• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地表水-地下水相互作用下NH4-N的吸附/解吸行为及其对N迁移转化的影响

    张安广 梁莹 马瑞

    张安广, 梁莹, 马瑞, 2024. 地表水-地下水相互作用下NH4-N的吸附/解吸行为及其对N迁移转化的影响. 地球科学, 49(10): 3761-3772. doi: 10.3799/dqkx.2023.188
    引用本文: 张安广, 梁莹, 马瑞, 2024. 地表水-地下水相互作用下NH4-N的吸附/解吸行为及其对N迁移转化的影响. 地球科学, 49(10): 3761-3772. doi: 10.3799/dqkx.2023.188
    Zhang Anguang, Liang Ying, Ma Rui, 2024. Adsorption/Desorption Behavior of NH4-N under Surface Water-Groundwater Interaction and Its Impact on N Migration and Transformation. Earth Science, 49(10): 3761-3772. doi: 10.3799/dqkx.2023.188
    Citation: Zhang Anguang, Liang Ying, Ma Rui, 2024. Adsorption/Desorption Behavior of NH4-N under Surface Water-Groundwater Interaction and Its Impact on N Migration and Transformation. Earth Science, 49(10): 3761-3772. doi: 10.3799/dqkx.2023.188

    地表水-地下水相互作用下NH4-N的吸附/解吸行为及其对N迁移转化的影响

    doi: 10.3799/dqkx.2023.188
    基金项目: 

    国家自然科学基金项目 42425207

    详细信息
      作者简介:

      张安广(1998-),男,硕士研究生,主要从事水文地球化学中氨氮的地球化学行为方面的研究.ORCID:0009-0001-6386-6210.E-mail:agz@cug.edu.cn

      通讯作者:

      马瑞(1979-),女,博士,教授,博士生导师,E-mail: rma@cug.edu.cn

    • 中图分类号: P641.3

    Adsorption/Desorption Behavior of NH4-N under Surface Water-Groundwater Interaction and Its Impact on N Migration and Transformation

    • 摘要: 铵吸附/解吸是控制氮转化的重要反应之一,但其在地表水-地下水相互作用影响下对氮迁移转化的影响机制尚不清晰.以江汉平原东部沙湖监测场为研究区,通过分析地下水位及其水化学指标长期监测数据,结合室内土柱实验和反应迁移数值模型解译,识别了地表水补给和地下水排泄两种模式下NH4-N的迁移转化过程,探究了水动力驱动下N的迁移转化机制.研究表明,农业活动带来的高浓度NH4-N会被表层沉积物颗粒吸附;地表水入渗会促进沉积物中NH4-N的解吸附及后续的硝化作用,引起地下水中NO3-N浓度上升;含NH4-N的地下水排泄过程会促进沉积物对NH4-N的吸附,使沉积物中NH4-N吸附量升高.阳离子交换是影响NH4-N迁移转化的关键机制,地表水-地下水相互作用引起的水文地球化学环境变化影响了NH4-N的吸附/解吸及后续生物地球化学反应.

       

    • 图  1  研究区概况及水文地质剖面

      Fig.  1.  Location of the study area and hydrogeologic profile

      图  2  实验装置示意图

      Fig.  2.  Scheme of the experimental setup

      图  3  地下水与河水水位季节变化

      Fig.  3.  Seasonal variation of groundwater and surface water levels

      图  4  研究区不同深度地下水化学指标季节性变化

      Fig.  4.  Seasonal variation of groundwater and surface water levels

      图  5  地表水模拟液淋滤实验(a)和地下水模拟液淋滤实验(b) Br-的穿透曲线

      符号表示观测值,实线表示计算值

      Fig.  5.  Breakthrough curve of Br- for synthetic surface water leaching experiment (a) and synthetic groundwater leaching experiment (b)

      图  6  地表水模拟液淋滤实验(a)和地下水模拟液淋滤组实验(b)水化学成分变化

      符号表示观测值,实线表示计算值

      Fig.  6.  Changes in water chemistry in synthetic surface water leaching experiment (a) and synthetic groundwater leaching group experiment (b)

      图  7  地表水模拟液淋滤实验沉积物中吸附态离子含量变化

      Fig.  7.  Variation of adsorbed ions in sediments of synthetic surface water leaching experiment

      图  8  地下水模拟液淋滤实验沉积物中吸附态离子含量变化

      Fig.  8.  Variation of adsorbed ions in sediments of synthetic groundwater leaching experiment

      图  9  枯水期(a)与丰水期(b)氮素迁移转化的概念模型

      Fig.  9.  Conceptual model of nitrogen migration and transformation during periods of water depletion (a) and water abundance (b)

