Cai, G. F., Zhang, X. T., Peng, G. R., et al., 2020. Neogene Volcanism and Tectonics along the Yangjing-Yitong'ansha Fault Zone in the Northern South China Sea Margin. Geotectonica et Metallogenia, 45(1): 40-52(in Chinese with English abstract). |
Camanni, G., Ye, Q., 2022. The Significance of Fault Reactivation on the Wilson Cycle Undergone by the Northern South China Sea Area in the last 60 Myr. Earth-Science Reviews, 225: 103893. https://doi.org/10.1016/j.earscirev.2021.103893 |
Gao, Y. D., Lin, H., Liu, P. et al., 2021. Characteristics and Periods of Cenozoic Magmatic Activity in Eastern Yangjiang Sag, Pearl River Mouth Basin, China. Earth Science, 48(2): 154-164(in Chinese with English abstract). |
Gao, Y. D., Zhang, X. T., Zhang, L. L., et al., 2022. Geological Characteristics and Tectonic Settings of Mesozoic Continental Margin Magmatic Arc in Pearl River Mouth Basin. Earth Science, 47(7): 2317-2327(in Chinese with English abstract). |
He, D. F., Cui, Y. Q., Zhang, Y. Y., et al., 2017. Structural Genetic Types of Paleoburied Hill in Jizhong Depression, Bohai Bay Basin. Acta Petrologica Sinica, 33(4): 1338-1356(in Chinese with English abstract). |
Hou, F. H., Zhang, X. H., Zhang, Z. X., et al., 2012. Classification and Tectonic Characteristics of Buried Hills in the South Yellow Sea Basin. Marine Geology & Quaternary Geology, 32(2): 85-92(in Chinese with English abstract). |
Huang, L., Liu, C. Y., 2019. Genesis and Significance of Hybrid Flower Structure in a Transtensional Fault Zone. Acta Petrolei Sinica, 40(12): 1460-1469(in Chinese with English abstract). doi: 10.7623/syxb201912005 |
Larsen, H. C., Mohn, G., Nirrengarten, M., et al., 2018. Rapid Transition from Continental Breakup to Igneous Oceanic Crust in the South China Sea. Nature Geoscience, 11: 782-789. https://doi.org/10.1038/s41561-018-0198-1 |
Li, G., Mei, L. F., Pang, X., et al., 2022. Magmatism within the Northern Margin of the South China Sea during the Post-Rift Stage: an Overview, and New Insights into the Geodynamics. Earth-Science Reviews, 225: 103917. https://doi.org/10.1016/j.earscirev.2022.103917 |
Li, H. B., Zheng, J. Y., Pang, X., et al., 2020. Structural Patterns and Controlling Factors of Differential Detachment in the Northern Continental Margin of the South China Sea: Taking Baiyun-Liwan Deep Water Area in the Pearl River Mouth Basin as an Example. China Offshore Oil and Gas, 32(4): 24-35(in Chinese with English abstract). |
Liu, B. J., Pang, X., Wang, J. H., et al., 2019. Response Process of Sedimentary System under the Background of Crustal Thinning of Extended Continental Margin in Deep Water Area of Pearl River Mouth Basin and Its Significance for Oil and Gas Exploration. Acta Petrolei Sinica, 40(S1): 124-138(in Chinese with English abstract). doi: 10.7623/syxb2019S1011 |
Liu, B. J., Pang, X., Xie, S. W., et al., 2022. Control Effect of Crust-Mantle Detachment Fault Activity on Deep Large Delta Sedimentary System in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 47(7): 2354-2373 (in Chinese with English abstract). |
