• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    有机质(镜质体和沥青)反射率化学动力学模型:回顾与进展

    李志强 张如才 梁雪梅 裴小刚 陈彰进

    李志强, 张如才, 梁雪梅, 裴小刚, 陈彰进, 2024. 有机质(镜质体和沥青)反射率化学动力学模型:回顾与进展. 地球科学, 49(11): 4130-4155. doi: 10.3799/dqkx.2023.183
    引用本文: 李志强, 张如才, 梁雪梅, 裴小刚, 陈彰进, 2024. 有机质(镜质体和沥青)反射率化学动力学模型:回顾与进展. 地球科学, 49(11): 4130-4155. doi: 10.3799/dqkx.2023.183
    Li Zhiqiang, Zhang Rucai, Liang Xuemei, Pei Xiaogang, Chen Zhangjin, 2024. Chemical Kinetics Models of Organic Matter (Vitrinite and Bitumen) Reflectance: Retrospect and Advances. Earth Science, 49(11): 4130-4155. doi: 10.3799/dqkx.2023.183
    Citation: Li Zhiqiang, Zhang Rucai, Liang Xuemei, Pei Xiaogang, Chen Zhangjin, 2024. Chemical Kinetics Models of Organic Matter (Vitrinite and Bitumen) Reflectance: Retrospect and Advances. Earth Science, 49(11): 4130-4155. doi: 10.3799/dqkx.2023.183

    有机质(镜质体和沥青)反射率化学动力学模型:回顾与进展

    doi: 10.3799/dqkx.2023.183
    基金项目: 

    中国海洋石油集团有限公司“十四五”重大科技项目 KJGG2022⁃0401

    中海石油(中国)有限公司“七年行动计划”科技重大项目 CNOOC⁃KJ135 ZDXM36TJ08TJ

    中海石油(中国)有限公司综合科研项目 KJZH⁃2024⁃2107

    中国海洋石油集团有限公司科研平台建设项目 CNOOC⁃KJPT⁃GCJS⁃2020⁃01

    详细信息
      作者简介:

      李志强(1992-),男,工程师,主要从事油气资源勘探方面的研究工作. ORCID:0000-0003-4422-6397. E-mail:zhiqiangligeo@163.com

    • 中图分类号: P618

    Chemical Kinetics Models of Organic Matter (Vitrinite and Bitumen) Reflectance: Retrospect and Advances

    • 摘要: 镜质体反射率(Ro)和沥青反射率(BRo)化学动力学模型是标定沉积盆地热历史和预测烃源岩热演化最常用的研究手段,近年来已经取得显著进展,但并没有引起国内科研工作者的足够重视. 在回顾化学动力学模型研究历程的基础上,报道了相关研究新进展. Vitrimat 1989模型和经典的Easy%Ro模型基于3个原理:(1)Ro与H/C和O/C有关;(2)镜质体热降解产物为残余镜质体和4种产物(H2O、CO2、CHn、CH4)的总和;(3)热降解反应遵循Arrhenius方程. Easy%Ro模型存在设计缺陷:(1)使用的频率因子(1×1013)过低;(2)优化活化能分布时缺少过成熟度(Ro > 2.0%)样品. 在实际运用(地质升温速率)中的不足包括:(1)当实测Ro < 0.9%时,Easy%Ro模型对Ro的计算值过高;(2)当实测Ro > 2.0%时,Easy%Ro模型对Ro的计算值过低. 详细介绍了Basin%Ro、Easy%RoDL、Easy%RoV和Easy%RoB等新一代化学动力学模型的数据基础、校准原理和潜在适用性. BasinRo%模型在中‒低熟阶段展现的“dog-leg”曲线特征可能不适用于Ro-深度剖面;Easy%RoDL模型具有较强的地质条件适用性;Easy%RoV模型更加适用于实验室加热速率条件;在地质升温速率下,为Ro开发的新一代化学动力学模型全部提高了当Ro > 2.0%时的计算值;Easy%RoB模型是基于BRo-VRo(等效镜质体反射率)函数关系和Vitrimat 2018(Type-Ⅱ)模型并为BRo设计的模型,具有较高的地质条件适用性. 基于PetroMod盆地模拟平台中的Calibration化学动力学模块和Kinetics生烃动力学模块,展示了新一代化学动力学模型在超深层烃源岩成熟度标定和预测、中‒低成熟度烃源岩Ro反演热历史及盆地动力学、结合生烃动力学参数建立生烃模型等应用案例. 指出未来应重视地质升温速率/实验室加热速率下新一代化学动力学模型的适应性问题研究;提高反射率测量准确性、正确识别反射率受抑制程度、与低温热年代学参数耦合反演,对提高利用化学动力学模型开展盆地热历史研究的准确性具有重要意义.

       

    • 图  1  1987‒1989年和1990年之后发表的油页岩、烃源岩、干酪根和煤的生烃动力学参数中频率因子的累积概率分布

      Peters et al.(2016).1987‒1989年由劳伦斯利弗莫尔国家实验室(Lawrence Livermore National Laboratory,LLNL)发表的20个动力学参数中(Burnham et al.,19871989),A的累积概率分布为0.5时,A值接近1×1013,该值即为Easy%Ro模型中20组活化能的通用频率因子(表 2)(Sweeney and Burnham, 1990Burnham,2021a);1990年之后由多个研究机构和石油公司发表的160个动力学参数中(Peters et al.,2016),A的累计概率分布为0.5时,A值处于1×1014~2×1014(Burnham,2021b)

      Fig.  1.  Cumulative probability of frequency factors in kinetic parameters of oil shales, source rocks, kerogen and coal published in 1987‒1989 and after 1990

      图  2  3 ℃/Ma地质升温速率条件下不同化学动力学模型计算的反射率与温度的关系

      Fig.  2.  The relationship between reflectance and temperature calculated by different chemical kinetic models at 3 ℃/Ma geological heating rate

      图  3  20 ℃/h(a)和20 ℃/min(b)实验室加热速率条件下不同化学动力学模型计算的反射率与温度的关系

      Fig.  3.  The relationship between reflectance and temperature calculated by different chemical kinetics models at 20 ℃/h (a) and 20 ℃/min (b) laboratory heating rates, respectively

      图  4  渤海湾盆地渤中凹陷钻井的埋藏史、热流史和镜质体反射率‒深度剖面

      图 4a中太古界(Ar)与新生界(E)之间用波浪线表示沉积间断;图 4b中热流演化参考Qiu et al.(2022),现今热流利用钻井实测温度标定,已省略

      Fig.  4.  Burial history, heat flow history and vitrinite reflectance-depth profile of Bozhong sag in offshore Bohai Bay basin

