Geothermal Resource Evaluation under Non-Homogeneous Thermal Reservoir Properties in Xiong'an New Area
-
摘要: 识别地热属性特征、准确评估地热资源潜力是实现地热能精细区划及规模化效益化开发利用的重要依据.以我国华北平原典型的中低温地热系统-河北雄安新区为研究对象,获取雾迷山组热储物性特征,预测三维温度场展布,改进资源量评价算法,评估各热属性及地层参数在非均质条件下的地热资源潜力.全区5 000 m以浅雾迷山组热储地热资源量折合标准煤为3.219 5×105万t;采灌均衡法计算地热流体可开采资源量为436.64×106 m3/a、地热流体可开采热量折合标准煤508.217 4万t/a,分别为开采系数法评估结果的48.7倍和50.3倍.地热资源丰、单位面积地热流体资源量均为容城最大;非均质条件下各资源量指标为均质条件下的2.29~2.95倍.Abstract: Identifying geothermal property characteristics and accurately assessing geothermal resource potential are crucial foundations for achieving precise zoning and large-scale, efficient development and utilization of geothermal energy. Xiong'an New Area, one of the typical low-temperature geothermal systems in the North China plain, is selected as the study area. The study aims to obtain the thermal reservoir properties of the Wumishan Formation, predict the three-dimensional temperature distribution, improve the resource assessment algorithm, and evaluate the geothermal resource potential under heterogeneous conditions for various thermal properties and stratigraphic parameters. The research results indicate that the geothermal resource quantity of the Wumishan Formation above 5 000 m is equivalent to 3.219 5×105 million tons of standard coal. Using the balanced injection and production method, the calculated extractable geothermal fluid resource quantity is 436.64×106 m3 per year, equivalent to 508.217 4 thousand tons of standard coal in extractable heat. The extractable resource quantity and heat calculated by the balanced injection and production method are 48.7 times and 50.3 times greater, respectively, than those calculated using the extraction coefficient method. The geothermal resource per unit area and the geothermal fluid resource per unit area are the largest in the Rongcheng area. The calculated resource indicators under heterogeneous conditions are 2.29 to 2.95 times higher than those under homogeneous conditions.
-
图 1 研究区地质构造图
a.冀中坳陷内部构造单元;b.雄安新区地热地质构造背景特征;图改自吴爱民等(2018)、郭飒飒等(2020)、商世杰(2020)
Fig. 1. Tectonic map of the study
表 1 部分热物性参数在不同区块取值
Table 1. Values of some thermal physical property parameters in different
地层 分区 储厚比 水位埋深(m) 岩石密度(kg/m3) 岩石比热(J/kg•℃) 孔隙率(%) 弹性释水系数(10-5) 雾迷山组 A区 0.4 115 2 850 877.01 3.5 2.91 B区 0.4 113 2 940 788.58 3.5 2.91 C区 0.3 114 2 833 848.32 4 3.52 D区 0.3 122 2 833 870.25 4 3.32 E区 0.3 110 2 833 1 170.63 4 1.67 F区 0.3 110 2 833 870.25 4 1.11 G区 0.3 110 2 833 870.25 3.5 3.61 H区 0.3 112 2 833 1 091.03 3.5 2.87 I区 0.25 115 2 803 1 044.18 3.5 3.89 J区 0.3 105 2 803 1 044.18 3.5 3.60 K区 0.3 100 2 803 1 044.18 3.5 3.60 L区 0.3 100 2 750 1 044.18 3.5 3.60 M区 0.3 110 2 750 1 044.18 3.5 3.60 O区 0.2 110 2 750 1 044.18 3.5 4.32 P区 0.18 125 2 870 1 309.24 3 3.28 Q区 0.16 120 2 870 1 309.24 3 3.28 R区 0.16 115 2 870 1 309.24 3 3.28 注:参考朱喜等(2023). 表 2 雄安新区雾迷山组地热区资源量计算结果
Table 2. Calculation results of geothermal resource quantity in Wumishan Formation, Xiong'an New Area
区域 面积(km2) 地热资源量(1016 J) 地热流体储存量(108 m3) 可开采量*(106 m3/a) 可开采量**(106 m3/a) 可开采热量*(1014 J/a) 可开采热量** (1014 J/a) 容城 312.44 2 614.5 63.628 3.181 4 129.58 9.950 8 410.14 雄县 518.67 2 589.5 59.628 2.981 4 137.51 8.736 0 411.95 安新 740.45 4 231.9 55.850 2.792 5 169.55 10.948 0 667.41 合计 1 571.56 9 435.9 179.106 8.955 3 436.64 29.634 8 1 489.5 注:*.开采系数法地热流体; **. 采灌均衡法地热流体. -