Liu, C. Y., Fu, S. T., Zhang, D. W., et al., 2020. Determination of Giant Hydrocarbon Enrichment Area in Qaidam Basin and Its Exploration Results: an Example for Source-Controlling of Original Basin and Reform-Controlling Reservoir in a Reformed Basin. Acta Petrolei Sinica, 41(12): 1527-1537(in Chinese with English abstract). doi: 10.7623/syxb202012007 |
Liu, L. J., 2016. The Investigation of Structure and Mechanism of Formation of the Buried Hill in Bohai Area(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract). |
Ma, B. S., Qi, J. F., Wu, G. H., et al., 2022. Structural Variability and Rifting Process of the Segmented Cenozoic Pearl River Mouth Basin, Northern Continental Margin of the South China Sea. Acta Geologica Sinica-English Edition, 96(6): 2074-2092. https://doi.org/10.1111/1755-6724.14983 |
Mi, L. J., Zhang, X. T., Pang, X., et al., 2019. Formation Mechanism and Oil and Gas Geology of Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 1-10(in Chinese with English abstrat). doi: 10.7623/syxb2019S1001 |
Pang, X., Ren, J. Y., Zheng, J. Y., et al., 2018. Petroleum Geology Controlled by Extensive Detachment Thinning of Continental Margin Crust: a Case Study of Baiyun Sag in the Deep-Water Area of Northern South China Sea. Petroleum Exploration and Development, 45(1): 29-42. doi: 10.1016/S1876-3804(18)30003-X |
Pang, X., Shi, H. S., Zhu, M., et al., 2014. A Further Discussion on the Hydrocarbon Exploration Potential in Baiyun Deep Water Area. China Offshore Oil and Gas, 26(3): 23-29(in Chinese with English abstract). |
Pang, X., Zheng, J. Y., Mei, L. F., et al., 2021. Characteristics and Origin of Continental Marginal Fault Depressions under the Background of Preexisting Subduction Continental Margin, Northern South China Sea, China. Petroleum Exploration and Development, 48(5): 1237-1250(in Chinese with English abstract). doi: 10.1016/S1876-3804(21)60106-4 |
Pang, X., Zheng, J. Y., Ren, J. Y., et al., 2022. Structural Evolution and Magmatism of Fault Depression in Baiyun Sag, Northern Margin of South China Sea. Earth Science, 47(7): 2303-2316(in Chinese with English abstract). |
Ren, J. Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114(in Chinese with English abstract). |
Ren, J. Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10): 3337-3361(in Chinese with English abstract). |
Shen, M. R., Shan, X. L., Hao, G. L., et al., 2024. Structural Difference and Control Mechanism of Early Cenozoic Depression in Yangjiang East Sag, Pearl River Mouth Basin. Earth Science, 49(10): 3559-3575 (in Chinese with English abstract). |
Sun, Z., Li, F. C., Lin, J., et al., 2021. The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789 (in Chinese with English abstract). |
Tian, L. X., Liu, J., Zhang, X. T., et al., 2020. Discovery and Accumulation Pattern of HZ26-6 Large-Medium Sized Pan-Buried Hill Oil and Gas Field in Pearl River Mouth Basin. China Offshore Oil and Gas, 32(04): 1-11(in Chinese with English abstract). |
Xie, X. N., Ren, J. Y., Wang, Z. F., et al., 2015. Difference of Tectonic Evolution of Continental Marginal Basins of South China Sea and Relationship with SCS Spreading. Earth Science Frontiers, 22(1): 77-87 (in Chinese with English abstract). |