      图  5  利用浅层钻井温度和浅层镜质体反射率‒深度剖面标定的渤海湾盆地渤中凹陷超深层成熟度预测曲线和温度曲线

      图 5b和5e中热流演化(蓝色线)参考Qiu et al.(2022),现今热流利用钻井实测温度标定,已省略;图 5e中热流演化(红色线)利用Easy%Ro模型反演标定

      Fig.  5.  Prediction of ultra-deep maturity curve and temperature curve of Bozhong sag in offshore Bohai Bay basin using shallow drilling temperature and shallow vitrinite reflectance-depth profile calibration, respectively

      图  6  渤海湾盆地海域大地热流等值线图和沙河街组三段底部成熟度等值线

      Fig.  6.  Heat flow contour map and maturity contour line of the third member of Shahejie Formation of offshore Bohai Bay basin

      图  7  分别使用Easy%RoDL模型和Easy%Ro模型标定的南黄海盆地热流演化史

      Fig.  7.  Heat flow evolution history of the South Yellow Sea Basin calibrated by Easy%RoDL and Easy%Ro, respectively

      图  8  中国东部裂谷盆地热流演化史

      胡圣标等(2019)对珠江口盆地开展的构造‒热演化研究为基底热流,推测珠江口盆地可能具有稍高的地表热流史

      Fig.  8.  Thermal evolution history of rift basins in eastern China

      图  9  3℃/Ma地质升温速率下生烃动力学参数与化学动力学参数交汇建立的生烃地质模型

      Fig.  9.  Hydrocarbon generation geological model established by the intersection of hydrocarbon generation kinetic parameters and organic matter chemical kinetic parameters under the condition of the geological heating rate at 3℃/Ma

      表  1  Vitrimat 1989模型和Vitrimat 2018 (vitrinite)模型参数

      Table  1.   Model parameters of Vitrimat (1989) and Vitrimat 2018 (vitrinite), respectively

      Vitrimat 1989/ Vitrimat 2018 (vitrinite)
      x y χ α
      0.90 0.90 0.35 0.35 0.28 0.20 0.25 0.21
      β γ n
      0.70 0.74 0.01 0.02 1.70 1.80
      A 1×1013/s 2×1015/s 1×1013/s 2×1015/s 2×1013/s 2×1015/s 1×1013/s 2×1015/s
      E H2O CO2 CHn CH4
      38 5
      40 10
      42 15 10 5
      44 20 10 15 10
      46 20 15 25 15 5
      48 15 15 25 15 10
      50 10 15 15 15 20 5 7
      52 5 15 10 15 30 15 12 2
      54 10 5 15 20 30 14 5
      56 10 15 10 20 13 8
      58 5 15 12 10
      60 10 11 12
      62 5 9 15
      64 7 12
      66 5 10
      68 4 8
      70 3 6
      72 2 5
      74 1 4
      76 3
      注:Vitrimat 1989模型参数根据Burnham and Sweeney (1989),Vitrimat 2018(vitrinite)模型参数根据Burnham(2019).
      下载: 导出CSV

      表  2  Easy%Ro、Basin%Ro、Easy%RoDL、Easy%RoV和Easy%RoB化学动力学模型参数

      Table  2.   Chemical kinetic parameters of Easy%Ro, Basin%Ro, Easy%RoDL, Easy%RoV, and Easy%RoB, respectively

      模型 Easy%Ro Basin%Ro Easy%RoDL Easy%RoV Easy%RoB
      Ro exp(3.7F-1.6) 0.210 4exp(3.7F) exp(3.7F-1.5) 0.223exp(3.7F) 0.15exp(3.7F)
      A 1×1013/s 9.7×1012/s 2×1014/s 2×1015/s 2×1014/s
      E 反应量
      34 0.03 0.018 5
      36 0.03 0.014 3
      38 0.04 0.056 9 0.02
      40 0.04 0.047 8 0.03 0.030
      42 0.05 0.049 7 0.04 0.040 0.010
      44 0.05 0.034 4 0.05 0.045 0.020
      46 0.06 0.034 4 0.04 0.045 0.020
      48 0.04 0.032 2 0.04 0.045 0.030
      50 0.04 0.028 2 0.03 0.040 0.070
      52 0.07 0.006 2 0.04 0.045 0.080
      54 0.06 0.115 5 0.07 0.050 0.150
      56 0.06 0.104 1 0.10 0.055 0.130
      58 0.06 0.102 3 0.09 0.060 0.110
      60 0.05 0.076 0 0.07 0.070 0.080
      62 0.05 0.059 3 0.06 0.080 0.070
      64 0.04 0.051 2 0.05 0.070 0.060
      66 0.03 0.047 7 0.05 0.060 0.060
      68 0.02 0.008 6 0.04 0.050 0.050
      70 0.02 0.024 6 0.04 0.040 0.035
      72 0.01 0.009 6 0.03 0.030 0.025
      74 0.03 0.030
      76 0.03 0.025
      总反应量 0.85 0.921 5 0.95 0.91 1.00
      注:Easy%Ro模型参数根据Sweeney and Burnham(1990);Basin%Ro模型参数根据Nielsen et al.(2017);Easy%RoDL模型参数根据Schenk et al.(2017);Easy%RoV和Easy%RoB模型参数根据Burnham(2019). 根据Sweeney and Burnham(1990,见该文附录)最初的计算公式,1 Ma被近似定义为3.16×1013s,在Basin%Ro模型中(Nielsen et al., 2017),频率因子(A)=exp(60.985 6)/Ma,Ma为百万年,因此Basin%Ro模型中的频率因子(A)=e60.985 6/3.16/1013=9.7×1012,其中e为自然指数. 另外,在本文中将1 Ma全部近似定义为3.16×1013 s (Sweeney and Burnham, 1990, 见该文附录),部分讨论请见表 3注释.
      下载: 导出CSV

      表  3  从化学动力学参数录入盆地与含油气系统模拟平台的参数转换

      Table  3.   Parameter conversion from chemical kinetic parameters into petroleum system and basin simulation platform