      表  1  淋滤液水化学组成

      Table  1.   Chemical compositions of leachate water

      组分 单位 灌溉水模拟液 地表水模拟液 地下水模拟液
      NH4+ mmol/L 5.46 0.05 0.50
      Ca2+ mmol/L 3.50 1.00 3.00
      Mg2+ mmol/L 1.00 0.50 1.20
      Na+ mmol/L 0.50 0.50 1.00
      K+ mmol/L 1.00 0.10 0.05
      Cl- mmol/L 8.00 2.30 8.40
      SO42- mmol/L 0.50 0.35 0.00
      NO3- mmol/L 0.00 0.15 0.00
      Br- mmol/L 1.00 0.00 0.00
      HCO3- mmol/L 6.00 0.50 1.55
      pH 7.97 8.10 7.20
      DO mmol/L 0.30 0.30 < 0.05
      下载: 导出CSV

      表  2  阳离子交换反应方程式和对应的热力学参数(Parkhurst and Appelo, 2013)

      Table  2.   Cation exchange reaction equations and corresponding thermodynamic parameters

      反应 K
      Ca2+ + 2NH4X = CaX2 + 2NH4+ 0.4
      Mg2+ + 2NH4X = MgX2 + 2NH4+ 0.25
      Na+ + NH4X = NaX + NH4+ 0.25
      K+ + NH4X = KX + NH4+ 1.26
      下载: 导出CSV

      表  3  Monod方程参数(Prommer et al., 2006)

      Table  3.   Parameters of the Monod equation

      反应参数 单位
      $ {k}_{\mathrm{m}\mathrm{a}\mathrm{x}\_\mathrm{N}{\mathrm{H}}_{4}^{+}} $ mol/(L·s) 8×10-10
      $ {k}_{\mathrm{m}\mathrm{N}{\mathrm{H}}_{4}^{+}} $ mol/L 1×10-4
      $ {k}_{\mathrm{m}{\mathrm{O}}_{2}} $ mol/L 1.5×10-5
      下载: 导出CSV

      表  4  对流-弥散方程及其他计算参数

      Table  4.   Parameters related of the convection-dispersion equation and computational parameters