Xu, C. G., Hou, M. C., Wang, Y. C., et al., 2019. Type and Genesis of Pre-Tertiary Deep Buried Hills in the Bohai Sea Area. Natural Gas Industry, 39(1): 21-32(in Chinese with English abstract). |
Yang, S., Jin, Z. K., Han, J. H., 2017. Cenozoic Magmatic Activities and Stages in the Baiyun Sag, Northern Margin of South China Sea. Marine Geology & Quaternary Geology, 37(6): 34-46(in Chinese with English abstract). |
Ye, Q., Mei, L. F., Shi, H. S., et al., 2018. A Low-Angle Normal Fault and Basement Structures within the Enping Sag, Pearl River Mouth Basin: Insights into Late Mesozoic to Early Cenozoic Tectonic Evolution of the South China Sea Area. Tectonophysics, 731: 1-16. https://doi.org/10.1016/j.tecto.2018.03.003. |
Zhang, C. M., Sun, Z., Zhao, M. H., et al., 2022. Crustal Structure and Tectono-Magmatic Evolution of Northern South China Sea. Earth Science, 47(7): 2337-2353(in Chinese with English abstract). |
Zhang, G. C., Wang P. J., Wu, J. F., 2015. Tectonic Cycle of Marginal Oceanic Basin: a New Evolution Model of the South China Sea. Earth-Science Frontiers, 22(3): 27-37(in Chinese with English abstract). |
Zhang, Q. L., Zhang, H. F., Zhang, X. T., et al., 2018. The Upper Cretaceous Prototype Basin of the Chaoshan Depression in the Northern South China Sea and Its Tectonic Setting. Chinese Journal of Geophysics, 61(10): 4308-4321(in Chinese with English abstract). doi: 10.6038/cjg2018L0571 |
Zhang, S. F., Zhang, X. T., Zhang, Q. L., et al., 2015. Characteristics of the Cretaceous in the Northern South China Sea and Tectonic Implications. Marine Geology & Quaternary Geology, 35(6): 81-86(in Chinese with English abstract). |
Zhang, W. Z., Zhang, H. H., Li, C. R., et al., 2021. Petroleum Exploration History and Enlightenment in Pearl River Mouth Basin. Xinjiang Petroleum Geology, 42(3): 346-352, 363(in Chinese with English abstract). |
Zhang, X. T., Li, J., Xiang, X. H., et al., 2022. Genetic Mechanism of Overpressure and Its Significance on Petroleum Exploration in Baiyun Sag in the Deep Water Zone of Pearl River Mouth Basin. Acta Petrolei Sinica, 43(1): 41-57(in Chinese with English abstract). |
Zhao, X. Z., Jin, F. M., Wang, Q., et al., 2015. Buried-Hill Play, Jizhong Subbasin, Bohai Bay Basin: a Review and Future Propespectivity. AAPG Bulletin, 99(1): 1-26. https://doi.org/10.1306/07171413176 |
Zheng, J. Y., Gao, Y. D., Zhang, X. T., et al., 2022. Tectonic Evolution Cycles and Cenozoic Sedimentary Environment Changes in Pearl River Mouth Basin. Earth Science, 47(7): 2374-2390 (in Chinese with English abstract). |
Zhou, D., Liu, H. L., Chen, H. Z., 2005. Mesozoic-Cenozoic Magmatism in Southern South China Sea and Its Surrounding Areas and Its Implications to Tectonics. Geotectonica et Metallogenia, 29(3): 354-363 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2005.03.010 |
Zhu, S., Yao, Y. J., Li, X. J., 2021. Spatio-Temporal Distribution Pattern of Magmatic Rocks and Mechanism in the South China Sea and Adjacent Areas. Geotectonica et Metallogenia, 41(4): 87-115(in Chinese with English abstract). |