      模型 Easy%Ro Basin%Ro Easy%RoDL Easy%RoV Easy%RoB
      E 初始比值
      34 0.035 3 0.020 1
      36 0.035 3 0.015 5
      38 0.047 1 0.061 7 0.0211
      40 0.047 1 0.051 9 0.031 6 0.033 0
      42 0.058 8 0.053 9 0.042 1 0.044 0 0.010 0
      44 0.058 8 0.037 3 0.052 6 0.049 5 0.020 0
      46 0.070 6 0.037 3 0.042 1 0.049 5 0.020 0
      48 0.047 1 0.034 9 0.042 1 0.049 5 0.030 0
      50 0.047 1 0.030 6 0.031 6 0.044 0 0.070 0
      52 0.082 4 0.006 7 0.042 1 0.049 5 0.080 0
      54 0.070 6 0.125 3 0.073 7 0.054 9 0.150 0
      56 0.070 6 0.113 0 0.105 3 0.060 4 0.130 0
      58 0.070 6 0.111 0 0.094 7 0.065 9 0.110 0
      60 0.058 8 0.082 5 0.073 7 0.076 9 0.080 0
      62 0.058 8 0.064 4 0.063 2 0.087 9 0.070 0
      64 0.047 1 0.055 6 0.052 6 0.076 9 0.060 0
      66 0.035 3 0.051 8 0.052 6 0.065 9 0.060 0
      68 0.023 5 0.009 3 0.042 1 0.054 9 0.050 0
      70 0.023 5 0.026 7 0.042 1 0.044 0 0.035 0
      72 0.011 8 0.010 4 0.031 6 0.033 0 0.025 0
      74 0.031 6 0.033 0
      76 0.031 6 0.027 5
      初始Ro 0.202 0.210 0.223 0.223 0.150
      终止Ro 4.688 6.365 7.501 6.465 6.067
      A(1×1025/Ma) 31.6 30.65 632 6320 632
      注:在PetroMod软件中,1 Ma被严格定义为3.153 6×1013s,这与Sweeney and Burnham(1990,见该文附录)给出的3.16×1013s近似值误差仅约为0.2%,因此将1 Ma设置为3.153 6×1013s或3.16×1013s均可;PetroMod软件中默认频率因子的单位为1×1025/Ma,其中s为秒,Ma为百万年,因此频率因子(1×1025/ Ma)=频率因子(s-1)×3.16×1013s/Ma/1025;也可改变频率因子的默认单位为s-1,读者亦可根据表 2中的参数进行设置. 在读者根据表 2或表 3的数据建立不同化学动力学模型时,请注意较新版本PetroMod软件中初始比值(Initial ratio)单位为百分比(%).
      下载: 导出CSV
    • Araujo, C. V., Borrego, A. G., Cardott, B., et al., 2014. Petrographic Maturity Parameters of a Devonian Shale Maturation Series, Appalachian Basin, USA. ICCP Thermal Indices Working Group Interlaboratory Exercise. International Journal of Coal Geology, 130: 89-101. https://doi.org/10.1016/j.coal.2014.05.002
      Baniasad, A., Littke, R., Froidl, F., et al., 2021. Quantitative Hydrocarbon Generation and Charge Risk Assessment in the NW Persian Gulf: A 3D Basin Modeling Approach. Marine and Petroleum Geology, 126: 104900. https://doi.org/10.1016/j.marpetgeo.2021.104900
      Baur, F., 2019. Predicting Petroleum Gravity with Basin Modeling: New Kinetic Models. AAPG Bulletin, 103(8): 1811-1837. https://doi.org/10.1306/12191818064
      Borrego, A. G., Araujo, C. V., Balke, A., et al., 2006. Influence of Particle and Surface Quality on the Vitrinite Reflectance of Dispersed Organic Matter: Comparative Exercise Using Data from the Qualifying System for Reflectance Analysis Working Group of ICCP. International Journal of Coal Geology, 68(3/4): 151-170. https://doi.org/10.1016/j.coal.2006.02.002
      Braun, R. L., Burnham, A. K., 1987. Analysis of Chemical Reaction Kinetics Using a Distribution of Activation Energies and Simpler Models. Energy & Fuels, 1(2): 153-161. https://doi.org/10.1021/ef00002a003
      Buchardt, B. B., Lewan, M. D., 1990. Reflectance of Vitrinite⁃Like Macerals as a Thermal Maturity Index for Cambrian⁃Ordovician Alum Shale, Southern Scandinavia (1). AAPG Bulletin, 74(4): 394-406. https://doi.org/10.1306/0c9b230d⁃1710⁃11d7⁃8645000102c1865d
      Burnaz, L., Zieger, L., Schmatz, J., et al., 2023. Preparation Techniques for Microscopic Observation of Dispersed Organic Matter and Their Effect on Vitrinite Reflectance. International Journal of Coal Geology, 272: 104249. https://doi.org/10.1016/j.coal.2023.104249
      Burnham, A. K., 2017a. Global Chemical Kinetics of Fossil Fuels: How to Model Maturation and Pyrolysis. Springer International, Switzerland.
      Burnham, A. K., 2017b. Advances Needed for Kinetic Models of Vitrinite Reflectance. Technical Report, Stanford University, Palo Alto.
      Burnham, A. K., 2019. Kinetic Models of Vitrinite, Kerogen, and Bitumen Reflectance. Organic Geochemistry, 131: 50-59. https://doi.org/10.1016/j.orggeochem.2019.03.007
      Burnham, A. K., 2021a. Modernizing Vitrinite Reflectance Models for Paleothermal History Calibration. AAPG Explorer, 42(6): 24-24.
      Burnham, A. K., 2021b. Understanding the Fundamentals of Vitrinite Reflectance Modeling. Stanford Basin and Petroleum System Modeling Seminar, California.
      Burnham, A. K., Braun, R. L., Gregg, H. R., et al., 1987. Comparison of Methods for Measuring Kerogen Pyrolysis Rates and Fitting Kinetic Parameters. Energy & Fuels, 1(6): 452-458. https://doi.org/10.1021/ef00006a001
      Burnham, A. K., Oh, M. S., Crawford, R. W., et al., 1989. Pyrolysis of Argonne Premium Coals: Activation Energy Distributions and Related Chemistry. Energy & Fuels, 3(1): 42-55. https://doi.org/10.1021/ef00013a008
      Burnham, A. K., Peters, K. E., Schenk, O., 2016. Evolution of Vitrinite Reflectance Models, AAPG 2016 Annual Convention and Exhibition, Calgary, Alberta.
      Burnham, A. K., Sweeney, J. J., 1989. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 53(10): 2649-2657. https://doi.org/10.1016/0016⁃7037(89)90136⁃1
      Connan, J., 1974. Time⁃Temperature Relation in Oil Genesis. AAPG Bulletin, 58(12): 2516-2521. https://doi.org/10.1306/83d91beb⁃16c7⁃11d7⁃8645000102c1865d
