A Review of Influence of Warming and Precipitation Changes on Soil CO2 Release
-
摘要: 全球变暖正在扩大严重干旱和强降雨事件发生的频率、范围、持续时间和严重程度.高温、干旱、强降水等极端气候事件显著改变了土壤有机碳矿化和无机碳释放的速率和强度.土壤CO2输出释放作为陆地生态系统碳循环的重要组成部分,对气候变化高度敏感,探究土壤CO2释放与气候变化的关系与响应机制,可为深入理解全球变暖背景下土壤碳循环和源汇机制提供理论支撑.系统分析了前人在全球变暖引起增温和降水改变对土壤呼吸(soil respiration,Rs)、碳酸盐矿物溶蚀影响的研究成果与结论,从Rs和碳酸盐矿物溶蚀两个方面解析增温和降水改变对土壤CO2释放的影响.未来应加强气候变化与土壤性质、营养物质含量和有效性、微生物生物量和活性等其他多种因子耦合作用对Rs影响的研究,构建极端气候条件下多变量因子耦合的Rs速率模型.深入探究碳酸盐岩基岩土壤区Rs、碳酸盐矿物溶蚀对极端强降水事件的响应阈值,并精准量化极端强降水下两者间碳迁移转化通量.Abstract: Global warming is expanding the frequency, scope, duration, and severity of severe drought and heavy rainfall events. Extreme climate events such as high temperatures, droughts, and heavy rainfall have significantly changed the rate and intensity of soil organic carbon mineralization and inorganic carbon release. The release of soil CO2, as an important component of the carbon cycle in terrestrial ecosystems, is highly sensitive to climate change. Exploring the relationship and response mechanism between soil CO2 release and climate change can provide theoretical support for in-depth understanding of soil carbon cycling and source sink mechanisms in the context of global warming. In this paper systematically it analyzes the previous studies on the effects of warming and precipitation changes on soil respiration (Rs) and soil carbonate mineral dissolution, and analyzed the impact of warming and precipitation changes on soil CO2 release from the aspects of Rs and soil carbonate mineral dissolution. In the future, efforts should be done to strengthen research on the coupling effects of climate change and other factors such as soil properties, nutrient content and availability, and microbial biomass and activity on Rs. Constructing an Rs rate model with multivariate factor coupling under extreme climate conditions. Deeply explore the response thresholds of Rs and carbonate mineral dissolution in carbonate bedrock soil areas to extreme heavy precipitation events. Accurately quantify the carbon migration and transformation flux between Rs and carbonate mineral dissolution under extreme heavy rainfall conditions.
-
Key words:
- warming /
- precipitation change /
- soil CO2 /
- soil respiration /
- carbonate mineral dissolution /
- environmental geology
-
图 1 土壤岩溶动力系统中碳转移模型(修改自Liu et al., 2018)
Fig. 1. Carbon transfer model in surface karst dynamic system (modified from Liu et al., 2018)
表 1 温度与Rs相关性统计分析
Table 1. Statistics on the correlation between temperature and Rs
正相关 过渡/不相关 负相关 生态系统 国家/地点 响应曲线 Rs速率(μmol CO2/(m2·s)) 参考文献 备注 -10~13 - 13~35 森林-农田-草原 - 高斯曲线 - Ngaba et al. (2023) mate分析 -10~30 - - 自然再生森林 - 线性 0~7.9 Wang et al.(2010) mate分析 0~25 25~40 - 森林和灌木丛 - 二次曲线 0~7.4 Carey et al.(2016) mate分析 -10~15 15~30 - 热带森林 - 二次曲线 - Zhou et al.(2014) mate分析 4~32 - - - - 阶梯曲线 - Kesik et al.(2006) 室内实验 22~26 - - 湿润热带森林 northeastern Puerto Rico 线性 6~18 Wood et al.(2013) -10~25 - - - - 线性 0~4.0 Hursh et al.(2017) mate分析 10~30 - - 沙漠草原 中国内蒙古 线性 0~6.3 Guo et al.(2022) 14~28 - - 草原 中国内蒙古 线性 0~10 Legesse et al.(2022) - - 14~17 半干旱草地 中国内蒙古 线性 1.0~3.5 Li et al.(2020) 暗栗钙土 14~18 18~22 22~32 荒漠草地 中国内蒙古 高斯曲线 0~3.0 Liu et al.(2016b) 生长季 -18~20 - - 荒漠草地 中国内蒙古 指数曲线 0~1.4 Liu et al.(2016b) 非生长季 4~20 - - 盐碱草地 中国山西 线性 0~6 Diao et al.(2022) 生长季降水量309 mm 4~20 - - 盐碱草地 中国山西 指数曲线 0~9 Diao et al.(2022) 生长季降水量460 mm -10~20 - - 高寒草甸 中国四川 指数曲线 0~5.1 Wang et al.(2021b) 5~32 - - 亚热带森林 中国桂林 线性 0.5~6.3 Yang et al.(2015) 岩溶土壤 5~32 - - 亚热带森林 中国桂林 线性 1.2~7.6 Yang et al.(2015) 红壤 5~35 - - 灌木林 中国桂林 线性 0~3.8 吴夏等(2013) 岩溶土壤 4.5~30.0 - - 耕地-草地-林地 中国遵义 线性 0~5 朱粲粲(2021) 岩溶土壤 注:表中数值为温度,单位℃;“-”表示无数据. 表 2 降水量与Rs相关性统计分析
