Crustal Structure of Philippine Sea Plate: Insights from Gravity Inversions Constrained by Deep Seismic
-
摘要: 为了深入理解菲律宾海板块各地质构造单元的深部结构以及九州‒帕劳洋脊地壳特征,利用卫星测高重力异常,结合研究区域水深、沉积层厚度及洋壳年龄数据校正变密度沉积层重力效应和热扰动重力效应,并利用KPR上OBS剖面得到的莫霍面深度作为重力反演莫霍面的约束,计算了菲律宾海板块研究区的莫霍面深度及地壳厚度.结果显示菲律宾海板块整体地壳厚度呈现从西到东、从南到北依次增厚的特征.西菲律宾海盆莫霍面深度在10 km左右,地壳厚度在4 km左右.帕里西维拉海盆地壳厚度平均在7 km左右,大于年老的西菲律宾海盆.九州‒帕劳洋脊地壳厚度最厚为14 km,在18°~19°N处厚度为8 km左右,接近帕里西维拉海盆洋壳厚度,不存在局部显著增厚地壳,KPR地壳为弧后岩浆活动改造的洋壳,而非成熟岛弧地壳.Abstract: In order to understand the deep structure of the geological tectonic units of the Philippine Sea plate and the crustal feature of the Kyushu-Palau Ridge, this paper uses satellite gravity anomaly, combined with the bathymetry, sediment thickness and oceanic crust age data in the study area to correct the gravity effects of sediment and thermal disturbance. The Moho depth and crustal thickness of the Philippine Sea plate were calculated by combining Moho depth data from OBS profiles cross the KPR as constraints. The results show that the overall crustal thickness of the Philippine Sea plate is characterized by a gradual increase from west to east and from south to north. The Moho depth of the West Philippine Basin is about 10 km, with a crustal thickness of about 4 km. The average crustal thickness of the Parece Vela Basin is about 7 km, which is larger than that of the older West Philippine Basin.The crustal thickness of the Kyushu-Palau Ridge is 14 km at the maximum. In the 18°-19°N segment of the KPR, the crust is about 8 km, which is similar to the normal oceanic crust thickness in the Parece Vela Basin. There is no significant thickening crust. The crustal properties of the KPR are oceanic crust that has been thickened by back-arc magmatism, rather than mature island arc crust.
-
Key words:
- West Philippine Basin /
- Kyushu-Palau Ridge /
- Parece Vela Basin /
- crustal thickness /
- crustal property /
- marine geology
-
图 8 KPR沿脊地壳厚度
a. KPR沿脊地壳厚度与岩石年龄分布对比,根据Ishizuka et al.(2011)修改;b. KPR沿脊水深、莫霍面深度、地壳厚度
Fig. 8. Crustal thickness along the KPR
-
Braitenberg, C., Wienecke, S., Wang, Y., 2006. Basement Structures from Satellite-Derived Gravity Field: South China Sea Ridge. Journal of Geophysical Research: Solid Earth, 111(B5): B5407. https://doi.org/10.1029/2005JB003938 Chappell, A. R., Kusznir, N. J., 2008. Three-Dimensional Gravity Inversion for Moho Depth at Rifted Continental Margins Incorporating a Lithosphere Thermal Gravity Anomaly Correction. Geophysical Journal International, 174(1): 1-13. https://doi.org/10.1111/j.1365-246X.2008.03803.x Ding, W. W., Li, J. B., 2019. Seismic Detection of Deep Structure for Southern Kyueshu-Palau Ridge and Its Possible Implications for Subduction Initiation. Marine Geology & Quaternary Geology, 39(5): 98-103 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201905008.htm Deschamps, A., Lallemand, S., 2002. The West Philippine Basin: An Eocene to Early Oligocene Back Arc Basin Opened between Two Opposed Subduction Zones. Journal of Geophysical Research: Solid Earth, 107(B12): EPM 1-1-EPM 1-24. https://doi.org/10.1029/2001JB001706 Ding, H. H., Ding, W. W., Zhao, Y. H., et al., 2022. Spatiotemporal Distribution of Seamount Volume along the Kyushu-Palau Ridge: Implications for Rejuvenated Volcanism. Journal of Asian Earth Sciences, 240: 105391. https://doi.org/10.1016/j.jseaes.2022.105391 Fang, Y. X., Li, J. B., Li, M. B., et al., 2011. The Formation and Tectonic Evolution of Philippine Sea Plate and KPR. Acta Oceanologica Sinica, 30(4): 75-88. https://doi.org/10.1007/s13131-011-0135-2 Fullea, J., Fernàndez, M., Zeyen, H., 2008. FA2BOUG-A Fortran 90 Code to Compute Bouguer Gravity Anomalies from Gridded Free-Air Anomalies: Application to the Atlantic-Mediterranean Transition Zone. Computers & Geosciences, 34(12): 1665-1681. https://doi.org/10.1016/j.cageo.2008.02.018 Gómez-Ortiz, D., Agarwal, B. N. P., 2005. 