      Dai, S. F., Tang, Y. G., Jiang, Y. F., et al., 2021. An In⁃Depth Interpretation of Definition and Classification of Macerals in Coal (ICCP System 1994) for Chinese Researchers, Ⅰ: Vitrinite. Journal of China Coal Society, 46(6): 1821-1832 (in Chinese with English abstract).
      Dalla Torre, M., Ferreiro Mählmann, R., Ernst, W. G., 1997. Experimental Study on the Pressure Dependence of Vitrinite Maturation. Geochimica et Cosmochimica Acta, 61(14): 2921-2928. https://doi.org/10.1016/S0016⁃7037(97)00104⁃X
      Ding, R. X., 2023. Low Temperature Thermal History Reconstruction Based on Apatite Fission⁃Track Length Distribution and Apatite U⁃Th/He Age Using Low⁃T Thermo. Journal of Earth Science, 34(3): 717-725. https://doi.org/10.1007/s12583⁃020⁃1071⁃x
      Froidl, F., Littke, R., Baniasad, A., et al., 2021. Peculiar Berriasian "Wealden" Shales of Northwest Germany: Organic Facies, Depositional Environment, Thermal Maturity and Kinetics of Petroleum Generation. Marine and Petroleum Geology, 124: 104819. https://doi.org/10.1016/j.marpetgeo.2020.104819
      Froidl, F., Zieger, L., Mahlstedt, N., et al., 2020. Comparison of Single⁃ and Multi⁃Ramp Bulk Kinetics for a Natural Maturity Series of Westphalian Coals: Implications for Modelling Petroleum Generation. International Journal of Coal Geology, 219: 103378. https://doi.org/10.1016/j.coal.2019.103378
      Fryklund, B., Stark, P., 2020. Super Basins—New Paradigm for Oil and Gas Supply. AAPG Bulletin, 104(12): 2507-2519. https://doi.org/10.1306/09182017314
      Gallagher, K., 2012. Transdimensional Inverse Thermal History Modeling for Quantitative Thermochronology. Journal of Geophysical Research: Solid Earth, 117(B2): EGU2013-9163. https://doi.org/10.1029/2011jb008825
      Goodarzi, F., Gentzis, T., Snowdon, L. R., et al., 1993. Effect of Mineral Matrix and Seam Thickness on Reflectance of Vitrinite in High to Low Volatile Bituminous Coals: An Enigma. Marine and Petroleum Geology, 10(2): 162-171. https://doi.org/10.1016/0264⁃8172(93)90021⁃J
      Goodarzi, F., Norford, B. S., 1985. Graptolites as Indicators of the Temperature Histories of Rocks. Journal of the Geological Society, 142(6): 1089-1099. https://doi.org/10.1144/gsjgs.142.6.1089.
      Gorbanenko, O., 2017. A Dry Polishing Technique for the Petrographic Examination of Mudrocks. International Journal of Coal Geology, 180: 122-126. https://doi.org/10.1016/j.coal.2017.03.013
      Hackley, P. C., Araujo, C. V., Borrego, A. G., et al., 2015. Standardization of Reflectance Measurements in Dispersed Organic Matter: Results of an Exercise to Improve Interlaboratory Agreement. Marine and Petroleum Geology, 59: 22-34. https://doi.org/10.1016/j.marpetgeo.2014.07.015
      Hackley, P. C., Araujo, C. V., Borrego, A. G., et al., 2020a. Testing Reproducibility of Vitrinite and Solid Bitumen Reflectance Measurements in North American Unconventional Source⁃Rock Reservoir Petroleum Systems. Marine and Petroleum Geology, 114: 104172. https://doi.org/10.1016/j.marpetgeo.2019.104172
      Hackley, P. C., Jubb, A. M., Valentine, B. J., et al., 2020b. Investigating the Effects of Broad Ion Beam Milling to Sedimentary Organic Matter: Surface Flattening or Heat⁃Induced Aromatization and Condensation?. Fuel, 282: 118627. https://doi.org/10.1016/j.fuel.2020.118627
      Hackley, P. C., Cardott, B. J., 2016. Application of Organic Petrography in North American Shale Petroleum Systems: A Review. International Journal of Coal Geology, 163: 8-51. https://doi.org/10.1016/j.coal.2016.06.010
      Hackley, P. C., Lewan, M., 2018. Understanding and Distinguishing Reflectance Measurements of Solid Bitumen and Vitrinite Using Hydrous Pyrolysis: Implications to Petroleum Assessment. AAPG Bulletin, 102(6): 1119-1140. https://doi.org/10.1306/08291717097
      Hantschel, T., Kauerauf, A. I., 2009. Introduction to Basin Modeling. Fundamentals of Basin and Petroleum Systems Modeling. Springer, Berlin, 1-30. https://doi.org/10.1007/978⁃3⁃540⁃72318⁃9_1
      Hao, F., Li, S. T., Dong, W. L., et al., 1998. Abnormal Organic⁃Matter Maturation in the Yinggehai Basin, South China Sea: Implications for Hydrocarbon Expulsion and Fluid Migration from Overpressured Systems. Journal of Petroleum Geology, 21(4): 427-444. https://doi.org/10.1111/j.1747⁃5457.1998.tb00794.x
      Hao, F., Sun, Y., Li, S. T., et al., 1995. Overpressure Retardation of Organic⁃Matter Maturation and Petroleum Generation: A Case Study from the Yinggehai and Qiongdongnan Basins, South China Sea. AAPG Bulletin, 79(4): 551-562. https://doi.org/10.1306/8d2b158e⁃171e⁃11d7⁃8645000102c1865d.
      Hao, F., Zou, H. Y., Gong, Z. S., et al., 2007. Hierarchies of Overpressure Retardation of Organic Matter Maturation: Case Studies from Petroleum Basins in China. AAPG Bulletin, 91(10): 1467-1498. https://doi.org/10.1306/05210705161
      Herrera Sánchez, N. C., Toro, B. A., Ruiz⁃Monroy, R., et al., 2021. Thermal History of the Northwestern Argentina, Central Andean Basin, Based on First⁃Ever Reported Graptolite Reflectance Data. International Journal of Coal Geology, 239: 103725. https://doi.org/10.1016/j.coal.2021.103725