Table 2. Statistics on the correlation between precipitation and Rs
正相关 过渡/不相关 负相关 生态系统 国家/地点 响应曲线 Rs速率(μmol CO2/(m2·s)) 参考文献 备注 0~640 640~1 815 1 815~3 000 森林-农田-草原 - 高斯曲线 - Ngaba et al.(2023) mate分析 0~4 000 - - 自然再生森林 - 线性 0~6.6 Wang et al.(2010) mate分析 0~4 000 - - - - 线性 0.7~5.3 Hursh et al.(2017) mate分析 80~400 400~550 - 半干旱草地 中国内蒙古 二次曲线 0.5~2.7 Miao et al.(2017) 0~220 - - 亚热带森林 中国桂林 线性 0.5~6.3 Yang et al.(2015) 岩溶土壤 0~220 - - 亚热带森林 中国桂林 线性 1.2~7.6 Yang et al.(2015) 红壤 注:表中数值为降水量,单位mm;“-”表示无数据. 表 3 土壤含水量与Rs相关性统计分析
Table 3. Statistics on the correlation between soil moisture content and Rs
正相关 过渡/不相关 负相关 生态系统 国家/地点 响应曲线 Rs速率(μmol CO2/(m2·s)) 参考文献 备注 25.0~37.5 - 37.5~55 湿润热带森林 northeastern Puerto Rico 高斯曲线 6~18 Wood et al.(2013) 42.5~43.5 - 43.5~44.5 热带雨林 central Amazonian Rainforest 高斯曲线 3~10 Sotta et al.(2004) 黏土 16~33 - 33~44 热带雨林 Eastern Amazonian Rainforest 高斯曲线 1~5 Sotta et al.(2006) 黏土 14~22 - 22~32 热带雨林 Eastern Amazonian Rainforest 高斯曲线 1.5~6.5 Sotta et al.(2006) 砂土 20~45 - 45~70 热带雨林 La Selva, CostaRica 高斯曲线 1.2~5.8 Schwendenmann et al.(2003) 22~27 - 27~35 - - 高斯曲线 0~2.6 Hursh et al.(2017) mate分析 0~30 - - 沙漠草地 中国内蒙古 线性 0~6.3 Guo et al.(2022) 10~16 - - 半干旱草地 中国内蒙古 线性 1~3.5 Li et al.(2020) 暗栗钙土 0~10 - - 荒漠草地 中国内蒙古 线性 0~3.0 Liu et al.(2016b) 栗土 9~27 - - 盐碱草地 中国山西 线性 0~9 Diao et al.(2022) 平均土壤温度18.9 ℃ 9~18 - 18~27 盐碱草地 中国山西 高斯曲线 0~6 Diao et al.(2022) 平均土壤温度15.1 ℃ - 15~40 - 灌木林 中国桂林 - 0~3.8 吴夏等(2013) 岩溶土壤 5~22 - 22~30 高寒草甸 中国四川 高斯曲线 0~5.1 Wang et al.(2021b) - - 13~42 耕地-草地-林地 中国遵义 线性 0~5 朱粲粲(2021) 岩溶土壤 注:表中数值为土壤体积含水量,单位%;“-”表示无数据. -
Bond-Lamberty, B., Thomson, A., 2010. A Global Database of Soil Respiration Data. Biogeosciences, 7(6): 1915-1926. https://doi.org/10.5194/bg-7-1915-2010 Bond-Lamberty, B., Bailey, V. L., Chen, M., et al., 2018. Globally Rising Soil Heterotrophic Respiration over Recent Decades. Nature, 56080-83. https://doi.org/10.1038/s41586-018-0358-x Blum, J. D., Gazis, C. A., Jacobson, A. D., et al., 1998. Carbonate versus Silicate Weathering in the Raikhot Watershed within the High Himalayan Crystalline Series. Geology, 26(5): 411-414. doi: 10.1130/0091-7613(1998)026<0411:CVSWIT>2.3.CO;2 Brown, R. W., Chadwick, D. R., Zang, H. D., et al., 2021. Use of Metabolomics to Quantify Changes in Soil Microbial Function in Response to Fertiliser Nitrogen Supply and Extreme Drought. Soil Biology and Biochemistry, 160: 108351. https://doi.org/10.1016/j.soilbio.2021.108351 Campeau, A., Bishop, K., Amvrosiadi, N., et al., 2019. Current Forest Carbon Fixation Fuels Stream CO2 Emissions. Nature Communications, 10(1): 1876. https://doi.org/10.1038/s41467-019-09922-3 Cao, J. H., Yang, H., Kang, Z. Q., 2011. Preliminary Regional Estimation of Carbon Sink Flux by Carbonate Rock Corrosion: A Case Study of the Pearl River Basin. Chinese Science Bulletin, 56(35): 3766-3773. https://doi.org/10.1007/s11434-011-4377-3 Carey, J. C., Tang, J. W., Templer, P. H., et al., 2016. Temperature Response of Soil