Cao, Y. Z., Bao, Z. D., Lu, K., et al., 2021. Genetic Model and Main Controlling Factors of the Xiongxian Geothermal Field. Acta Sedimentologica Sinica, 39(4): 863-872(in Chinese with English abstract). Chen, M. X., 1988. Geothermics in North China. Science Press, Beijing(in Chinese). Chen, M. X., Wang, J. Y., Deng, X., 1994. Geothermal Resource in China: Formation and Potential Estimate. Science Press, Beijing(in Chinese). Chen, M. X., Wang, J. Y., Wang, J. A., et al., 1990. The Characteristics of the Geothermal Field and Its Formation Mechanism in the North China Down-Faulted Basin. Acta Geologica Sinica, 64(1): 80-91(in Chinese with English abstract). Dai, M. G., Lei, H. F., Hu, J. G., et al., 2019. Evaluation of Recoverable Geothermal Resources and Development Parameters of Mesoproterozoic Thermal Reservoir with the Top Surface Depth of 3 500 m and Shallow in Xiong'an New Area. Acta Geologica Sinica, 93(11): 2874-2888(in Chinese with English abstract). Dai, M. G., Ma, P. P., Lei, H. F., et al., 2020. Distribution Characteristics and Favorable Targets of Karst Geothermal Reservoir of Wumishan Formation in Xiong'an New Area. Chinese Journal of Geology, 55(2): 487-505(in Chinese with English abstract). Guo, S. S., Zhu, C. Q., Qiu, N. S., et al., 2020. Formation Conditions and Favorable Areas for the Deep Geothermal Resources in Xiong'an New Area. Acta Geologica Sinica, 94(7): 2026-2035(in Chinese with English abstract). Guo, S. Y., Li, X. J., 2013. Reservoir Stratum Characterstics and Geothermal Resources Potential of Rongcheng Uplift Geothermal Field in Baoding, Hebei. Chinese Journal of Geology, 48(3): 922-931(in Chinese with English abstract). Hill, M., DeHouche, Z., 2017. A Comparative Analysis of the Effectiveness of Aquifer Thermal Energy Storage in Expeditionary Campaign Infrastructure. Applied Thermal Engineering, 114: 271-278. https://doi.org/10.1016/j.applthermaleng.2016.11.133 Huang, G. S., Hu, X. Y., Cai, J. C., et al., 2022. Subsurface Temperature Prediction by Means of the Coefficient Correction Method of the Optimal Temperature: A Case Study in the Xiong'an New Area, China. Geophysics, 87(4): B269-B285. https://doi.org/10.1190/geo2021-0339.1 Li, J., Zhang, Z. G., 2018. Characteristics of Geothermal Resources in Jizhong Depression (Hebei Region). Journal of Hebei University of Technology, 47(2): 113-120(in Chinese with English abstract). Li, W. W., Rao, S., Tang, X. Y., et al., 2014. Borehole Temperature Logging and Temperature Field in the Xiongxian Geothermal Field, Hebei Province. Chinese Journal of Geology, 49(3): 850-863(in Chinese with English abstract). Liu, M. L., He, T., Wu, Q. F., et al., 2020. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its Indicating Significance. Earth Science, 45(6): 2221-2231(in Chinese with English abstract). Liu, Y. G., Hou, J., Zhao, H. F., et al., 2018. A Method to Recover Natural Gas Hydrates with Geothermal Energy Conveyed by CO2. Energy, 144: 265-278. https://doi.org/10.1016/j.energy.2017.12.030 Liu, Z. M., Liang, J. Y., Liu, C. L., 2016. Assessment Method of Geothermal Fluid Exploitable Reserve under Condition of Reinjection. Ground Water, 38(2): 61-63(in Chinese with English abstract). Niu, S. Y., Sun, A. Q., Li, H. Y., 2001. Geothermal Characteristics and Genetic Mechanism in North China. Earth Science Frontiers, 8(1): 112(in Chinese). Pei, F. G., He, M. X., Fang, H., et al., 2023. Evaluation of Deep Geothermal Resources Potential in the