      Hu, S. B., Long, Z. L., Zhu, J. Z., et al., 2019. Characteristics of Geothermal Field and Tectonic⁃Thermal Evolution in Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 178-187 (in Chinese with English abstract). doi: 10.7623/syxb2019S1015
      Hu, S. B., Wang, J. Y., Zhang, R. Y., 1999a. Estimation of Stratum Denudation Thickness by Vitrinite Reflectance Data. Petroleum Exploration and Development, 26(4): 42-45 (in Chinese with English abstract).
      Hu, S. B., Zhang, R. Y., Luo, Y. H., et al., 1999b. Thermal History and Tectonic⁃Thermal Evolution Characteristics of Bohai Basin. Chinese Journal of Geophysics, 42(6): 748-755 (in Chinese with English abstract).
      Huang, L., Liu, C. Y., Kusky, T. M., 2015. Cenozoic Evolution of the Tan⁃Lu Fault Zone (East China)—Constraints from Seismic Data. Gondwana Research, 28(3): 1079-1095. https://doi.org/10.1016/j.gr.2014.09.005
      Huang, W. L., 1996. Experimental Study of Vitrinite Maturation: Effects of Temperature, Time, Pressure, Water, and Hydrogen Index. Organic Geochemistry, 24(2): 233-241. https://doi.org/10.1016/0146⁃6380(96)00032⁃0
      Hutton, A. C., Cook, A. C., 1980. Influence of Alginite on the Reflectance of Vitrinite from Joadja, NSW, and Some Other Coals and Oil Shales Containing Alginite. Fuel, 59(10): 711-714. https://doi.org/10.1016/0016⁃2361(80)90025⁃3
      Jacob, H., 1989. Classification, Structure, Genesis and Practical Importance of Natural Solid Oil Bitumen ("Migrabitumen"). International Journal of Coal Geology, 11(1): 65-79. https://doi.org/10.1016/0166⁃5162(89)90113⁃4
      Jin, K. L., Liu, D. M., Yao, S. P., et al., 1997. Genetic Division and Geochemical Characteristics of Organic Components of Oil and Gas Source Rocks in China. Acta Sedimentologica Sinica, 15(2): 160-163 (in Chinese with English abstract).
      Kalkreuth, W., Macauley, G., 1987. Organic Petrology and Geochemical (Rock⁃Eval) Studies on Oil Shales and Coals from the Pictou and Antigonish Areas, Nova Scotia, Canada. Bulletin of Canadian Petroleum Geology, 35(3): 263-295. https://doi.org /10.35767/gscpgbull.35.3.263
      Ketcham, R. A., 2005. Forward and Inverse Modeling of Low⁃Temperature Thermochronometry Data. Reviews in Mineralogy and Geochemistry, 58(1): 275-314. https://doi.org/10.2138/rmg.2005.58.11
      Landis, C. R., Castaño, J. R., 1995. Maturation and Bulk Chemical Properties of a Suite of Solid Hydrocarbons. Organic Geochemistry, 22(1): 137-149. https://doi.org/10.1016/0146⁃6380(95)90013⁃6
      Le Bayon, R., Brey, G. P., Ernst, W. G., et al., 2011. Experimental Kinetic Study of Organic Matter Maturation: Time and Pressure Effects on Vitrinite Reflectance at 400 ℃. Organic Geochemistry, 42(4): 340-355. https://doi.org/10.1016/j.orggeochem.2011.01.011
      Li, Z. Q., Yang, B., Han, Z. J., et al., 2022. Tectonic⁃ Thermal Evolution of Meso⁃Cenozoic Rift Basin in South Yellow Sea, Offshore Eastern China: Implications for Basin⁃Forming Mechanism and Thermal Evolution of Source Rocks. Earth Science, 47(5): 1652-1668 (in Chinese with English abstract).
      Liu, B., 2023. Organic Matter in Shales: Types, Thermal Evolution and Organic Pores. Earth Science, 48(12): 4641-4657 (in Chinese with English abstract).
      Liu, B., Mastalerz, M., Schieber, J., 2022. SEM Petrography of Dispersed Organic Matter in Black Shales: A Review. Earth⁃Science Reviews, 224: 103874. https://doi.org/10.1016/j.earscirev.2021.103874
      Liu, Y., Yang, C. Y., Xiao, D. Q., et al., 2017. Hydrocarbon Phase Limit and Conversion Process in the Deep Formation of Rift Lacustrine Basin from Qikou Sag of Bohai Bay Basin, Eastern China. Natural Gas Geoscience, 28(5): 703-712 (in Chinese with English abstract).
      Liu, Y. C., Qiu, N. S., Chang, J., et al., 2020. Application of Clumped Isotope Thermometry to Thermal Evolution of Sedimentary Basins: A Case Study of Shuntuoguole Area in Tarim Basin. Chinese Journal of Geophysics, 63(2): 597-611 (in Chinese with English abstract).
      Lohr, C. D., Hackley, P. C., 2021. Relating Tmax and Hydrogen Index to Vitrinite and Solid Bitumen Reflectance in Hydrous Pyrolysis Residues: Comparisons to Natural Thermal Indices. International Journal of Coal Geology, 242: 103768. https://doi.org/10.1016/j.coal.2021.103768
      Lopatin, N. V., 1971. Temperature and Geologic Time as Factors in Coalification. Akademiya Nauk SSSR Izvestiya, Seriya Geologicheskay, 3: 95-106 (in Russian).
      Luo, Q. Y., Fariborz, G., Zhong, N. N., et al., 2020. Graptolites as Fossil Geo⁃Thermometers and Source Material of Hydrocarbons: An Overview of four Decades of Progress. Earth⁃Science Reviews, 200: 103000. https://doi.org/10.1016/j.earscirev.2019.103000
      Luo, Q. Y., Hao, J. Y., Li, K. W., et al., 2019. A New Parameter for the Thermal Maturity Assessment of Organic Matter from the Lower Palaeozoic Sediments: A Re⁃Study on the Optical Characteristics of Graptolite Periderms. Acta Geologica Sinica, 93(9): 2362-2371 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.09.017
      Mastalerz, M., Glikson, M., 2000. In⁃Situ Analysis of Solid Bitumen in Coal: Examples from the Bowen Basin and the Illinois Basin. International Journal of Coal Geology, 42(2/3): 207-220. https://doi.org/10.1016/S0166⁃5162(99)00040⁃3