Respiration Largely Unaltered with Experimental Warming. PNAS, 113(48): 13797-13802. https://doi.org/10.1073/pnas.1605365113 Carlyle, J. C., Than, U. B., 1988. Abiotic Controls of Soil Respiration beneath an Eighteen-Year-Old Pinus Radiata Stand in South-Eastern Australia. The Journal of Ecology, 76(3): 654. https://doi.org/10.2307/2260565 Chen, J., Elsgaard, L., van Groenigen, K. J., et al., 2020. Soil Carbon Loss with Warming: New Evidence from Carbon-Degrading Enzymes. Global Change Biology, 26(4): 1944-1952. https://doi.org/10.1111/gcb.14986 Chen, W. N., Wang, S., Wang, J. S., et al., 2023. Evidence for Widespread Thermal Optimality of Ecosystem Respiration. Nature Ecology & Evolution, 7(9): 1379-1387. https://doi.org/10.1038/s41559-023-02121-w Dai, L., Wang, G. L., He, Y. J., 2021. The Relationship between Soil Structure and Water Characteristics Based on Fractal Theory. Earth Science, 46(9): 3410-3420 (in Chinese with English abstract). Deng, L., Liu, G. B., Shangguan, Z. P., 2014. Land-Use Conversion and Changing Soil Carbon Stocks in China's 'Grain-for-Green' Program: A Synthesis. Global Change Biology, 20(11): 3544-3556. https://doi.org/10.1111/gcb.12508 Dong, H. X., Lin, J. J., Lu, J. Y., et al., 2024. Priming Effects of Surface Soil Organic Carbon Decreased with Warming: A Global Meta-Analysis. Plant and Soil, 500(1): 233-242. https://doi.org/10.1007/s11104-022-05851-1 Diao, H. J., Chen, X. P., Zhao, X., et al., 2022. Effects of Nitrogen Addition and Precipitation Alteration on Soil Respiration and Its Components in a Saline-Alkaline Grassland. Geoderma, 406: 115541. https://doi.org/10.1016/j.geoderma.2021.115541 Du, Y., Wang, Y. P., Hui, D. F., et al., 2023. Significant Effects of Precipitation Frequency on Soil Respiration and Its Components: A Global Synthesis. Global Change Biology, 29(4): 1188-1205. https://doi.org/10.1111/gcb.16532 Gampe, D., Zscheischler, J., Reichstein, M., et al., 2021. Increasing Impact of Warm Droughts on Northern Ecosystem Productivity over Recent Decades. Nature Climate Change, 11: 772-779. https://doi.org/10.1038/s41558-021-01112-8 Gao, J. Q., Feng, J., Zhang, X. W., et al., 2016. Drying-Rewetting Cycles Alter Carbon and Nitrogen Mineralization in Litter-Amended Alpine Wetland Soil. Catena, 145: 285-290. https://doi.org/10.1016/j.catena.2016.06.026 Grant, P. R., 2017. Evolution, Climate Change, and Extreme Events. Science, 357(6350): 451-452. https://doi.org/10.1126/science.aao2067 Grosso, S. J. D., Parton, W. J., Mosier, A. R., et al., 2005. Modeling Soil CO2 Emissions from Ecosystems. Biogeochemistry, 73(1): 71-91. https://doi.org/10.1007/s10533-004-0898-z Guo, N., Lv, S. J., Lv, G. Y., et al., 2022. Effects of Warming and Precipitation on Soil CO2 Flux and Its Stable Carbon Isotope Composition in the Temperate Desert Steppe. Sustainability, 14(6): 3351. https://doi.org/10.3390/su14063351 Haaf, D., Six, J., Doetterl, S., 2021. Global Patterns of Geo-Ecological Controls on the Response of Soil Respiration to Warming. Nature Climate Change, 11: 623-627. https://doi.org/10.1038/s41558-021-01068-9 Heckman, K. A., Possinger, A. R., Badgley, B. D., et al., 2023. Moisture-Driven Divergence in Mineral-Associated Soil Carbon Persistence. PNAS, 120(7): e2210044120. https://doi.org/10.1073/pnas.2210044120 