Anisian (Middle Triassic) Amber from Qingyan Section, Guizhou Province and Its Significance
-
摘要: 中-晚三叠世是现代型生态系统构建的关键时期,系统研究该时期生物与环境的协同演变过程对揭示生物复苏机制和生态系统重建规律具有重要意义.琥珀是探讨中-晚三叠世植物演化和古气候演变的重要载体.对青岩剖面雷打坡段的琥珀和伴生的植物化石开展研究,并将全球的中-晚三叠世琥珀的分布与湿润事件进行对比分析.结果发现青岩琥珀是由松柏类植物伏脂杉生产,琥珀的出现与松柏类植物的辐射演化有关.菊石生物地层表明含有琥珀的地层属于中三叠世安尼期Pelsonian亚期.认为琥珀的产出与湿润事件具有对应性,说明湿润事件可能是中-晚三叠世琥珀频繁出现的重要原因.Abstract: The Middle-Late Triassic was a critical period for the construction of modern ecosystems, and a systematic study of the co-evolution of organisms and the environment during this period is significant for revealing the mechanisms of biological recovery and the reconstruction of ecosystems. Amber is important for discussing the evolution of plants and paleoclimate in the Middle to Late Triassic. Here, it reports for the first time the finding of amber in an Anisian marine succession in Qingyan Section, South China, which was located in the north-eastern Tethys. Ammonoid biostratigraphy gives a Pelsonian age for the layers bearing amber. Amber has been recovered in close association with plant remains identified as Voltzia sp., indicating that this plant has likely exuded the resin. The fact that fossil resin is restricted only within humid events strongly indicates a climatic control on resin production during the Triassic.
-
Key words:
- Middle Triassic /
- Anisian /
- amber /
- humid event /
- Qingyan Section /
- Guizhou /
- stratigraphy
-
图 1 中三叠世华南古地理图和研究剖面现代地理位置
a.华南中三叠世古地理图;b.南盘江盆地古地理图,图中红色五角星代表剖面位置(修改自Chen et al.,2020);c.研究区域的位置
Fig. 1. Middle Triassic paleogeographic map and modern geographic location map of the study area
图 2 青岩剖面雷打坡段地层柱状图和野外照片
菊石生物地层来自Stiller and Bucher(2011)
Fig. 2. Stratigraphic sections and field photographs of the Leidapo Member of the Qingyan Section
图 5 中三叠世安尼期和晚三叠世卡尼期琥珀分布
1.Dolomites(意大利);2.Julian Alps(意大利);3.Balaton Highlands(匈牙利);4.Alicante Province(西班牙);5.Northern Calcareous Alps(Lunz area)(奥地利);6.western Northern Calcareous Alps(奥地利);7.Neuewelt(瑞士);8.NE Arizona(美国);9.Southern Africa(莱索托);10.Tasmania(澳大利亚)(Stilwell et al.,2020);11.Recoaro area(意大利)(Roghi et al.,2017);12.Prà della Vacca and PizKühwiesenkopf/Monte da Peres(意大利)(Forte et al.,2022);13.Qingyan(中国)(本研究).(产地1到9基于Seyfullah et al.,2018b)
Fig. 5. The distribution of amber in Middle Triassic Anisian and Late Triassic Carnian
图 6 三叠纪琥珀的出现、火山活动、湿润事件、低纬度表层海水温度变化
数据来源于Chen et al.,2013;Trotter et al.,2015
Fig. 6. Occurrences of amber, volcanism, humid events, surface sea temperature changes and percentage of insect-damaged during the Triassic
-
Bray, P. S., Anderson, K. B., 2009. Identification of Carboniferous (320 Million Years Old) Class Ic Amber. Science, 326(5949): 132-134. https://doi.org/10.1126/science.1177539 Chen, B., Joachimski, M. M., Shen, S. Z., et al., 2013. Permian Ice Volume and Palaeoclimate History: Oxygen Isotope Proxies Revisited. Gondwana Research, 24(1): 77-89. https://doi.org/10.1016/j.gr.2012.07.007 Chen, J., Tong, J. N., Song, H. J., et al., 2015. Recovery Pattern of Brachiopods after the Permian-Triassic Crisis in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 433: 91-105. https://doi.org/10.1016/j.palaeo.2015.05.020 Chen, Y., Jiang, H. S., Ogg, J. G., et al., 2020. Early-Middle Triassic Boundary Interval: Integrated Chemo-Bio-Magneto-Stratigraphy of Potential GSSPs for the Base of the Anisian Stage