      实验组 达西流速(m/s) 有效孔隙度 弥散度(m) 弥散系数
      地表水模拟液淋滤实验 0.12 0.46 0.000 1 4×10-9
      地下水模拟液淋滤实验 0.12 0.47 0.000 1 4×10-9
      下载: 导出CSV
    • Beeckman, F., Motte, H., Beeckman, T., 2018. Nitrification in Agricultural Soils: Impact, Actors and Mitigation. Current Opinion in Biotechnology, 50: 166-173. https://doi.org/10.1016/j.copbio.2018.01.014
      Böhlke, J. K., Smith, R. L., Miller, D. N., 2006. Ammonium Transport and Reaction in Contaminated Groundwater: Application of Isotope Tracers and Isotope Fractionation Studies. Water Resources Research, 42(5): W05411. https://doi.org/10.1029/2005wr004349
      Chen, Y. X., Su, X. S., Wan, Y. Y., et al., 2022. Nitrogen Biogeochemical Reactions during Bank Filtration Constrained by Hydrogeochemical and Isotopic Evidence: A Case Study in a Riverbank Filtration Site along the Second Songhua River, NE China. Applied Geochemistry, 140: 105272. https://doi.org/10.1016/j.apgeochem.2022.105272
      Choi, A., Cho, H., Kim, S. H., et al., 2016. Rates of N2 Production and Diversity and Abundance of Functional Genes Associated with Denitrification and Anaerobic Ammonium Oxidation in the Sediment of the Amundsen Sea Polynya, Antarctica. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 123: 113-125. https://doi.org/10.1016/j.dsr2.2015.07.016
      Covatti, G., Grischek, T., 2021. Sources and Behavior of Ammonium during Riverbank Filtration. Water Research, 191: 116788. https://doi.org/10.1016/j.watres.2020.116788
      Du, Y., Ma, T., Deng, Y. M., et al., 2017. Sources and Fate of High Levels of Ammonium in Surface Water and Shallow Groundwater of the Jianghan Plain, Central China. Environmental Science Processes & Impacts, 19(2): 161-172. https://doi.org/10.1039/c6em00531d
      Gan, Y. Q., Zhao, K., Deng, Y. M., et al., 2018. Groundwater Flow and Hydrogeochemical Evolution in the Jianghan Plain, Central China. Hydrogeology Journal, 26(5): 1609-1623. https://doi.org/10.1007/s10040-018-1778-2
      He, T. X., Xie, D. T., Ni, J. P., et al., 2020. Nitrous Oxide Produced Directly from Ammonium, Nitrate and Nitrite during Nitrification and Denitrification. Journal of Hazardous Materials, 388: 122114. https://doi.org/10.1016/j.jhazmat.2020.122114
      Hu, Y. L., Sun, Z. Y., Ma, R., 2023. Springs Emerging along the Elevation Gradient Indicate Intensive Groundwater-Surface Water Exchange in an Alpine Headwater Catchment, Northwestern China. Journal of Earth Science, 34(1): 181-193. https://doi.org/10.1007/s12583-021-1548-2
      Huang, J. Y., Kankanamge, N. R., Chow, C., et al., 2018. Removing Ammonium from Water and Wastewater Using Cost-Effective Adsorbents: A Review. Journal of Environmental Sciences, 63: 174–197. https://doi.org/10.1016/j.jes.2017.09.009
      Jellali, S., Diamantopoulos, E., Kallali, H., et al., 2010. Dynamic Sorption of Ammonium by Sandy Soil in Fixed Bed Columns: Evaluation of Equilibrium and Non-Equilibrium Transport Processes. Journal of Environmental Management, 91(4): 897-905. https://doi.org/10.1016/j.jenvman.2009.11.006
      Jiang, Q. H., Jin, G. Q., Tang, H. W., et al., 2022. Ammonium (NH4+) Transport Processes in the Riverbank under Varying Hydrologic Conditions. The Science of the Total Environment, 826: 154097. https://doi.org/10.1016/j.scitotenv.2022.154097
      Kopprio, G. A., Dutto, M. S., Garzón Cardona, J. E., et al., 2018. Biogeochemical Markers across a Pollution Gradient in a Patagonian Estuary: A Multidimensional Approach of Fatty Acids and Stable Isotopes. Marine Pollution Bulletin, 137: 617–626. https://doi.org/10.1016/j.marpolbul.2018.10.059
      Liang, Y., Ma, R., Nghiem, A., et al., 2022. Sources of Ammonium Enriched in Groundwater in the Central Yangtze River Basin: Anthropogenic or Geogenic? Environmental Pollution, 306: 119463. https://doi.org/10.1016/j.envpol.2022.119463
      Liang, Y., Ma, R., Wang, Y. X., et al., 2020. Hydrogeological Controls on Ammonium Enrichment in Shallow Groundwater in the Central Yangtze River Basin. Science of the Total Environment, 741: 140350. https://doi.org/10.1016/j.scitotenv.2020.140350
      Liu, Y. Y., Liu, C. X., Nelson, W. C., et al., 2017. Effect of Water Chemistry and Hydrodynamics on Nitrogen Transformation Activity and Microbial Community Functional Potential in Hyporheic Zone Sediment Columns. Environmental Science & Technology, 51(9): 4877-4886. https://doi.org/10.1021/acs.est.6b05018
      Ma, A. L., Liu, H., Mao, S. J., et al., 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741(in Chinese with English abstract).
      Mazloomi, F., Jalali, M., 2019. Effects of Vermiculite, Nanoclay and Zeolite on Ammonium Transport through Saturated Sandy Loam Soil: Column Experiments and Modeling Approaches. CATENA, 176: 170-180. https://doi.org/10.1016/j.catena.2019.01.014
      Nakagawa, K., Amano, H., Takao, Y. J., et al., 2017. On the Use of Coprostanol to Identify Source of Nitrate Pollution in Groundwater. Journal of Hydrology, 550: 663-668. https://doi.org/10.1016/j.jhydrol.2017.05.038