Hoover, D. L., Knapp, A. K., Smith, M. D., 2014. Resistance and Resilience of a Grassland Ecosystem to Climate Extremes. Ecology, 95(9): 2646-2656. https://doi.org/10.1890/13-2186.1 Hursh, A., Ballantyne, A., Cooper, L., et al., 2017. The Sensitivity of Soil Respiration to Soil Temperature, Moisture, and Carbon Supply at the Global Scale. Global Change Biology, 23(5): 2090-2103. https://doi.org/10.1111/gcb.13489 Kesik, M., Blagodatsky, S., Papen, H., et al., 2006. Effect of pH, Temperature and Substrate on N2O, NO and CO2 Production by Alcaligenes Faecalis P. Journal of Applied Microbiology, 101(3): 655-667. https://doi.org/10.1111/j.1365-2672.2006.02927.x Knapp, A. K., Beier, C., Briske, D. D., et al., 2008. Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems. Bioscience, 58(9): 811-821. https://doi.org/10.1641/b580908 Koltz, A. M., Gough, L., McLaren, J. R., 2022. Herbivores in Arctic Ecosystems: Effects of Climate Change and Implications for Carbon and Nutrient Cycling. Annals of the New York Academy of Sciences, 1516(1): 28-47. https://doi.org/10.1111/nyas.14863 Legesse, T. G., Qu, L. P., Dong, G., et al., 2022. Extreme Wet Precipitation and Mowing Stimulate Soil Respiration in the Eurasian Meadow Steppe. Science of the Total Environment, 851: 158130. https://doi.org/10.1016/j.scitotenv.2022.158130 Lellei-Kovács, E., Kovács-Láng, E., Botta-Dukát, Z., et al., 2011. Thresholds and Interactive Effects of Soil Moisture on the Temperature Response of Soil Respiration. European Journal of Soil Biology, 47(4): 247-255. https://doi.org/10.1016/j.ejsobi.2011.05.004 Leppälammi-Kujansuu, J., Salemaa, M., Kleja, D. B., et al., 2014. Fine Root Turnover and Litter Production of Norway Spruce in a Long-Term Temperature and Nutrient Manipulation Experiment. Plant and Soil, 374(1): 73-88. https://doi.org/10.1007/s11104-013-1853-3 Li, L., Qian, R., Wang, W., et al., 2020. The Intra- and Inter-Annual Responses of Soil Respiration to Climate Extremes in a Semiarid Grassland. Geoderma, 378: 114629. https://doi.org/10.1016/j.geoderma.2020.114629 Li, L. B., Zhang, X. Y., Cai, D. W., 2021. Vertical Distribution of Soil Carbonate Concentration and the Carbon Isotopic Composition in Typical Soil Profiles from Guizhou Karst Areas, Southwest China. Earth and Environment, 49(4): 409-415(in Chinese with English abstract). Li, J. J., Huang, Y., Xu, F. W., et al., 2018a. Responses of Growing-Season Soil Respiration to Water and Nitrogen Addition as Affected by Grazing Intensity. Functional Ecology, 32(7): 1890-1901. https://doi.org/10.1111/1365-2435.13118 Li, J. T., Wang, J. J., Zeng, D. H., et al., 2018b. The Influence of Drought Intensity on Soil Respiration during and after Multiple Drying-Rewetting Cycles. Soil Biology and Biochemistry, 127: 82-89. https://doi.org/10.1016/j.soilbio.2018.09.018 Li, J. Q., Pei, J. M., Fang, C. M., et al., 2023. Thermal Adaptation of Microbial Respiration Persists Throughout Long-Term Soil Carbon Decomposition. Ecology Letters, 26(10): 1803-1814. https://doi.org/10.1111/ele.14296 Liu, L. L., Sayer, E. J., Deng, M. F., et al., 2023. The Grassland Carbon Cycle: Mechanisms, Responses to Global Changes, and Potential Contribution to Carbon Neutrality. Fundamental Research, 3(2): 209-218. https://doi.org/10.1016/j.fmre.2022.09.028 