      Mählmann, R. F., Le Bayon, R., 2016. Vitrinite and Vitrinite Like Solid Bitumen Reflectance in Thermal Maturity Studies: Correlations from Diagenesis to Incipient Metamorphism in Different Geodynamic Settings. International Journal of Coal Geology, 157: 52-73. https://doi.org/10.1016/j.coal.2015.12.008
      McCartney, J. T., Ergun, S., 1967. Optical Properties of Coals and Graphite. University of North Texas Libraries, Texas.
      McTavish, R. A., 1978. Pressure Retardation of Vitrinite Diagenesis, Offshore North⁃West Europe. Nature, 271: 648-650. https://doi.org/10.1038/271648a0
      Morrow, D. R., Issler, D. R., 1993. Calculation of Vitrinite Reflectance from Thermal Histories: A Comparison of Some Methods. AAPG Bulletin, 77(4): 610-624. https://doi.org/10.1306/bdff8cae⁃1718⁃11d7⁃8645000102c1865d
      Nielsen, S. B., Clausen, O. R., McGregor, E., 2017. Basin%Ro: A Vitrinite Reflectance Model Derived from Basin and Laboratory Data. Basin Research, 29(S1): 515-536. https://doi.org/10.1111/bre.12160
      Pepper, A. S., Corvi, P. J., 1995. Simple Kinetic Models of Petroleum Formation. Part I: Oil and Gas Generation from Kerogen. Marine and Petroleum Geology, 12(3): 291-319. https://doi.org/10.1016/0264⁃8172(95)98381⁃E
      Perkins, J. R., Fraser, A. J., Muxworthy, A. R., et al., 2023. Basin and Petroleum Systems Modelling to Characterise Multi⁃Source Hydrocarbon Generation: A Case Study on the Inner Moray Firth, UK North Sea. Marine and Petroleum Geology, 151: 106180. https://doi.org/10.1016/j.marpetgeo.2023.106180
      Peters, K. E., 2020. Short Review of Some Petroleum Geochemistry for Basin Modelers: Vitrinite Reflectance. Stanford Basin and Petroleum System Modeling Seminar, California.
      Peters, K. E., Burnham, A. K., Walters, C. C., 2015. Petroleum Generation Kinetics: Single versus Multiple Heating⁃Ramp Open⁃System Pyrolysis. AAPG Bulletin, 99(4): 591-616. https://doi.org/10.1306/11141414080
      Peters, K. E., Burnham, A. K., Walters, C. C., 2016. Petroleum Generation Kinetics: Single versus Multiple Heating⁃Ramp Open⁃System Pyrolysis: Reply. AAPG Bulletin, 100(4): 690-694. https://doi.org/10.1306/01141615244
      Peters, K. E., Burnham, A. K., Walters, C. C., et al., 2018a. Guidelines for Kinetic Input to Petroleum System Models from Open⁃System Pyrolysis. Marine and Petroleum Geology, 92: 979-986. https://doi.org/10.1016/j.marpetgeo.2017.11.024
      Peters, K. E., Hackley, P. C., Thomas, J. J., et al., 2018b. Suppression of Vitrinite Reflectance by Bitumen Generated from Liptinite during Hydrous Pyrolysis of Artificial Source Rock. Organic Geochemistry, 125: 220-228. https://doi.org/10.1016/j.orggeochem.2018.09.010
      Petersen, H. I., Schovsbo, N. H., Nielsen, A. T., 2013. Reflectance Measurements of Zooclasts and Solid Bitumen in Lower Paleozoic Shales, Southern Scandinavia: Correlation to Vitrinite Reflectance. International Journal of Coal Geology, 114: 1-18. https://doi.org/10.1016/j.coal.2013.03.013
      Price, L. C., 1983. Geologic Time as a Parameter in Organic Metamorphism and Vitrinite Reflectance as an Absolute Paleogeothermometer. Journal of Petroleum Geology, 6(1): 5-37. https://doi.org/10.1111/j.1747⁃5457.1983.tb00260.x
      Price, L. C., Barker, C. E., 1985. Suppression of Vitrinite Reflectance in Amorphous Rich Kerogen: A Major Unrecognized Problem. Journal of Petroleum Geology, 8(1): 59-84. https://doi.org/10.1111/j.1747⁃5457.1985.tb00191.x
      Qiu, N. S., Chang, J., Zhu, C. Q., et al., 2022. Thermal Regime of Sedimentary Basins in the Tarim, Upper Yangtze and North China Cratons, China. Earth⁃Science Reviews, 224: 103884. https://doi.org/10.1016/j.earscirev.2021.103884
      Qiu, N. S., He, L. J., Chang, J., et al., 2020. Research Progress and Challenges of Thermal History Reconstruction in Sedimentary Basins. Petroleum Geology & Experiment, 42(5): 790-802 (in Chinese with English abstract).
      Qiu, N. S., Hu, S. B., He, L. J., 2019. Geothermal in Sedimentary Basin. China University of Petroleum Press, Qingdao (in Chinese).
      Qiu, N. S., Xu, W., Zuo, Y. H., et al., 2017. Evolution of Meso⁃Cenozoic Thermal Structure and Thermal⁃ Rheological Structure of the Lithosphere in the Bohai Bay Basin, Eastern North China Craton. Earth Science Frontiers, 24(3): 13-26 (in Chinese with English abstract).
      Qiu, N. S., Zuo, Y. H., Chang, J., et al., 2014. Geothermal Evidence of Meso⁃Cenozoic Lithosphere Thinning in the Jiyang Sub⁃Basin, Bohai Bay Basin, Eastern North China Craton. Gondwana Research, 26(3/4): 1079-1092. https://doi.org/10.1016/j.gr.2013.08.011
      Qiu, N. S., Zuo, Y. H., Chang, J., et al., 2015. Characteristics of Meso⁃Cenozoic Thermal Regimes in Typical Eastern and Western Sedimentary Basins of China. Earth Science Frontiers, 22(1): 157-168 (in Chinese with English abstract).
      Qiu, N. S., Zuo, Y. H., Xu, W., et al., 2016. Meso⁃ Cenozoic Lithosphere Thinning in the Eastern North China Craton: Evidence from Thermal History of the Bohai Bay Basin, North China. The Journal of Geology, 124(2): 195-219. https://doi.org/10.1086/684830
