nalinggou Deposit, Northeastern Ordos Basin, and Its Geological Implications. Geological Bulletin of China, 36(4): 511-519(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2017.04.003 Liu, H. B., Jin, G. S., Han, J., et al., 2021. Element and Isotope Geochemical Characteristics of Diabase in Qianjiadian Uranium Deposit. World Nuclear Geoscience, 38(2): 135-143(in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2021.02.001 Luo, Y., He, Z. B., Ma, H. F., et al., 2012. Metallogenic Characteristics of Qianjiadian Sandstone Uranium Deposit in Songliao Basin. Mineral Deposits, 31(2): 391-400(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.02.018 Luo, Y., Ma, H. F., Xia, Y. L., et al., 2007. Geologic Characteristics and Metallogenic Model of Qianjiadian Uranium Deposit in Songliao Basin. Uranium Geology, 23(4): 193-200(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2007.04.001 Morad, S., Aldahan, A. A., 1986. Alteration of Detrital Fe-Ti Oxides in Sedimentary Rocks. Geological Society of America Bulletin, 97(5): 567. https://doi.org/10.1130/0016-7606(1986)97567:aodfoi>2.0.co;2 doi: 10.1130/0016-7606(1986)97567:aodfoi>2.0.co;2 Pownceby, M. I., 2010. Alteration and Associated Impurity Element Enrichment in Detrital Ilmenites from the Murray Basin, Southeast Australia: A Product of Multistage Alteration. Australian Journal of Earth Sciences, 57(2): 243-258. https://doi.org/10.1080/08120090903521705 Pang, Y. Q., Chen, X. L., Fang, X. H., et al., 2010. Discussion on the Interlayer Oxidation and Uranium Metallogenesis in Qianjiadian Uranium Deposit, Songliao Basin. Uranium Geology, 26(1): 9-16, 23(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2010.01.002 Reynolds, R. L., Goldhaber, M. B., 1978. Origin of a South Texas Roll-Type Uranium Deposit; I, Alteration of Iron-Titanium Oxide Minerals. Economic Geology, 73(8): 1677-1689. https://doi.org/10.2113/gsecongeo.73.8.1677 Reynolds, R. L., Goldhaber, M. B., 1983. Iron Disulfide Minerals and the Genesis of Roll-Type Uranium Deposits. Economic Geology, 78(1): 105-120. https://doi.org/10.2113/gsecongeo.78.1.105 Rong, H., Jiao, Y. Q., Liu, W. H., et al., 2021. Influence Mechanism of Palaeoclimate of Uranium-Bearing Strata on Mineralization: A Case Study from the Qianjiadian Sandstone-Hosted Uranium Deposit, Songliao Basin, China. Ore Geology Reviews, 138: 104336. https://doi.org/10.1016/j.oregeorev.2021.104336 Rong, H., Jiao, Y. Q., Liu, X. F., et al., 2020. Effects of Basic Intrusions on REE Mobility of Sandstones and Their Geological Significance: A Case Study from the Qianjiadian Sandstone-Hosted Uranium Deposit in the Songliao Basin. Applied Geochemistry, 120: 104665. https://doi.org/10.1016/j.apgeochem.2020.104665 Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2016. Epigenetic Alteration and Its Constraints on Uranium Mineralization from the Qianjiadian Uranium Deposit, Southern Songliao Basin. Earth Science, 41(1): 153-166(in Chinese with English abstract). Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2019. Origin of the Carbonaceous Debris and Its Implication for Mineralization within the Qianjiadian Uranium Deposit, Southern Songliao Basin. Ore Geology Reviews, 107: 336-352. https://doi.org/10.1016/j.oregeorev.2019.02.036 Temple, A. K., 1966. Alteration of Ilmenite. Economic Geology, 61: 695-714. https://doi.org/10.2113/gsecongeo.55.5.1064 Teufer, G., Temple, A. K., 1966. Pseudorutile: A New Mineral Intermediate between Ilmenite and Rutile in the N Alteration of Ilmenite. Nature, 211: 179-181. https://doi.org/10.1038/211179b0 Wang, W. G., 2015. The Discover of Brannerite and Uraninite in Lower Cambrian U-Bearing Phosphorite in West Hunan. Uranium Geology, 31(1): 19-28(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2015.01.002 Wang, Y., Hu, B. Q., Sun, Z. X., et al., 2010. Occurring Characteristic and Genesis of Brannerite at Zoujiashan Uranium Deposits, Xiangshan Ore Field. Uranium Geology, 26(6): 344-349(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2010.06.004 Wei, J. L., Tang, C., Jin, R. S., et al., 2019. A Study of the Relationship between the Fe-Ti Oxide and Sandstone-Hosted Uranium Mineralization in Longhupao Area, Northern Songliao Basin. Acta Petrologica et Mineralogica, 38(3): 375-389(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2019.03.007 Wort, M. J., Jones, M. P., 1980. X-Ray Diffraction and Magnetic Studies of Altered Ilmenite and Pseudorutile. Mineralogical Magazine, 43(329): 659-663. https://doi.org/10.1180/minmag.1980.043.329.16 Xia, F. Y., Jiao, Y. Q., Rong, H., et al., 2019. Geochemical Characteristics and Geological Implications of Sandstones from the Yaojia Formation in Qianjiadian Uranium Deposit, Southern Songliao Basin. Earth Science, 44(12): 4235-4251(in Chinese with English abstract). Xia, Y. L., 2015. Tracing the Metallization of In-Situ Leachable Sandstone Type Uranium Deposit with U-Pb Isotopes. Acta Geologica Sinica, 89(Suppl. 1): 69-70(in Chinese). Xia, Y. L., Lin, J. R., Li, Z. Y., et al., 2003. Perspective and Resource Evaluation and Metallogenic Studies on Sandstone-Type Uranium Deposit in Qianjiadian Depression of Songliao Basin. China Nuclear Science and Technology Report, (3): 105-117(in Chinese with English abstract). Xia, Y. L., Zheng, J. W., Li, Z. Y., et al., 2010. Metallogenic Characteristics and Metallogenic Model of Qianjiadian Uranium Deposit in Songliao Basin. Mineral Deposits, 29(Suppl. 