Liu, L. L., Wang, X., Lajeunesse, M. J., et al., 2016b. A Cross-Biome Synthesis of Soil Respiration and Its Determinants under Simulated Precipitation Changes. Global Change Biology, 22(4): 1394-1405. https://doi.org/10.1111/gcb.13156 Liu, T., Xu, Z. Z., Hou, Y. H., et al., 2016a. Effects of Warming and Changing Precipitation Rates on Soil Respiration over Two Years in a Desert Steppe of Northern China. Plant and Soil, 400(1): 15-27. https://doi.org/10.1007/s11104-015-2705-0 Liu, Y., Ji, M., Liu, J. Z., et al., 2022. How Microbes in Glacier and Permafrost Record and Influence Climate Change? Earth Science, 47(10): 3825-3826(in Chinese with English abstract). Liu, Z., Zhao, J., 2000. Contribution of Carbonate Rock Weathering to the Atmospheric CO2 Sink. Environmental Geology, 39(9): 1053-1058. https://doi.org/10.1007/s002549900072 Liu, Z. H., MacPherson, G. L., Groves, C., et al., 2018. Large and Active CO2 Uptake by Coupled Carbonate Weathering. Earth-Science Reviews, 182: 42-49. https://doi.org/10.1016/j.earscirev.2018.05.007 Lu, H. B., Li, S. H., Ma, M. N., et al., 2021. Comparing Machine Learning-Derived Global Estimates of Soil Respiration and Its Components with those from Terrestrial Ecosystem Models. Environmental Research Letters, 16(5): 054048. https://doi.org/10.1088/1748-9326/abf526 Luo, Y. Q., Sherry, R., Zhou, X. H., et al., 2009. Terrestrial Carbon-Cycle Feedback to Climate Warming: Experimental Evidence on Plant Regulation and Impacts of Biofuel Feedstock Harvest. Global Change Biology Bioenergy, 1(1): 62-74. https://doi.org/10.1111/j.1757-1707.2008.01005.x Ma, M. G., Tang, X. G., Han, X. J., et al., 2019. Research Progress and Prospect of Observation and Simulation of Carbon Cycle in the Karst Areas of Southwest China. Progress in Geography, 38(8): 1196-1205(in Chinese with English abstract). doi: 10.18306/dlkxjz.2019.08.008 Ma, Z. L., Zhao, W. Q., Liu, M., et al., 2018. Research Progress on the Responses of Soil Respiration Components to Climatic Warming. Chinese Journal of Applied Ecology, 29(10): 3477-3486(in Chinese with English abstract). Martin, J. B., 2017. Carbonate Minerals in the Global Carbon Cycle. Chemical Geology, 449: 58-72. https://doi.org/10.1016/j.chemgeo.2016.11.029 Miao, Y., Han, H. Y., Du, Y., et al., 2017. Nonlinear Responses of Soil Respiration to Precipitation Changes in a Semiarid Temperate Steppe. Scientific Reports, 7: 45782. https://doi.org/10.1038/srep45782 Ngaba, M. J. Y., Uwiragiye, Y., Bol, R., et al., 2023. Global Cross-Biome Patterns of Soil Respiration Responses to Individual and Interactive Effects of Nitrogen Addition, Altered Precipitation, and Warming. Science of the Total Environment, 858: 159808. https://doi.org/10.1016/j.scitotenv.2022.159808 Niu, F. R., Chen, J., Xiong, P. F., et al., 2019. Responses of Soil Respiration to Rainfall Pulses in a Natural Grassland Community on the Semi-Arid Loess Plateau of China. Catena, 178: 199-208. https://doi.org/10.1016/j.catena.2019.03.020 Pfeiffer, M., Padarian, J., Vega, M. P., 2023. Soil Inorganic Carbon Distribution, Stocks and Environmental Thresholds along a Major Climatic Gradient. Geoderma, 433: 116449. https://doi.org/10.1016/j.geoderma.2023.116449 Qin, C. Q., Li, S. L., Waldron, S., et al., 2020. High-Frequency Monitoring Reveals How Hydrochemistry and Dissolved Carbon Respond to Rainstorms at a Karstic Critical Zone, Southwestern China. Science of the Total Environment, 714: 136833. https://doi.org/10.1016/j.scitotenv.2020.136833 Rey, A., Oyonarte, C., Morán-López, T., et al., 2017. Changes in Soil Moisture Predict Soil Carbon Losses upon Rewetting in a Perennial Semiarid Steppe in SE Spain. Geoderma, 287: 135-146. https://doi.org/10.1016/j.geoderma.2016.06.025 Schimel, J. P., 2018. Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes. Annual Review of Ecology, Evolution, and Systematics, 49: 409-432. https://doi.org/10.1146/annurev-ecolsys-110617-062614 Schmidt, M. W. I., Torn, M. S., Abiven, S., et al., 2011. Persistence of Soil Organic Matter as an Ecosystem Property. Nature, 478: 49-56. https://doi.org/10.1038/nature10386 Schwendenmann, L., Veldkamp, E., Brenes, T., et al., 2003. Spatial and Temporal Variation in Soil CO2 Efflux in an Old-Growth Neotropical Rain Forest, La Selva, Costa Rica. Biogeochemistry, 64(1): 111-128. https://doi.org/10.1023/a:1024941614919 Shen, Z. X., Li, Y. L., Fu, G., 2015. Response of Soil Respiration to Short-Term Experimental Warming and Precipitation Pulses over the Growing Season in an Alpine Meadow on the Northern Tibet. Applied Soil Ecology, 90: 35-40. https://doi.org/10.1016/j.apsoil.2015.01.015 Song, J., Wan, S. Q., Piao, S. L., et al., 2019. A Meta-Analysis of 1, 119 Manipulative Experiments on Terrestrial Carbon-Cycling Responses to Global Change. Nature Ecology & Evolution, 3(9): 1309-1320. https://doi.org/10.1038/s41559-019-0958-3 Soong, J. L., Castanha, C., Hicks Pries, C. E., et al., 2021. Five Years of Whole-Soil Warming Led to Loss of Subsoil Carbon Stocks and Increased CO2 Efflux. Science Advances, 7(21): eabd1343. https://doi.org/10.1126/sciadv.abd1343 Sotta, E. D., Meir, P., Malhi, Y., et al., 2004. Soil CO2 Efflux in a Tropical Forest in the Central Amazon. Global Change Biology, 10(5): 601-617. https://doi.org/10.1111/j.1529-8817.2003.00761.x Sotta, E. D., Veldkamp, E., Guimarães, B. R., et al., 2006. Landscape and Climatic Controls on Spatial and Temporal Variation in Soil CO2 Efflux in an Eastern Amazonian Rainforest, Caxiuanã, Brazil. Forest Ecology and Management, 237(1-3): 57-64. https://doi.org/10.1016/j.foreco.2006.09.027 Steven, D. A., 2023. Microbial Drought Resistance may Destabilize Soil Carbon. Trends in Microbiology, 31(8): 780-787. https://doi.org/10.1016/j.tim.2023.03.002 Stockmann, U., Adams, M. A., Crawford, J. W., et al., 2013. The Knowns, Known Unknowns and Unknowns of Sequestration of Soil Organic Carbon. Agriculture, Ecosystems & Environment, 164: 80-99. https://doi.org/10.1016/j.agee.2012.10.001 Su, R. L., Wu, X., Hu, J. L., et al., 2023. Warming Promotes the Decomposition of Oligotrophic Bacterial-Driven Organic Matter in Paddy Soil. Soil Biology and Biochemistry, 186: 109156. https://doi.org/10.1016/j.soilbio.2023.109156 Suchet, P. A., Probst, J. L., 1995. A Global Model for Present-Day Atmospheric/Soil CO2 Consumption by Chemical Erosion of Continental Rocks (GEM-CO2). Tellus B, 47(1-2): 273-280. https://doi.org/10.1034/j.1600-0889.47.issue1.23.x Suchet, P. A., Probst, J. L., Ludwig, W., 2003. Worldwide Distribution of Continental Rock Lithology: Implications for the Atmospheric/Soil CO2 Uptake by Continental Weathering and Alkalinity River Transport to the Oceans. Global Biogeochemical Cycles, 17(2): 1038. https://doi.org/10.1029/2002gb001891 Suseela, V., Dukes, J. S., 2013. The Responses of Soil and Rhizosphere Respiration to Simulated Climatic Changes Vary by Season. Ecology, 94(2): 403-413. https://doi.org/10.1890/12-0150.1 Tan, X. Z., Gan, T. Y., Horton, D. E., 2018. Projected Timing of Perceivable Changes in Climate Extremes for Terrestrial and Marine Ecosystems. Global Change Biology, 24(10): 4696-4708. https://doi.org/10.1111/gcb.14329 Tiruvaimozhi, Y. V., Sankaran, M., 2019. Soil Respiration in a Tropical Montane Grassland Ecosystem is Largely Heterotroph-Driven and Increases under Simulated Warming. Agricultural and Forest Meteorology, 276: 107619. https://doi.org/10.1016/j.agrformet.2019.107619 Ullah, M. R., Carrillo, Y., Dijkstra, F. A., 2021. Drought-Induced and Seasonal Variation in Carbon Use Efficiency is Associated with Fungi: Bacteria Ratio and Enzyme Production in a Grassland Ecosystem. Soil Biology and Biochemistry, 155: 108159. https://doi.org/10.1016/j.soilbio.2021.108159 Wang, H. H., Huang, W. D., He, Y. Z., et al., 2023. Effects of Warming and Precipitation Reduction on Soil Respiration in Horqin Sandy Grassland, Northern China. Catena, 233: 107470. https://doi.org/10.1016/j.catena.2023.107470 Wang, J. S., Tian, D. S., Knapp, A. K., et al., 2021a. Precipitation Manipulation and Terrestrial Carbon Cycling: The Roles of Treatment Magnitude, Experimental Duration and Local Climate. Global Ecology and Biogeography, 30(9): 1909-1921. https://doi.org/10.1111/geb.13356 Wang, J. S., Quan, Q., Chen, W. N., et al., 2021b. Increased CO2 Emissions Surpass Reductions of Non-CO2 Emissions More under Higher Experimental Warming in an Alpine Meadow. Science of the Total Environment, 769: 144559. https://doi.org/10.1016/j.scitotenv.2020.144559 Wang, W., Chen, W. L., Wang, S. P., 2010. Forest Soil Respiration and Its Heterotrophic and Autotrophic Components: Global Patterns and Responses to Temperature and Precipitation. Soil Biology and Biochemistry, 42(8): 1236-1244. https://doi.org/10.1016/j.soilbio.2010.04.013 Wood, T. E., Detto, M., Silver, W. L., 2013. Sensitivity of Soil Respiration to Variability in Soil Moisture and Temperature in a Humid Tropical Forest. PLOS One, 8(12): e80965. https://doi.org/10.1371/journal.pone.0080965 Wu, H. J., Lee, X. H., 2011. Short-Term Effects of Rain on Soil Respiration in Two New England Forests. Plant and Soil, 338(1): 329-342. https://doi.org/10.1007/s11104-010-0548-2 Wu, X., Zhu, X. Y., Zhang, M. L., et al., 2013. Effects of Soil Temperature and Moisture on Soil Respiration in Epikarst. Ecology and Environmental Sciences, 22(12): 1904-1908 (in Chinese with English abstract). Xie, X. J., Li, Q. H., et al., 2022. Microbial Community Structure and Its Response to Environment in Mangrove Sediments of Dongzhai Port. Earth Science, 47(3): 1122-1135 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2022.025 Yang, H., Zhou, L., Huang, L. Y., et al., 2015. A Comparative Study of Soil Carbon Transfer between Forest Soils in Subtropical Karst and Clasolite Areas and the Karst Carbon Sink Effect in Guilin, Guangxi, China. Environmental