      Naranjo, R. C., Niswonger, R. G., Davis, C. J., 2015. Mixing Effects on Nitrogen and Oxygen Concentrations and the Relationship to Mean Residence Time in a Hyporheic Zone of a Riffle-Pool Sequence. Water Resources Research, 51(9): 7202-7217. https://doi.org/10.1002/2014wr016593
      Parkhurst, D. L., Appelo, C. A. J., 2013. Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. In Chapter 43 of Section A: Groundwater in Book 6 Modeling Techniques. U. S. Geological Survey. https://doi.org/10.3133/tm6A43
      Prommer, H., Tuxen, N., Bjerg, P. L., 2006. Fringe-Controlled Natural Attenuation of Phenoxy Acids in a Landfill Plume: Integration of Field-Scale Processes by Reactive Transport Modeling. Environmental Science & Technology, 40(15): 4732-4738. https://doi.org/10.1021/es0603002
      Schaefer, M. V., Ying, S. C., Benner, S. G., et al., 2016. Aquifer Arsenic Cycling Induced by Seasonal Hydrologic Changes within the Yangtze River Basin. Environmental Science & Technology, 50(7): 3521-3529. https://doi.org/10.1021/acs.est.5b04986
      Smith, R. L., Böhlke, J. K., Song, B., et al., 2015. Role of Anaerobic Ammonium Oxidation (Anammox) in Nitrogen Removal from a Freshwater Aquifer. Environmental Science & Technology, 49(20): 12169-12177. https://doi.org/10.1021/acs.est.5b02488
      Song, T., Zhang, X. L., Li, J., et al., 2021. A Review of Research Progress of Heterotrophic Nitrification and Aerobic Denitrification Microorganisms (HNADMs). The Science of the Total Environment, 801: 149319. https://doi.org/10.1016/j.scitotenv.2021.149319
      Sun, L. Q., Liang, X., Jin, M. G., et al., 2022. Sources and Fate of Excessive Ammonium in the Quaternary Sediments on the Dongting Plain, China. The Science of the Total Environment, 806(Pt 1): 150479. https://doi.org/10.1016/j.scitotenv.2021.150479
      Wang, J. L., Chu, L. B., 2016. Biological Nitrate Removal from Water and Wastewater by Solid-Phase Denitrification Process. Biotechnology Advances, 34(6): 1103-1112. https://doi.org/10.1016/j.biotechadv.2016.07.001
      Wang, L. F., Wang, Y. T., Li, Y., et al., 2022. Effect of Water Chemistry on Nitrogen Transformation, Dissolved Organic Matter Composition and Microbial Community Structure in Hyporheic Zone Sediment Columns. Environmental Research, 215(Pt 1): 114246. https://doi.org/10.1016/j.envres.2022.114246
      Wu, Q. H., Zheng, C. M., Zhang, J. F., et al., 2017. Nitrate Removal by a Permeable Reactive Barrier of FeO: A Model-Based Evaluation. Journal of Earth Science, 28(3): 447-456. https://doi.org/10.1007/s12583-016-0924-2
      Wu, X. C., Ma, T., Wang, Y. X., 2020. Surface Water and Groundwater Interactions in Wetlands. Journal of Earth Science, 31(5): 1016-1028. https://doi.org/10.1007/s12583-020-1333-7
      Xiong, Y. J., Du, Y., Deng, Y. M., et al., 2021. Contrasting Sources and Fate of Nitrogen Compounds in Different Groundwater Systems in the Central Yangtze River Basin. Environmental Pollution, 290: 118119. https://doi.org/10.1016/j.envpol.2021.118119
      Xu, J., Liang, Y., Zhang, Z. C., et al., 2023. Effects of Seasonal Variation in Organic Matter in Groundwater on Reactive Nitrogen Transport in the Jianghan Plain. Bulletin of Geological Science and Technology, 42(4): 228-240, 298(in Chinese with English abstract).
      Yan, A. L., Guo, X. Y., Hu, D. H., et al., 2022. Reactive Transport of NH4+ in the Hyporheic Zone from the Ground Water to the Surface Water. Water, 14(8): 1237. https://doi.org/10.3390/w14081237
      Yan, A. L., Liu, C. X., Liu, Y. Y., et al., 2018. Effect of Ion Exchange on the Rate of Aerobic Microbial Oxidation of Ammonium in Hyporheic Zone Sediments. Environmental Science and Pollution Research, 25(9): 8880-8887. https://doi.org/10.1007/s11356-018-1217-x
      Yu, Q., Zhang, Y., Dong, T., et al., 2023. Effect of Surface Water-Groundwater Interaction on Arsenic Transport in Shallow Groundwater of Jianghan Plain. Earth Science, 48(9): 3420-3431(in Chinese with English abstract).
      Zhang, Y. T., Wu, J. H., Xu, B., 2018. Human Health Risk Assessment of Groundwater Nitrogen Pollution in Jinghui Canal Irrigation Area of the Loess Region, Northwest China. Environmental Earth Sciences, 77(7): 273. https://doi.org/10.1007/s12665-018-7456-9
      Zhang, Z. C., Liang, Y., Xu, J., et al., 2024. Effect of Nitrogen Cycling on Arsenic Release in Groundwater with High Arsenic Content. Earth Science, 49(9): 3428-3439.
      马奥兰, 刘慧, 毛胜军, 等, 2022. 汉江下游河水-地下水侧向交互带中溶解态锰的分布特征. 地球科学, 47(2): 729-741. doi: 10.3799/dqkx.2021.038
      许洁, 梁莹, 张振超, 等, 2023. 江汉平原地下水中有机质季节变化对氮反应迁移的影响. 地质科技通报, 42(4): 228-240, 298.
      余倩, 张宇, 董听, 等, 2023. 地表水-地下水相互作用对砷在浅层地下水系统中运移的影响. 地球科学, 48(9): 3420-3431. doi: 10.3799/dqkx.2022.146
      张振超, 梁莹, 许洁, 等, 2024. 高砷地下水中氮循环对砷释放过程的影响. 地球科学, 49(9): 3428-3439. doi: 10.3799/dqkx.2022.189
    • 加载中
    图(9) / 表(4)
    计量
    • 文章访问数:  530
    • HTML全文浏览量:  160
    • PDF下载量:  44
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-07-24
    • 网络出版日期:  2024-11-08
    • 刊出日期:  2024-10-25

    目录

      /

      返回文章
      返回