Zhu, X. X., Zhao, Z. X., Zhuo, H. T., et al., 2023. Characteristics of the Syn-Spread Magmatism and Its Implication for the Tectonic Evolution in Baiyun-Liwan Deep-Water Area of the Pearl River Mouth Basin. Earth Science, 48(10): 3781-3798 (in Chinese with English abstract). |
蔡国富, 张向涛, 彭光荣, 等, 2021. 南海北部阳江-一统暗沙断裂带与新近纪岩浆活动. 大地构造与成矿学, 45(1): 40-52. |
高阳东, 林鹤鸣, 刘培, 等, 2021. 珠江口盆地阳江东凹新生代岩浆活动特征与期次. 成都理工大学学报(自然科学版), 48(2): 154-164. doi: 10.3969/j.issn.1671-9727.2021.02.03 |
高阳东, 张向涛, 张丽丽, 等, 2022. 珠江口盆地中生代陆缘岩浆弧地质特征及构造背景. 地球科学, 47(7): 2317-2327. doi: 10.3799/dqkx.2021.247 |
何登发, 崔永谦, 张煜颖, 等, 2017. 渤海湾盆地冀中坳陷古潜山的构造成因类型. 岩石学报, 33(4): 1338-1356. |
侯方辉, 张训华, 张志珣, 等, 2012. 南黄海盆地古潜山分类及构造特征. 海洋地质与第四纪地质, 32(2): 85-92. |
黄雷, 刘池洋, 2019. 张扭断裂带内复合花状构造的成因与意义. 石油学报, 40(12): 1460-1469. doi: 10.7623/syxb201912005 |
解习农, 任建业, 王振峰, 等, 2015. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系. 地学前缘, 22(1): 77-87. |
李洪博, 郑金云, 庞雄, 等, 2020. 南海北部陆缘差异拆离作用结构样式与控制因素——以珠江口盆地白云-荔湾深水区为例. 中国海上油气, 32(4): 24-35. |
刘池洋, 付锁堂, 张道伟, 等, 2020. 柴达木盆地巨型油气富集区的确定及勘探成效: 改造型盆地原盆控源、改造控藏之范例. 石油学报, 41(12): 1527-1537. doi: 10.7623/syxb202012007 |
刘礼洁, 2016. 渤海海域潜山结构解析及成因机制研究(博士学位论文). 成都: 成都理工大学. |
柳保军, 庞雄, 王家豪, 等, 2019. 珠江口盆地深水区伸展陆缘地壳减薄背景下的沉积体系响应过程及油气勘探意义. 石油学报, 40(S1): 124-138. |
柳保军, 庞雄, 谢世文, 等, 2022. 珠江口盆地白云凹陷壳幔拆离断裂活动对深层大型三角洲沉积体系的控制作用. 地球科学, 47(7): 2354-2373. doi: 10.3799/dqkx.2022.035 |
米立军, 张向涛, 庞雄, 等, 2019. 珠江口盆地形成机制与油气地质. 石油学报, 40(S1): 1-10. |
庞雄, 任建业, 郑金云, 等, 2018. 陆缘地壳强烈拆离薄化作用下的油气地质特征——以南海北部陆缘深水区白云凹陷为例. 石油勘探与开发, 45(1): 27-39. |
庞雄, 施和生, 朱明, 等, 2014. 再论白云深水区油气勘探前景. 中国海上油气, 26(3): 23-29. |
庞雄, 郑金云, 梅廉夫, 等, 2021. 先存俯冲陆缘背景下南海北部陆缘断陷特征及成因. 石油勘探与开发, 48(5): 1069-1080. |
庞雄, 郑金云, 任建业, 等, 2022. 南海北部陆缘超伸展区白云凹陷断陷结构演化与岩浆作用. 地球科学, 47(7): 2303-2316. doi: 10.3799/dqkx.2022.064 |
任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114. |
任建业, 2018. 中国近海海域新生代成盆动力机制分析. 地球科学, 43(10): 3337-3361. doi: 10.3799/dqkx.2018.330 |
沈梦蓉, 单玄龙, 郝国丽, 等, 2024. 珠江口盆地阳江东凹早新生代洼陷结构差异及其控制机制分析. 地球科学, 49(10): 3559-3575. doi: 10.3799/dqkx.2022.078 |
孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. doi: 10.3799/dqkx.2020.371 |
田立新, 刘杰, 张向涛, 等, 2020. 珠江口盆地惠州26-6大中型泛潜山油气田勘探发现及成藏模式. 中国海上油气, 32(4): 1-11. |
徐长贵, 侯明才, 王粤川, 等, 2019. 渤海海域前古近系深层潜山类型及其成因. 天然气工业, 39(1): 21-32. |
杨率, 金振奎, 韩建辉, 2017. 南海北缘白云凹陷新生代岩浆活动特征与期次. 海洋地质与第四纪地质, 37(6): 34-46. |
张翠梅, 孙珍, 赵明辉, 等, 2022. 南海北部陆缘结构及构造-岩浆演化. 地球科学, 47(7): 2337-2353. doi: 10.3799/dqkx.2021.208 |
张功成, 王璞珺, 吴景富, 等, 2015. 边缘海构造旋回: 南海演化的新模式. 地学前缘, 22(3): 27-37. |
张青林, 张航飞, 张向涛, 等, 2018. 南海北部潮汕坳陷上白垩统盆地原型及其大地构造背景分析. 地球物理学报, 61(10): 4308-4321. |
张素芳, 张向涛, 张青林, 等, 2015. 南海北部白垩系发育特征及构造意义. 海洋地质与第四纪地质, 35(6): 81-86. |
张文昭, 张厚和, 李春荣, 等, 2021. 珠江口盆地油气勘探历程与启示. 新疆石油地质, 42(3): 346-352+363. |
张向涛, 李军, 向绪洪, 等, 2022. 珠江口盆地深水区白云凹陷超压成因机制及其勘探意义. 石油学报, 43(1): 41-57. |
郑金云, 高阳东, 张向涛, 等, 2022. 珠江口盆地构造演化旋回及其新生代沉积环境变迁. 地球科学, 47(7): 2374-2390. doi: 10.3799/dqkx.2021.258 |
周蒂, 刘海龄, 陈汉宗, 2005. 南沙海区及其周缘中-新生代岩浆活动及构造意义. 大地构造与成矿学, 2005(3): 354-363. |
祝嵩, 姚永坚, 李学杰, 2021. 南海及邻区岩浆岩时空分布特征及机制. 海洋地质与第四纪地质, 41(4): 87-115. |
朱筱曦, 赵中贤, 卓海腾, 等, 2023. 南海白云-荔湾深水区同扩张期岩浆活动特征及构造意义. 地球科学, 48(10): 3781-3798. doi: 10.3799/dqkx.2021.171 |