Songliao Basin Based on the Fuzzy Mathematics. Earth Science, 48(3): 1058-1079(in Chinese with English abstract). Shang, S. J., 2020. Study on Quaternary Activity of Main Buried Faults and Strata Mineral Composition in Xiong'an New Area and Neighboring Areas (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). Shi, Y., Song, X. Z., Li, J. C., et al., 2019. Numerical Investigation on Heat Extraction Performance of a Multilateral-Well Enhanced Geothermal System with a Discrete Fracture Network. Fuel, 244: 207-226. https://doi.org/10.1016/j.fuel.2019.01.164 Su, Y. Q., Li, J., 2018. Evaluation of Geothermal Resources and Their Potential Utilization in Xiongan New Area. Journal of Hebei University of Technology, 47(4): 62-67(in Chinese with English abstract). Sun, A. Q., Niu, S. Y., 2000. The Mantle Plume Evolution and Its Geothermal Effect: Deep Tectonic Setting of Geothermal Anomaly in North China. Acta Geoscientica Sinica, 21(2): 182-189(in Chinese with English abstract). Tang, B. N., 2020. Accumulation Mechanism of Geothermal Resources in Karst Thermal Reservoir in Xiong'an New Area (Dissertation). China University of Petroleum, Beijing(in Chinese with English abstract). Wang, G. L., Lin, W. J., 2020. Main Hydro-Geothermal Systems and Their Genetic Models in China. Acta Geologica Sinica, 94(7): 1923-1937(in Chinese with English abstract). Wang, Y. B., Ding, W. P., Tian, Y., et al., 2016. Genetic Analysis on High-Temperature Geothermal Water in Niutuo Geothermal Field, Heibei Province. Urban Geology, 11(3): 59-64(in Chinese with English abstract). Wang, Z. T., Jiang, G. Z., Zhang, C., et al., 2019a. Thermal Regime of the Lithosphere and Geothermal Potential in Xiongan New Area. Energy Exploration & Exploitation, 37(2): 787-810. https://doi.org/10.1177/0144598718778163 Wang, Z. T., Jiang, G. Z., Zhang, C., et al., 2019b. Estimating Geothermal Resources in Bohai Bay Basin, Eastern China, Using Monte Carlo Simulation. Environmental Earth Sciences, 78(12): 355. https://doi.org/10.1007/s12665-019-8352-7 Wu, A. M., Ma, F., Wang, G. L., et al., 2018. A Study of Deep-Seated Karst Geothermal Reservoir Exploration and Huge Capacity Geothermal Well Parameters in Xiong'an New Area. Acta Geoscientica Sinica, 39(5): 523-532(in Chinese with English abstract). Xing, Y. F., Yu, H. W., Liu, Z., et al., 2022. Study on Chemical Genesis of Deep Geothermal Fluid in Gaoyang Geothermal Field. Frontiers in Earth Science, 9: 1321. https://doi.org/10.3389/feart.2021.787222 Yan, D. S., Yu, Y. T., 2020. Evaluation and Utilization of Geothermal Resources in Beijing-Tianjin-Hebei Oilfield. China University of Geosciences Press, Wuhan(in Chinese). Zhang, D. Z., Ma, Y. Q., Su, Y. Q., 2018. Study on the Calculation of Geothermal Fluids Recoverable Quantity and the Distribution Law of Karst Geothermal Reservoirs in Hebei Plain. Geological Survey of China, 5(2): 78-85(in Chinese with English abstract). Zhang, H. X., Wang, G. L., Zhang, W., et al., 2022. Characteristics of the Rongcheng Bulge Geothermal Field and the Evolution of Geothermal Fluids, Xiong'an New Area, China. Water, 14(16): 2468. https://doi.org/10.3390/w14162468 Zhang, W., Wang, G. L., Liu, F., et al., 2019. Characteristics of Geothermal Resources in Sedimentary Basins. Geology in China, 46(2): 255-268(in Chinese with English abstract). Zhang, Z. X., Han, J. J., Xu, J., et al., 2005. The Calculation of Exploitable