in South China. Earth and Planetary Science Letters, 530: 115863. https://doi.org/10.1016/j.epsl.2019.115863 Dal Corso, J., Bernardi, M., Sun, Y. D., et al., 2020. Extinction and Dawn of the Modern World in the Carnian (Late Triassic). Science Advances, 6(38): eaba0099. https://doi.org/10.1126/sciadv.aba0099 Dal Corso, J., Mietto, P., Newton, R. J., et al., 2012. Discovery of a Major Negative 13C Spike in the Carnian (Late Triassic) Linked to the Eruption of Wrangellia Flood Basalts. Geology, 40(1): 79-82. https://doi.org/10.1130/g32473.1 Dal Corso, J., Schmidt, A. R., Seyfullah, L. J., et al., 2017. Evaluating the Use of Amber in Palaeoatmospheric Reconstructions: The Carbon-Isotope Variability of Modern and Cretaceous Conifer Resins. Geochimica et Cosmochimica Acta, 199: 351-369. https://doi.org/10.1016/j.gca.2016.11.025 Forte, G., Kustatscher, E., Ragazzi, E., et al., 2022. Amber Droplets in the Southern Alps (NE Italy): A Link between Their Occurrences and Main Humid Episodes in the Triassic. Rivista Italiana di Paleontologia e Stratigrafia, 128(1). https://doi.org/10.54103/2039-4942/15381 He Z. A., Yang, H., Zhou, J. C., 1980. The Middle Triassic Reef in Guizhou Province. Chinese Journal of Geology, 15(3): 256-264, 303(in Chinese with English abstract). Huang, Y. G., Chen, Z. Q., Wignall, P. B., et al., 2017. Latest Permian to Middle Triassic Redox Condition Variations in Ramp Settings, South China: Pyrite Framboid Evidence. Geological Society of America Bulletin, 129(1/2): 229-243. https://doi.org/10.1130/b31458.1 Kustatscher, E., van Konijnenburg-van Cittert, J. H. A., Roghi, G., 2010. Macrofloras and Palynomorphs as Possible Proxies for Palaeoclimatic and Palaeoecological Studies: A Case Study from the Pelsonian (Middle Triassic) of Kühwiesenkopf/Monte Prà Della Vacca (Olang Dolomites, N-Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1/2/3/4): 71-80. https://doi.org/10.1016/j.palaeo.2009.07.001 Li, F., Yan, J. X., Algeo, T., et al., 2013. Paleoceanographic Conditions Following the End-Permian Mass Extinction Recorded by Giant Ooids (Moyang, South China). Global and Planetary Change, 105: 102-120. https://doi.org/10.1016/j.gloplacha.2011.09.009 Liu, M. F., Vecchi, G. A., Smith, J. A., et al., 2019. Causes of Large Projected Increases in Hurricane Precipitation Rates with Global Warming. NPJ Climate and Atmospheric Science, 2(1): 38. https://doi.org/10.1038/s41612-019-0095-3 Lorio, P. L. Jr, Hodges, J. D., 1968. Microsite Effects on Oleoresin Exudation Pressure of Large Loblolly Pines. Ecology, 49(6): 1207-1210. https://doi.org/10.2307/1934519 Ning, Q. S., 2017. Taponomic Environment of Middle Triassic Qingyan Fossil Library in Guiyang, Guizhou (Dissertation). Guizhou University, Guiyang (in Chinese with English abstract). Nissenbaum, A., Yakir, D., 1995. Stable Isotope Composition of Amber. ACS Symposium Series: American Chemical Society, Washington, DC., 32-42. https://doi.org/10.1021/bk-1995-0617.ch002 Roghi, G., Gianolla, P., Kustatscher, E., et al., 2022. An Exceptionally Preserved Terrestrial Record of LIP Effects on Plants in the Carnian (Upper Triassic) Amber-Bearing Section of the Dolomites, Italy. Frontiers in Earth Science, 10: 900586. https://doi.org/10.3389/feart.2022.900586 Roghi, G., Kustatscher, E., Ragazzi, E., et al., 2017. Middle Triassic Amber Associated