3DINVER. M: A Matlab Program to Invert the Gravity Anomaly over a 3D Horizontal Density Interface by Parker-Oldenburg's Algorithm. Computers & Geosciences, 31(4): 513-520. https://doi.org/10.1016/j.cageo.2004.11.004 Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/S1367-9120(01)00069-4 Hall, R., Ali, J. R., Anderson, C. D., et al., 1995. Origin and Motion History of the Philippine Sea Plate. Tectonophysics, 251(1-4): 229-250. https://doi.org/10.1016/0040-1951(95)00038-0 Ishihara, T., Koda, K., 2007. Variation of Crustal Thickness in the Philippine Sea Deduced from Three-Dimensional Gravity Modeling. Island Arc, 16(3): 322-337. https://doi.org/10.1111/j.1440-1738.2007.00593.x Ishizuka, O., Taylor, R. N., Yuasa, M., et al., 2011. Making and Breaking an Island Arc: A New Perspective from the Oligocene Kyushu-Palau Arc, Philippine Sea. Geochemistry, Geophysics, Geosystems, 12(5): Q05005. https://doi.org/10.1029/2010gc003440 Li, C. F., Li, G., Li, Z. L., et al., 2019. Study of the Caroline Plate: Initial Subduction, Initial Spreading and Fluid-Solid Interaction. Marine Geology & Quaternary Geology, 39(5): 87-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201905007.htm McKenzie, D., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. https://doi.org/10.1016/0012-821X(78)90071-7 McKenzie, D., Jackson, J., Priestley, K., 2005. Thermal Structure of Oceanic and Continental Lithosphere. Earth and Planetary Science Letters, 233(3-4): 337-349. https://doi.org/10.1016/j.epsl.2005.02.005 Müller, R. D., Sdrolias, M., Gaina, C., et al., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World's Ocean Crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. https://doi.org/10.1029/2007gc001743 Nishizawa, A., Kaneda, K., Katagiri, Y., et al., 2007. Variation in Crustal Structure along the Kyushu-Palau Ridge at 15-21°N on the Philippine Sea Plate Based on Seismic Refraction Profiles. Earth, Planets and Space, 59(6): e17-e20. https://doi.org/10.1186/bf03352711 Nishizawa, A., Kaneda, K., Oikawa, M., 2016. Crust and Uppermost Mantle Structure of the Kyushu-Palau Ridge, Remnant Arc on the Philippine Sea Plate. Earth, Planets and Space, 68(1): 30. https://doi.org/10.1186/s40623-016-0407-3 Niu, X. W., Tan, P. C., Ding, W. W., et al., 2022. Oceanic Crustal Structure and Tectonic Origin of the Southern Kyushu-Palau Ridge in the Philippine Sea. Acta Oceanologica Sinica, 41(1): 39-49. https://doi.org/10.1007/s13131-021-1978-9 Okino, K., Ohara, Y., Kasuga, S., et al., 1999. The Philippine Sea: New Survey Results Reveal the Structure and the History of the Marginal Basins. Geophysical Research Letters, 26(15): 2287-2290. https://doi.org/10.1029/1999gl900537 Oldenburg, D. W., 1974. The Inversion and Interpretation of Gravity Anomalies. Geophysics, 39(4): 526-536. https://doi.org/10.1190/1.1440444 Parker, R. L., 1973. The Rapid Calculation of Potential Anomalies. Geophysical Journal International, 31(4): 447-455. https://doi.org/10.1111/j.1365-246x.1973.tb06513.x Peng, X., Li, C. F., Song, T. R., et al., 2022. Deep Structures and Lithospheric Breakup Processes at Northern Continent-Ocean Transition Zone of the South China Sea. Earth Science, 47(11): 4245-4255 (in Chinese with English abstract). Sandwell, D. T., Mueller, R. D., Smith, W. H. F., et al., 2014. New Global Marine Gravity Model from CryoSat-2 and Jason-1 Reveals Buried Tectonic Structure. Science, 346(6205): 65-67. https://doi.org/10.1126/science.1258213 Sclater, J. G., Christie, P. A. F., 1980. Continental Stretching: An Explanation of the Post-Mid-Cretaceous Subsidence of the Central North Sea Basin. Journal of Geophysical Research: Solid Earth, 85(B7): 3711-3739. https://doi.org/10.1029/jb085ib07p03711 Shi, X. F., Yan, Q. S., 2013. Magmatism of Typical Marginal Basins (or