      Quigley, T. M., MacKenzie, A. S., 1988. The Temperatures of Oil and Gas Formation in the Sub⁃Surface. Nature, 333(6173): 549-552. https://doi.org/10.1038/333549a0
      Ritter, U., 1984. The Influence of Time and Temperature on Vitrinite Reflectance. Organic Geochemistry, 6: 473-480. https://doi.org/10.1016/0146⁃6380(84)90070⁃6
      Ritter, U., Duddy, I. R., Mork, A., et al., 1996. Temperature and Uplift History of Bjornoya (Bear Island), Barents Sea. Petroleum Geoscience, 2(2): 133-144. https://doi.org/10.1144/petgeo.2.2.133
      Sanders, M. M., Jubb, A. M., Hackley, P. C., et al., 2022. Molecular Mechanisms of Solid Bitumen and Vitrinite Reflectance Suppression Explored Using Hydrous Pyrolysis of Artificial Source Rock. Organic Geochemistry, 165: 104371. https://doi.org/10.1016/j.orggeochem.2022.104371
      Saxby, J. D., Bennett, A. J. R., Corcoran, J. F., et al., 1986. Petroleum Generation: Simulation over Six Years of Hydrocarbon Formation from Torbanite and Brown Coal in a Subsiding Basin. Organic Geochemistry, 9(2): 69-81. https://doi.org/10.1016/0146⁃6380(86)90088⁃4
      Schenk, O., Peters, K. E., Burnham, A. K., 2017. Evaluation of Alternatives to Easy%Ro for Calibration of Basin and Petroleum System Models. 79th EAGE Conference and Exhibition 2017, Paris. https://doi.org/10.3997/2214⁃4609.201700614
      Schmidt, J. S., Menezes, T. R., Souza, I. V. A. F., et al., 2019. Comments on Empirical Conversion of Solid Bitumen Reflectance for Thermal Maturity Evaluation. International Journal of Coal Geology, 201: 44-50. https://doi.org/10.1016/j.coal.2018.11.012
      Shi, L., 2004. Study on Tectonic Thermal Evolution and Quantitative Evaluation of Geothermal Resources in Songliao Basin: A Case Study of Dumeng Area. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract).
      Stainforth, J. G., 2009. Practical Kinetic Modeling of Petroleum Generation and Expulsion. Marine and Petroleum Geology, 26(4): 552-572. https://doi.org/10.1016/j.marpetgeo.2009.01.006
      Stasiuk, L. D., 1994. Fluorescence Properties of Palaeozoic Oil⁃Prone Alginite in Relation to Hydrocarbon Generation, Williston Basin, Saskatchewan, Canada. Marine and Petroleum Geology, 11(2): 219-231. https://doi.org/10.1016/0264⁃8172(94)90098⁃1
      Suggate, R. P., 1998. Relations between Depth of Burial, Vitrinite Reflectance and Geothermal Gradient. Journal of Petroleum Geology, 21(1): 5-32. https://doi.org/10.1111/j.1747⁃5457.1998.tb00644.x
      Sweeney, J. J., Burnham, A. K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. AAPG Bulletin, 74: 1559-1570. https://doi.org/10.1306/0C9B251F⁃1710⁃11D7⁃8645000102C1865D.
      Tang, X. Y., Zhong, C., Yang, S. C., et al., 2023. Characteristics and Influence Factors of the Present Geothermal Field for Basins in China's Offshore and Adjacent Areas. Acta Geologica Sinica, 97(3): 911-921(in Chinese with English abstract). doi: 10.1111/1755-6724.15061
      Tian, Y. T., Yuan, Y. S., Hu, S. B., et al., 2017. Application of Low⁃Temperature Thermochronology to Sedimentary Basins: Case Studies in the Northern Sichuan Basin. Earth Science Frontiers, 24(3): 105-115 (in Chinese with English abstract).
      Tissot, B. P., Pelet, R., Ungerer, P., 1987. Thermal History of Sedimentary Basins, Maturation Indices, and Kinetics of Oil and Gas Generation. AAPG Bulletin, 71(12): 1445-1466. https://doi.org/10.1306/703c80e7⁃1707⁃11d7⁃8645000102c1865d
      Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer⁃Verlag, Berlin. https://doi.org/10.1007/978⁃3⁃642⁃87813⁃8
      van Krevelen, D. W., 1961. Coal: Typology, Chemistry, Physics, Constitution. Elsevier, Amsterdam.
      Wang, F. Y., Fu, J. M., Liu, D. H., 1993. Characteristics and Classification of Organic Components of Coal and Terrigenous Organic Matter Source Rocks. Chinese Science Bulletin, 38(23): 2164-2168 (in Chinese). doi: 10.1360/csb1993-38-23-2164
      Wang, F. Y., He, P., Cheng, D. S., et al., 1994. Evaluation of Organic Maturity of High⁃over⁃Mature Source Rocks in Lower Paleozoic. Natural Gas Geoscience, 5(6): 1-14 (in Chinese with English abstract).
      Wang, F. Y., Xiao, X. M., He, P., et al., 1995. Advances and State of the Art of Application of Organic Petrology in Petroleum Exploration: An Overview. Earth Science Frontiers, 2(3-4): 189-196 (in Chinese with English abstract).
      Wang, J. Y., Qiu, N. S., 1992. Methods on Studies of Paleogeotemperature on Sedimentary Basins with Oil and Gas. Progress in Geophysics, 7(4): 46-62 (in Chinese with English abstract).
      Wang, Y., Qiu, N. S., Ma, Z. L., et al., 2020. Evaluation of Equivalent Relationship between Vitrinite Reflectance and Solid Bitumen Reflectance. Journal of China University of Mining & Technology, 49(3): 563-575 (in Chinese with English abstract).
      Waples, D. W., 1980. Time and Temperature in Petroleum Formation: Application of Lopatin's Method to Petroleum Exploration. AAPG Bulletin, 64(6): 916-926. https://doi.org/10.1306/2F9193D2⁃16CE⁃11D7⁃8645000102C1865D
      Waples, D. W., 2016. Petroleum Generation Kinetics: Single versus Multiple Heating⁃Ramp Open⁃System Pyrolysis: Discussion. AAPG Bulletin, 100(4): 683-689. https://doi.org/10.1306/01141615146