with Voltzialean Conifers from the Southern Alps of Italy. Rivista Italiana di Paleontologia e Stratigrafia, 123(2): 193-202. https://doi.org/10.13130/2039-4942/8301 Roghi, G., Ragazzi, E., Gianolla, P., 2006. Triassic Amber of the Southern Alps (Italy). PALAIOS, 21(2): 143-154. https://doi.org/10.2110/palo.2005.p05-68 Seyfullah, L. J., Beimforde, C., Corso, J. D., et al., 2018a. Production and Preservation of Resins—Past and Present. Biological Reviews, 93(3): 1684-1714. https://doi.org/10.1111/brv.12414 Seyfullah, L. J., Roghi, G., Corso, J. D., et al., 2018b. The Carnian Pluvial Episode and the First Global Appearance of Amber. Journal of the Geological Society, 175(6): 1012-1018. https://doi.org/10.1144/jgs2017-143 Song, H. J., Yang, L. R., Tong, J. N., et al., 2015. Recovery Dynamics of Foraminifers and Algae Following the Permian-Triassic Extinction in Qingyan, South China. Geobios, 48(1): 71-83. https://doi.org/10.1016/j.geobios.2014.11.004 Stefani, M., Furin, S., Gianolla, P., 2010. The Changing Climate Framework and Depositional Dynamics of Triassic Carbonate Platforms from the Dolomites. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1/2/3/4): 43-57. https://doi.org/10.1016/j.palaeo.2010.02.018 Stiller, F., Bucher, H., 2008. Anisian Ammonoids from Qingyan, Southwestern China: Biostratigraphical Implications for the Age of the Qingyan Formation. Swiss Journal of Geosciences, 101(2): 547-562. https://doi.org/10.1007/s00015-008-1274-0 Stiller, F., Bucher, H., 2011. Precise Biostratigraphical Correlation and Age of the Leidapo Fossil Assemblages, Early Middle Triassic of Qingyan, Southwestern China. Acta Palaeontologica Sinica, 50(1): 1-12. https://doi.org/10.5167/uzh-57296 Stilwell, J. D., Langendam, A., Mays, C., et al., 2020. Amber from the Triassic to Paleogene of Australia and New Zealand as Exceptional Preservation of Poorly Known Terrestrial Ecosystems. Scientific Reports, 10(1): 5703. https://doi.org/10.1038/s41598-020-62252-z Tong, J. N., 2023. How to Evaluate the Inherent Relation of the Modern Biodiversity with the Paleozoic-Mesozoic Mass Extinction? Earth Science, 48(1): 375(in Chinese). Trotter, J. A., Williams, I. S., Nicora, A., et al., 2015. Long-Term Cycles of Triassic Climate Change: A New δ18O Record from Conodont Apatite. Earth and Planetary Science Letters, 415: 165-174. https://doi.org/10.1016/j.epsl.2015.01.038 Wang, Y. M., Li, Y., Shi, Z. T., et al., 2022. A Review for the Gemmological Research on Amber. Journal of Gems & Gemmology, 24(5): 55-68(in Chinese with English abstract). Zhao, J. J., Huang, Y. F., Tian, L., et al., 2023. The Characteristics of Giant Ooids from the Poduan Formation during the Early Middle Triassic and Its Environmental Significance at Poduan Section, Ceheng, Guizhou Province. Earth Science, 48(8): 2822-2836(in Chinese with English abstract). 贺自爱, 杨宏, 周经才, 1980. 贵州中三叠世生物礁. 地质科学, 15(3): 256-264, 303. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201001009.htm 宁秋实, 2017. 贵州贵阳中三叠统青岩化石库的埋藏环境研究(硕士学位论文). 贵阳: 贵州大学. 童金南, 2023. 如何评价古、中生代之交大灭绝事件对当代生物多样性的影响? 地球科学, 48(1): 375. doi: 10.3799/dqkx.2023.800 王雅玫, 李妍, 石兆彤, 等, 2022. 琥珀的宝石学研究综述. 宝石和宝石学杂志(中英文), 24(5): 55-68. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB202205005.htm 赵俊杰, 黄云飞, 田力, 等, 2023. 贵州册亨中三叠统坡段组巨鲕特征及其环境指示意义. 地球科学, 48(8): 2822-2836. doi: 10.3799/dqkx.2023.087