Earth Sciences, 74(2): 921-928. https://doi.org/10.1007/s12665-014-3903-4 Yang, Z. H., Luo, X. R., Shi, Y. H., et al., 2023. Controls and Variability of Soil Respiration Temperature Sensitivity across China. Science of the Total Environment, 871: 161974. https://doi.org/10.1016/j.scitotenv.2023.161974 Yu, H. Y., Liu, X. D., Ma, Q. H., et al., 2021. Climatic Warming Enhances Soil Respiration Resilience in an Arid Ecosystem. Science of the Total Environment, 756: 144005. https://doi.org/10.1016/j.scitotenv.2020.144005 Yu, Z., Ciais, P., Piao, S. L., et al., 2022. Forest Expansion Dominates China's Land Carbon Sink since 1980. Nature Communications, 13(1): 5374. https://doi.org/10.1038/s41467-022-32961-2 Zhang, C. L., Huang, F., Pu, J. B., et al., 2021. Estimation of Karst Carbon Sink Fluxes and Manual Intervention to Increase Carbon Sinks in China. Geological Survey of China, 8(4): 40-52 (in Chinese with English abstract). Zhang, Q., Qin, W., Feng, J., et al., 2023. Whole-Soil-Profile Warming does not Change Microbial Carbon Use Efficiency in Surface and Deep Soils. PNAS, 120(32): e2302190120. https://doi.org/10.1073/pnas.2302190120 Zhang, Y., Xie, Y. Z., Ma, H. B., et al., 2021. The Responses of Soil Respiration to Changed Precipitation and Increased Temperature in Desert Grassland in Northern China. Journal of Arid Environments, 193: 104579. https://doi.org/10.1016/j.jaridenv.2021.104579 Zhao, G. S., Huang, Q. B., Zhu, Y. N., et al., 2023. Simulation of the Buffering Process of Karst Soil on Sulfuric Acid Rain and the Characteristic of δ13CDIC and the Carbon Sink Flux in Guilin City, Southwest China. Environmental Earth Sciences, 82(12): 296. https://doi.org/10.1007/s12665-023-10948-6 Zhao, M., Guo, S. L., Wang, R., 2021. Diverse Soil Respiration Responses to Extreme Precipitation Patterns in Arid and Semiarid Ecosystems. Applied Soil Ecology, 163: 103928. https://doi.org/10.1016/j.apsoil.2021.103928 Zhou, L. Y., Zhou, X. H., Zhang, B. C., et al., 2014. Different Responses of Soil Respiration and Its Components to Nitrogen Addition among Biomes: A Meta-Analysis. Global Change Biology, 20(7): 2332-2343. https://doi.org/10.1111/gcb.12490 Zhu, B., Cheng, W. X., 2011. Rhizosphere Priming Effect Increases the Temperature Sensitivity of Soil Organic Matter Decomposition. Global Change Biology, 17(6): 2172-2183. https://doi.org/10.1111/j.1365-2486.2010.02354.x Zhu, C. C., 2021. Study on the Characteristics of Soil Respiration and Its Influencing Factors in Karst Region (Dissertation). Guizhou Normal University, Guiyang, 34-40 (in Chinese with English abstract). 戴磊, 王贵玲, 何雨江, 2021. 基于分形理论研究土壤结构及其水分特征关系. 地球科学, 46(9): 3410-3420. doi: 10.3799/dqkx.2020.345 李龙波, 张兴勇, 蔡大为, 2021. 贵州喀斯特地区典型土壤碳酸盐垂直分布特征及其同位素组成研究. 地球与环境, 49(4): 409-415. 刘勇勤, 计慕侃, 刘军志, 等, 2022. 青藏高原冰川冻土微生物如何记录和影响气候变化?地球科学, 47(10): 3825-3826. doi: 10.3799/dqkx.2022.826 马明国, 汤旭光, 韩旭军, 等, 2019. 西南岩溶地区碳循环观测与模拟研究进展和展望. 地理科学进展, 38(8): 1196-1205. 马志良, 赵文强, 刘美, 等, 2018. 土壤呼吸组分对气候变暖的响应研究进展. 应用生态学报, 29(10): 3477-3486. 吴夏, 朱晓燕, 张美良, 等, 2013. 岩溶表层带土壤温度和含水率对呼吸作用的影响. 生态环境学报, 22(12): 1904-1908. 张春来, 黄芬, 蒲俊兵, 等, 2021. 中国岩溶碳汇通量估算与人工干预增汇途径. 中国地质调查, 8(4): 40-52. 张攀, 谢先军, 黎清华, 等, 2022. 东寒港红树林沉积物中微生物群落结构特征及其对环境的响应. 地球科学, 47(3): 1122-1135. 朱粲粲, 2021. 岩溶地区土壤呼吸特征及其影响因素研究(硕士学位论文). 贵阳: 贵州师范大学, 34-40. -