1): 154-155(in Chinese). Yan, X. L., 2018. Characteristics and Uranium Mineralization of Upper Cretaceous Diabase in Qianjiadian Area, Songliao Basin. Journal of Northeast Petroleum University, 42(1): 40-48, 123-124(in Chinese with English abstract) doi: 10.3969/j.issn.2095-4107.2018.01.005 Yang, S. Y., Jiang, S. Y., Mao, Q., et al., 2022. Electron Probe Microanalysis in Geosciences: Analytical Procedures and Recent Advances. Atomic Spectroscopy, 43(1): 186-200. https://doi.org/10.46770/as.2021.912 Yang, S. Y., Zhang, R. X., Jiang, S. Y., et al., 2018. Electron Probe Microanalysis of Variable Oxidation State Oxides: Protocol and Pitfalls. Geostandards and Geoanalytical Research, 42(1): 131-137. https://doi.org/10.1111/ggr.12199 Yin, J. H., Zhang, H., Zan, G. J., et al., 2000. Sedimentation Factors Analysis of Uranium Mineralization of Qianjiadian Depression, Kailu Basin, East Inner Mongolia Autonomous Region. Journal of Palaeogeography, 2(4): 82-89(in Chinese with English abstract). Zhang, M. Y., Zheng, J. W., Tian, S. F., et al., 2005. Research on Existing State of Uranium and Uranium Ore-Formation Age at Qianjiadian Uranium Deposit in Kailu Depression. Uranium Geology, 21(4): 213-218(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2005.04.005 Zhang, R. X., Yang, S. Y., 2016. A Mathematical Model for Determining Carbon Coating Thickness and Its Application in Electron Probe Microanalysis. Microscopy and Microanalysis, 22(6): 1374-1380. https://doi.org/10.1017/s143192761601182x Zhao, L., Cai, C. F., Jin, R. S., et al., 2018. Mineralogical and Geochemical Evidence for Biogenic and Petroleum-Related Uranium Mineralization in the Qianjiadian Deposit, NE China. Ore Geology Reviews, 101: 273-292. https://doi.org/10.1016/j.oregeorev.2018.07.025 Zhao, Y. M., Li, D. X., Han, J. Y., et al., 2008. Mineralogical Characteristics of Anatase, Rutile and Ilmenite in Yangtizashan-Moshishan Titanium Ore Deposit, Inner Mongolia. Mineral Deposits, 27(4): 466-473(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2008.04.004 蔡根庆, 黄志章, 李胜祥, 2006. 十红滩地浸砂岩铀矿层间氧化带蚀变矿物群. 地质学报, 80(1): 119-125, 173. doi: 10.3321/j.issn:0001-5717.2006.01.013 曹民强, 荣辉, 陈振岩, 等, 2021. 松辽盆地钱家店铀矿床层间氧化带结构定量表征及制约因素. 地球科学, 46(10): 3453-3466. doi: 10.3799/dqkx.2020.375 陈方鸿, 张明瑜, 林畅松, 2005. 开鲁盆地钱家店凹陷含铀岩系姚家组沉积环境及其富铀意义. 沉积与特提斯地质, 25(3): 74-79. doi: 10.3969/j.issn.1009-3850.2005.03.012 陈晓林, 方锡珩, 郭庆银, 等, 2008a. 对松辽盆地钱家店凹陷铀成矿作用的重新认识. 地质学报, 82(4): 553-561. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200804013.htm 陈晓林, 郭庆银, 方锡珩, 等, 2008b. 试论后生氧化红层与原生红层的区别. 世界核地质科学, 25(4): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD200804003.htm 陈晓林, 向伟东, 李田港, 等, 2006. 松辽盆地QJD铀矿床层间氧化带的展布特征及其与沉积相、铀成矿的关系. 世界核地质科学, 23(3): 137-144. doi: 10.3969/j.issn.1672-0636.2006.03.003 陈晓林, 向伟东, 李田港, 等, 2007. 松辽盆地钱家店铀矿床含矿层位的岩相特征及其与铀成矿的关系. 铀矿地质, 23(6): 335-341, 355. doi: 10.3969/j.issn.1000-0658.2007.06.003 邓刘敏, 葛祥坤, 刘章月, 等, 2021. 松辽盆地西南部DL铀矿带铀赋存状态及矿物组成特征. 铀矿地质, 37(2): 192-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202102006.htm 丁波, 刘红旭, 张宾, 等, 2020. 鄂尔多斯盆地北缘砂岩型铀矿含矿砂岩中钛铁矿蚀变及其聚铀过程探讨. 地质论评, 66(2): 467-474. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002018.htm 丁兴, 何俊杰, 刘灼瑜, 2018. 