      Waples, D. W., 2022. A Calibrated Empirical Method to Choose a Factors for Kerogen Kinetics. Part 1: Using Easy%Ro to Calculate Thermal Stress. Marine and Petroleum Geology, 141: 105590. https://doi.org/10.1016/j.marpetgeo.2022.105590
      Waples, D. W., Marzi, R. W., 1998. The Universality of the Relationship between Vitrinite Reflectance and Transformation Ratio. Organic Geochemistry, 28(6): 383-388. https://doi.org/10.1016/S0146⁃6380(97)00122⁃8
      Waples, D. W., Nowaczewski, V. S., 2013. Source⁃Rock Kinetics. Technical Report, Sirius Exploration Geochemistry.
      Wei, L., Wang, Y. Z., Mastalerz, M., 2016. Comparative Optical Properties of Macerals and Statistical Evaluation of Mis⁃Identification of Vitrinite and Solid Bitumen from Early Mature Middle Devonian⁃Lower Mississippian New Albany Shale: Implications for Thermal Maturity Assessment. International Journal of Coal Geology, 168: 222-236. https://doi.org/10.1016/j.coal.2016.11.003
      Wenger, L. M., Baker, D. R., 1987. Variations in Vitrinite Reflectance with Organic Facies—Examples from Pennsylvanian Cyclothems of the Midcontinent, U. S. A., Organic Geochemistry, 11(5): 411-416. https://doi.org/10.1016/0146⁃6380(87)90075⁃1
      Wood, D. A., 1988. Relationships between Thermal Maturity Indices Calculated Using Arrhenius Equation and Lopatin Method: Implications for Petroleum Exploration. AAPG Bulletin, 72(2): 115-134. https://doi.org/10.1306/703C8263⁃1707⁃11D7⁃8645000102C1865D
      Wood, D. A., 2017. Re⁃Establishing the Merits of Thermal Maturity and Petroleum Generation Multi⁃Dimensional Modeling with an Arrhenius Equation Using a Single Activation Energy. Journal of Earth Science, 28(5): 804-834. https://doi: 10.1007/s12583⁃017⁃0735⁃7
      Wu, L. L., Geng, A. S., 2016. Differences in the Thermal Evolution of Hopanes and Steranes in Free and Bound Fractions. Organic Geochemistry, 101: 38-48. https://doi.org/10.1016/j.orggeochem.2016.08.009
      Xiao, X. M., Jin, K. L., 1990. A Petrographic Classification of Macerals in Terrestrial Hydrocarbon Source Rocks in China and Their Organic Petrological Characteristics. Acta Sedimentologica Sinica, 8(3): 22-34 (in Chinese with English abstract).
      Yang, S. C., Hu, S. B., Cai, D. S., et al., 2004. Present⁃Day Heat Flow, Thermal History and Tectonic Subsidence of the East China Sea Basin. Marine and Petroleum Geology, 2004, 21(9): 1095-1105. https://doi.org/ 10.1016/j.marpetgeo.2004.05.007
      Zheng, X. W., Schwark, L., Stockhausen, M., et al., 2023. Effects of Synthetic Maturation on Phenanthrenes and Dibenzothiophenes over a Maturity Range of 0.6 to 4.7% Easy%Ro. Marine and Petroleum Geology, 153: 106285. https://doi.org/10.1016/j.marpetgeo.2023.106285
      Zhu, C. Q., Qiu, N. S., Cao, H. Y., et al., 2017. Tectonic⁃Thermal Evolution of the Eastern Sichuan Basin: Constraints from Vitrinite Reflectance and Apatite Fission Tracks Data. Earth Science Frontiers, 24(3): 94-104 (in Chinese with English abstract).
      代世峰, 唐跃刚, 姜尧发, 等, 2021. 煤的显微组分定义与分类(ICCP system 1994)解析Ⅰ: 镜质体. 煤炭学报, 46(6): 1821-1832.
      胡圣标, 龙祖烈, 朱俊章, 等, 2019. 珠江口盆地地温场特征及构造‒热演化. 石油学报, 40(S1): 178-187. doi: 10.7623/syxb2019S1015
      胡圣标, 汪集旸, 张容燕, 1999a. 利用镜质体反射率数据估算地层剥蚀厚度. 石油勘探与开发, 26(4): 42-45.
      胡圣标, 张容燕, 罗毓晖, 等, 1999b. 渤海盆地热历史及构造‒热演化特征. 地球物理学报, 42(6): 748-755.
      金奎励, 刘大锰, 姚素平, 等, 1997. 中国油、气源岩有机成分成因划分及地化特征. 沉积学报, 15(2): 160-163.
      李志强, 杨波, 韩自军, 等, 2022. 南黄海中‒新生代裂谷盆地构造‒热演化: 对成盆机制和烃源岩热演化的指示. 地球科学, 47(5): 1652-1668. doi: 10.3799/dqkx.2021.152
      刘贝, 2023. 泥页岩中有机质: 类型、热演化与有机孔隙. 地球科学, 48(12): 4641-4657. http://www.earth-science.net/article/id/34d609c6-fc43-42fb-8b6a-2d855506ef67
      刘岩, 杨池银, 肖敦清, 等, 2017. 裂陷湖盆深层烃类赋存相态极限的动力学过程分析——以渤海湾盆地岐口凹陷为例. 天然气地球科学, 28(5): 703-702.
      刘雨晨, 邱楠生, 常健, 等, 2020. 碳酸盐团簇同位素在沉积盆地热演化中的应用——以塔里木盆地顺托果勒地区为例. 地球物理学报, 63(2): 597-611.
      罗情勇, 郝婧玥, 李可文, 等, 2019. 下古生界有机质成熟度评价新参数: 笔石表皮体光学特征再研究. 地质学报, 93(9): 2362-2371. doi: 10.3969/j.issn.0001-5717.2019.09.017
      邱楠生, 何丽娟, 常健, 等, 2020. 沉积盆地热历史重建研究进展与挑战. 石油实验地质, 42(5): 790-802.
      邱楠生, 胡圣标, 何丽娟, 2019. 沉积盆地地热学. 青岛: 中国石油大学出版社.
      邱楠生, 许威, 左银辉, 等, 2017. 渤海湾盆地中‒新生代岩石圈热结构与热‒流变学演化. 地学前缘, 24(3): 13-26.
      邱楠生, 左银辉, 常健, 等, 2015. 中国东西部典型盆地中‒新生代热体制对比. 地学前缘, 22(1): 157-168.
      施龙, 2004. 松辽盆地构造热演化及地热资源定量评价研究——以杜蒙地区为例(博士学位论文). 广州: 中国科学院广州地球化学研究所.
      唐晓音, 钟畅, 杨树春, 等, 2023. 中国海及邻区盆地现今地温场特征及其影响因素. 地质学报, 97(3): 911-921.
      田云涛, 袁玉松, 胡圣标, 等, 2017. 低温热年代学在沉积盆地研究中的应用: 以四川盆地北部为例. 地学前缘, 24(3): 105-115.
      王飞宇, 傅家谟, 刘德汉, 1993. 煤和陆源有机质烃源岩特点和有机组分分类. 科学通报, 38(23): 2164-2168.
      王飞宇, 何萍, 程顶胜, 等, 1994. 下古生界高‒过成熟烃源岩有机成熟度评价. 天然气地球科学, 5(6): 1-14.
      王飞宇, 肖贤明, 何萍, 等, 1995. 有机岩石学在油气勘探中应用的现状和发展. 地学前缘, 2(3-4): 189-196.
      汪集旸, 邱楠生, 1992. 含油气沉积盆地古地温研究方法. 地球物理学进展, 7(4): 46-62.
      王晔, 邱楠生, 马中良, 等, 2020. 固体沥青反射率与镜质体反射率的等效关系评价. 中国矿业大学学报, 49(3): 563-575.
      肖贤明, 金奎励, 1990. 中国陆相源岩显微组分的分类及其岩石学特征. 沉积学报, 8(3): 22-34.
      朱传庆, 邱楠生, 曹环宇, 等, 2017. 四川盆地东部构造‒热演化: 来自镜质体反射率和磷灰石裂变径迹的约束. 地学前缘, 24(3): 94-104.
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  546
    • HTML全文浏览量:  120
    • PDF下载量:  52
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-09-14
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回