Back-Arc Basins) in the West Pacific. Advances in Earth Science, 28(7): 737-750 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201307003.htm Sdrolias, M., Roest, W. R., Müller, R. D., 2004. An Expression of Philippine Sea Plate Rotation: The Parece Vela and Shikoku Basins. Tectonophysics, 394(1-2): 69-86. https://doi.org/10.1016/j.tecto.2004.07.061 Straume, E. O., Gaina, C., Medvedev, S., et al., 2019. GlobSed: Updated Total Sediment Thickness in the World's Oceans. Geochemistry, Geophysics, Geosystems, 20(4): 1756-1772. https://doi.org/10.1029/2018gc008115 Su, D. Q., White, N., McKenzie, D., 1989. Extension and Subsidence of the Pearl River Mouth Basin, Northern South China Sea. Basin Research, 2(4): 205-222. https://doi.org/10.1111/j.1365-2117.1989.tb00036.x Sun, W., Zhang, L., Li, H., et al., 2020. The Synchronic Cenozoic Subduction Initiations in the West Pacific Induced by the Closure of the Neo-Tethys Ocean. Science Bulletin, 65(24): 2068-2071. https://doi.org/10.1016/j.scib.2020.09.001 Tang, Y., Li, M. B., Li, J. B., et al., 2011. The Geomorphological Features and Continuity of the Kyushu-Palau Ridge (KPR). Acta Oceanologica Sinica, 30(5): 114-124. https://doi.org/10.1007/s13131-011-0136-1 Taylor, B., Goodliffe, A. M., 2004. The West Philippine Basin and the Initiation of Subduction, Revisited. Geophysical Research Letters, 31(12): L12602. https://doi.org/10.1029/2004gl020136 Wang, G., Jiang, S. H., Li, S. Z., et al., 2017. Basement-Involved Faults and Deep Structures in the West Philippine Basin: Constrains from Gravity Field. Marine Geophysical Research, 38(1-2): 149-167. https://doi.org/10.1007/s11001-017-9310-y Wei, X. D., Ding, W. W., Ruan, A. G., et al., 2022. Crustal Structure and Variation along the Southern Part of the Kyushu-Palau Ridge. Acta Oceanologica Sinica, 41(1): 50-57. https://doi.org/10.1007/s13131-021-1979-8 White, R. S., Detrick, R. S., Sinha, M. C., et al., 1984. Anomalous Seismic Crustal Structure of Oceanic Fracture Zones. Geophysical Journal International, 79(3): 779-798. https://doi.org/10.1111/j.1365-246x.1984.tb02868.x Wu, J., Suppe, J., Lu, R. Q., et al., 2016. Philippine Sea and East Asian Plate Tectonics since 52 Ma Constrained by New Subducted Slab Reconstruction Methods. Journal of Geophysical Research: Solid Earth, 121(6): 4670-4741. https://doi.org/10.1002/2016JB012923 Wu, S. G., Fan, J. K., Dong, D. D., 2013. Discussion on the Tectonic Division of the Philippine Sea Plate. Chinese Journal of Geology (Scientia Geologica Sinica), 48(3): 677-692 (in Chinese with English abstract). Wu, Z. C., Gao, J. Y., Ding, W. W., et al., 2017. Moho Depth of the South China Sea Basin from Three-Dimensional Gravity Inversion with Constraint Points. Chinese Journal of Geophysics, 60(7): 2599-2613 (in Chinese with English abstract). doi: 10.1002/cjg2.30053/abstract Xie, X. N., Zhao, S., Ren, J. Y., et al., 2022. Marginal Sea Closure Process and Genetic Mechanism of South China Sea during Post-Spreading Period. Earth Science, 47(10): 3524-3542 (in Chinese with English abstract). Yen, H. Y., Lo, Y. T., Yeh, Y. L., et al., 2015. The Crustal Thickness of the Philippine Sea Plate Derived from Gravity Data. Terrestrial, Atmospheric and Oceanic Sciences, 26(3): 253-259. https://doi.org/10.3319/tao.2014.11.17.01(t) 丁巍伟, 李家彪, 2019. 九州‒帕劳海脊南段的深部结构探测及对板块俯冲起始机制的可能启示. 海洋地质与第四纪地质, 39(5): 98-103. 李春峰, 李刚, 厉子龙, 等, 2019. 卡罗琳海板块实验: 初始俯冲、初始扩张与流固耦合. 海洋地质与第四纪地质, 39(5): 87-97. 彭希, 李春峰, 宋陶然, 等, 2022. 南海北部洋‒陆过渡带深部结构与岩石圈破裂过程. 地球科学, 47(11): 4245-4255. doi: 10.3799/dqkx.2022.366 石学法, 鄢全树, 2013. 西太平洋典型边缘海盆的岩浆活动. 地球科学进展, 28(7): 737-750. 吴时国, 范建柯, 董冬冬, 2013. 论菲律宾海板块大地构造分区. 地质科学, 48(3): 677-692. 吴招才, 高金耀, 丁巍伟, 等, 2017. 南海海盆三维重力约束反演莫霍面深度及其特征. 地球物理学报, 60(7): 2599-2613. 解习农, 赵帅, 任建业, 等, 2022. 南海后扩张期大陆边缘闭合过程及成因机制. 地球科学, 47(10): 3524-3542. doi: 10.3799/dqkx.2022.265 -