热液条件下锐钛矿晶体生长的实验. 地球科学, 43(5): 1763-1772. doi: 10.3799/dqkx.2018.428 高玉友, 禹宝利, 于文斌, 等, 2008. 松辽盆地西南部钱家店—架玛吐地区姚家组铀成矿条件及控矿因素分析. 世界核地质科学, 25(3): 150-156. doi: 10.3969/j.issn.1672-0636.2008.03.005 何俊杰, 丁兴, 王玉荣, 等, 2015. 温度、浓度对流体中氟钛络合物水解的影响: 对深部地质过程中钛元素活动的制约. 岩石学报, 31(3): 802-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201503014.htm 贾俊民, 荣辉, 焦养泉, 等, 2018. 松辽盆地钱家店铀矿床中碳酸盐胶结物赋存状态及其与铀成矿关系. 地球科学, 43(增刊2): 149-161. doi: 10.3799/dqkx.2018.115 焦养泉, 吴立群, 彭云彪, 等, 2015. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积-构造背景综合分析. 地学前缘, 22(1): 189-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501018.htm 焦养泉, 吴立群, 荣辉, 等, 2021. 中国盆地铀资源概述. 地球科学, 46(8): 2675-2696. doi: 10.3799/dqkx.2020.304 焦养泉, 吴立群, 荣辉, 等, 2022. 沉积、成岩与铀成矿: 中国砂岩型铀矿研究的创新发现与认知挑战. 地球科学, 47(10): 3580-3602. doi: 10.3799/dqkx.2022.284 李西得, 刘军港, 易超, 2017. 鄂尔多斯盆地北东部纳岭沟铀矿床红色蚀变矿石成因及其地质意义. 地质通报, 36(4): 511-519. doi: 10.3969/j.issn.1671-2552.2017.04.003 刘汉彬, 金贵善, 韩娟, 等, 2021. 钱家店铀矿床辉绿岩元素及同位素地球化学特征. 世界核地质科学, 38(2): 135-143. doi: 10.3969/j.issn.1672-0636.2021.02.001 罗毅, 马汉峰, 夏毓亮, 等, 2007. 松辽盆地钱家店铀矿床成矿作用特征及成矿模式. 铀矿地质, 23(4): 193-200. doi: 10.3969/j.issn.1000-0658.2007.04.001 罗毅, 何中波, 马汉峰, 等, 2012. 松辽盆地钱家店砂岩型铀矿成矿地质特征. 矿床地质, 31(2): 391-400. doi: 10.3969/j.issn.0258-7106.2012.02.018 庞雅庆, 陈晓林, 方锡珩, 等, 2010. 松辽盆地钱家店铀矿床层间氧化与铀成矿作用. 铀矿地质, 26(1): 9-16, 23. doi: 10.3969/j.issn.1000-0658.2010.01.002 荣辉, 焦养泉, 吴立群, 等, 2016. 松辽盆地南部钱家店铀矿床后生蚀变作用及其对铀成矿的约束. 地球科学, 41(1): 153-166. doi: 10.3799/dqkx.2016.012 王文广, 2015. 湘西下寒武统含铀磷块岩中钛铀矿和晶质铀矿的发现及其成因分析. 铀矿地质, 31(1): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201501003.htm 王运, 胡宝群, 孙占学, 等, 2010. 相山铀矿田邹家山矿床钛铀矿赋存特征及成因. 铀矿地质, 26(6): 344-349. doi: 10.3969/j.issn.1000-0658.2010.06.004 魏佳林, 汤超, 金若时, 等, 2019. 松辽盆地北部龙虎泡地区铁钛氧化物与砂岩型铀矿化关系探讨. 岩石矿物学杂志, 38(3): 375-389. doi: 10.3969/j.issn.1000-6524.2019.03.007 夏飞勇, 焦养泉, 荣辉, 等, 2019. 松辽盆地南部钱家店铀矿床姚家组砂岩地球化学特征及地质意义. 地球科学, 44(12): 4235-4251. doi: 10.3799/dqkx.2019.045 夏毓亮, 2015. U-Pb同位素示踪地浸砂岩型铀矿成矿作用. 地质学报, 89(增刊1): 69-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2015S1030.htm 夏毓亮, 林锦荣, 李子颖, 等, 2003. 松辽盆地钱家店凹陷砂岩型铀矿预测评价和铀成矿规律研究. 中国核科技报告, (3): 105-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBG200303008.htm 夏毓亮, 郑纪伟, 李子颖, 等, 2010. 松辽盆地钱家店铀矿床成矿特征和成矿模式. 矿床地质, 29(增刊1): 154-155. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1082.htm 颜新林, 2018. 松辽盆地钱家店地区上白垩统辉绿岩特征及铀成矿作用. 东北石油大学学报, 42(1): 40-48, 123-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201801006.htm 殷敬红, 张辉, 昝国军, 等, 2000. 内蒙古东部开鲁盆地钱家店凹陷铀矿成藏沉积因素分析. 古地理学报, 2(4): 82-89. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200004012.htm 张明瑜, 郑纪伟, 田时丰, 等, 2005. 开鲁坳陷钱家店铀矿床铀的赋存状态及铀矿形成时代研究. 铀矿地质, 21(4): 213-218. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200504004.htm 赵一鸣, 李大新, 韩景仪, 等, 2008. 内蒙古羊蹄子山-磨石山钛矿床锐钛矿、金红石和钛铁矿的矿物学特征. 矿床地质, 27(4): 466-473. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200804003.htm -