Resources in the Layered-Geothermal Reservoirs of Sedimentary Basin. Hydrogeology and Engineering Geology, 32(1): 73-77(in Chinese with English abstract). Zhao, J., Guo, Q. H., 2023. Geothermal Resources Evaluation Based on 3D Geological Modeling: The Case of Shidian Geothermal Area. Earth Science, 48(3): 1107-1117(in Chinese with English abstract). Zhou, R. L., Liu, Q. S., Zhang, J., et al., 1989. The Geological Features and Exploitive Prospects of the Geothermal Field of Salient Type of Bed Rock of Niutuozhen in the Fault Basin of North China. Bulletin of the 562 Comprehensive Geological Brigade, Chinese Academy of Geological Sctences, Beijing, 21-36(in Chinese). Zhu, J. L., Hu, K. Y., Lu, X. L., et al., 2015. A Review of Geothermal Energy Resources, Development, and Applications in China: Current Status and Prospects. Energy, 93: 466-483. https://doi.org/10.1016/j.energy.2015.08.098 Zhu, X., Wang, G. L., Wang, X. Y., et al., 2022. Hydrogeochemical and Isotopic Analyses of Deep Geothermal Fluids in the Wumishan Formation in Xiong'an New Area, China. Lithosphere, 2021(Special 5): 2576752. https://doi.org/10.2113/2022/2576752 Zhu, X., Wang, G. L., Ma, F., et al., 2023. Evaluation of Geothermal Resources of the Xiong'an New Area. Earth Science, 48(3): 1093-1106(in Chinese with English abstract). Zhu, X., Zhang, Q. L., Liu, Y. G., 2016. Evaluation of the Geothermal Resources in the Plain of West Shandong Province. Geological Science and Technology Information, 35(4): 172-177(in Chinese with English abstract). 曹瑛倬, 鲍志东, 鲁锴, 等, 2021. 冀中坳陷雄县地热田主控因素及成因模式. 沉积学报, 39(4): 863-872. 陈墨香, 1988. 华北地热. 北京: 科学出版社. 陈墨香, 汪集旸, 汪缉安, 等, 1990. 华北断陷盆地热场特征及其形成机制. 地质学报, 64(1): 80-91. 陈墨香, 汪集旸, 邓孝, 1994. 中国地热资源: 形成特点和潜力评估. 北京: 科学出版社. 戴明刚, 雷海飞, 胡甲国, 等, 2019. 雄安新区顶面埋深在3 500 m以浅的中元古界热储可采地热资源量和开发参数评估. 地质学报, 93(11): 2874-2888. 戴明刚, 马鹏鹏, 雷海飞, 等, 2020. 雄安新区雾迷山组岩溶热储特征与有利区. 地质科学, 55(2): 487-505. 郭飒飒, 朱传庆, 邱楠生, 等, 2020. 雄安新区深部地热资源形成条件与有利区预测. 地质学报, 94(7): 2026-2035. 郭世炎, 李小军, 2013. 河北保定容城凸起地热田储层属性与资源潜力. 地质科学, 48(3): 922-931. 李郡, 张志刚, 2018. 冀中台陷(河北区域)地热资源特征研究. 河北工业大学学报, 47(2): 113-120. 李卫卫, 饶松, 唐晓音, 等, 2014. 河北雄县地热田钻井地温测量及地温场特征. 地质科学, 49(3): 850-863. 刘明亮, 何曈, 吴启帆, 等, 2020. 雄安新区地热水化学特征及其指示意义. 地球科学, 45(6): 2221-2231. doi: 10.3799/dqkx.2019.270 刘志明, 梁继运, 刘春雷, 2016. 地热回灌条件下流体可采量评价方法. 地下水, 38(2): 61-63. 牛树银, 孙爱群, 李红阳. 2001. 华北地区地热特征及其成因机制. 地学前缘, 8(1): 112. 裴发根, 何梅兴, 方慧, 等, 2023. 基于模糊数学法的松辽盆地深层地热资源潜力评价. 地球科学, 48(3): 1058-1079. 商世杰, 2020. 雄安新区及邻区主要隐伏断裂第四纪活动性与地层矿物组成研究(硕士学位论文). 北京: 中国地质大学. 苏永强, 李郡, 2018. 雄安新区地热资源评价与开发应用潜力分析. 河北工业大学学报, 47(4): 62-67. 孙爱群, 牛树银, 2000. 地幔热柱演化及其地热效应: 华北地热异常的深部构造背景. 地球学报, 21(2): 182-189. 唐博宁. 2020. 雄安新区岩溶热储地热资源聚敛机制研究(硕士学位论文). 北京: 中国石油大学. 王贵玲, 蔺文静, 2020. 我国主要水热型地热系统形成机制与成因模式. 地质学报, 94(7): 1923-1937. 王永波, 丁文萍, 田月, 等, 2016. 河北牛驼镇地热田高温地热水成因分析. 城市地质, 11(3): 59-64. 吴爱民, 马峰, 王贵玲, 等, 2018. 雄安新区深部岩溶热储探测与高产能地热井参数研究. 地球学报, 39(5): 523-532. 阎敦实, 于英太, 2000. 京津冀油区地热资源评价与利用. 武汉: 中国地质大学出版社. 张德忠, 马云青, 苏永强, 2018. 河北平原地热流体可采量计算方法及岩溶热储分布规律研究. 中国地质调查, 5(2): 78-85. 张薇, 王贵玲, 刘峰, 等, 2019. 中国沉积盆地型地热资源特征. 中国地质, 46(2): 255-268. 张中祥, 韩建江, 徐健, 等, 2005. 沉积盆地型层状热储可采资源量计算方法探索. 水文地质工程地质, 32(1): 73-77. 赵杰, 郭清海, 2023. 基于三维地质建模的地热资源潜力评价: 以施甸地热区为例. 地球科学, 48(3): 1107-1117. doi: 10.3799/dqkx.2022.343 周瑞良, 刘琦胜, 张晶, 等. 1989. 华北断陷盆地牛驼镇基岩高凸起型热田地质特征及其开发前景. 中国地质科学院562综合大队集刊, 21-36. 朱喜, 王贵玲, 马峰, 等, 2023. 雄安新区地热资源潜力评价. 地球科学, 48(3): 1093-1106. 朱喜, 张庆莲, 刘彦广, 2016. 基于热储法的鲁西平原地热资源评价. 地质科技情报, 35(4): 172-177. -