• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    菲律宾海板块地壳结构特征: 基于地震约束的重力反演

    黄子强 吴招才 方银霞 许明炬 张家岭

    黄子强, 吴招才, 方银霞, 许明炬, 张家岭, 2025. 菲律宾海板块地壳结构特征: 基于地震约束的重力反演. 地球科学, 50(1): 234-245. doi: 10.3799/dqkx.2023.198
    引用本文: 黄子强, 吴招才, 方银霞, 许明炬, 张家岭, 2025. 菲律宾海板块地壳结构特征: 基于地震约束的重力反演. 地球科学, 50(1): 234-245. doi: 10.3799/dqkx.2023.198
    Huang Ziqiang, Wu Zhaocai, Fang Yinxia, Xu Mingju, Zhang Jialing, 2025. Crustal Structure of Philippine Sea Plate: Insights from Gravity Inversions Constrained by Deep Seismic. Earth Science, 50(1): 234-245. doi: 10.3799/dqkx.2023.198
    Citation: Huang Ziqiang, Wu Zhaocai, Fang Yinxia, Xu Mingju, Zhang Jialing, 2025. Crustal Structure of Philippine Sea Plate: Insights from Gravity Inversions Constrained by Deep Seismic. Earth Science, 50(1): 234-245. doi: 10.3799/dqkx.2023.198

    菲律宾海板块地壳结构特征: 基于地震约束的重力反演

    doi: 10.3799/dqkx.2023.198
    基金项目: 

    国家重点研发计划项目 2023YFC2808805

    国家自然科学基金项目 42076078

    中国‒莫桑比克联合航次项目 GASI-01-DLJHJ-CM

    详细信息
      作者简介:

      黄子强(1999-),男,硕士研究生,研究方向为海洋地球物理. ORCID:0009-0009-7774-1601. E-mail:Hzqyzwd2021@163.com

      通讯作者:

      吴招才,E-mail: wuzc@sio.org.cn

    • 中图分类号: P67

    Crustal Structure of Philippine Sea Plate: Insights from Gravity Inversions Constrained by Deep Seismic

    • 摘要: 为了深入理解菲律宾海板块各地质构造单元的深部结构以及九州‒帕劳洋脊地壳特征,利用卫星测高重力异常,结合研究区域水深、沉积层厚度及洋壳年龄数据校正变密度沉积层重力效应和热扰动重力效应,并利用KPR上OBS剖面得到的莫霍面深度作为重力反演莫霍面的约束,计算了菲律宾海板块研究区的莫霍面深度及地壳厚度.结果显示菲律宾海板块整体地壳厚度呈现从西到东、从南到北依次增厚的特征.西菲律宾海盆莫霍面深度在10 km左右,地壳厚度在4 km左右.帕里西维拉海盆地壳厚度平均在7 km左右,大于年老的西菲律宾海盆.九州‒帕劳洋脊地壳厚度最厚为14 km,在18°~19°N处厚度为8 km左右,接近帕里西维拉海盆洋壳厚度,不存在局部显著增厚地壳,KPR地壳为弧后岩浆活动改造的洋壳,而非成熟岛弧地壳.

       

    • 图  1  研究区水深地形图

      Fig.  1.  Topography and bathymetry of the study area

      图  2  菲律宾海板块空间重力异常

      黑色线代表地震测线位置,红色圆圈代表反演用到的约束点

      Fig.  2.  Free-air gravity anomaly of the Philippine Sea plate

      图  3  重力异常反演莫霍面深度流程

      Fig.  3.  Flowchart of gravity inversion for determining Moho depth

      图  4  沉积物重力效应(a); 热扰动重力效应(b); 热校正后的布格重力异常(c)

      Fig.  4.  Predicted attractions of the sediment-crust interface (a); effect of thermal gravity anomalies (b); Bouguer anomalies after thermal correction (c)

      图  5  莫霍面深度反演结果与地震约束点偏差直方图

      Fig.  5.  The deviation histogram of the Moho depth inversion results and seismic constraint points

      图  6  菲律宾海板块地壳厚度分布

      黑色虚线为5条剖面位置

      Fig.  6.  Crustal thickness distribution of the Philippine Sea plate

      图  7  10°N剖面图(a); 15°N剖面图(b); 20 °N剖面图(c); 130°E剖面图(d); 140°E剖面图(e)

      WPB.西菲律宾海盆;KPR.九州‒帕劳洋脊;PVB.帕里西维拉海盆;CP.卡洛琳板块;WMR.西马里亚纳脊;SB.四国海盆;RT.琉球海沟;EP.欧亚板块

      Fig.  7.  Profile of the 10°N (a); profile of the15°N (b); profile of the 20 °N (c); profile of the 130°E (d); profile of the 140°E (e)

      图  8  KPR沿脊地壳厚度

      a. KPR沿脊地壳厚度与岩石年龄分布对比,根据Ishizuka et al.(2011)修改;b. KPR沿脊水深、莫霍面深度、地壳厚度

      Fig.  8.  Crustal thickness along the KPR

      图  9  重力反演结果与地震剖面对比

      a.kpr 22测线对比图;b.kpr24测线对比图;c.KPR2020-2测线对比图;d.KPR2020-3测线对比图;e.KPR地壳厚度及4条测线位置,箭头表示测线方向

      Fig.  9.  Comparison of gravity inversion results with seismic profiles

      图  10  kpr22剖面重力正演模型

      D为密度(g/cm3

      Fig.  10.  The gravity forward model of kpr22 profile

    • Braitenberg, C., Wienecke, S., Wang, Y., 2006. Basement Structures from Satellite-Derived Gravity Field: South China Sea Ridge. Journal of Geophysical Research: Solid Earth, 111(B5): B5407. https://doi.org/10.1029/2005JB003938
      Chappell, A. R., Kusznir, N. J., 2008. Three-Dimensional Gravity Inversion for Moho Depth at Rifted Continental Margins Incorporating a Lithosphere Thermal Gravity Anomaly Correction. Geophysical Journal International, 174(1): 1-13. https://doi.org/10.1111/j.1365-246X.2008.03803.x
      Ding, W. W., Li, J. B., 2019. Seismic Detection of Deep Structure for Southern Kyueshu-Palau Ridge and Its Possible Implications for Subduction Initiation. Marine Geology & Quaternary Geology, 39(5): 98-103 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201905008.htm
      Deschamps, A., Lallemand, S., 2002. The West Philippine Basin: An Eocene to Early Oligocene Back Arc Basin Opened between Two Opposed Subduction Zones. Journal of Geophysical Research: Solid Earth, 107(B12): EPM 1-1-EPM 1-24. https://doi.org/10.1029/2001JB001706
      Ding, H. H., Ding, W. W., Zhao, Y. H., et al., 2022. Spatiotemporal Distribution of Seamount Volume along the Kyushu-Palau Ridge: Implications for Rejuvenated Volcanism. Journal of Asian Earth Sciences, 240: 105391. https://doi.org/10.1016/j.jseaes.2022.105391
      Fang, Y. X., Li, J. B., Li, M. B., et al., 2011. The Formation and Tectonic Evolution of Philippine Sea Plate and KPR. Acta Oceanologica Sinica, 30(4): 75-88. https://doi.org/10.1007/s13131-011-0135-2
      Fullea, J., Fernàndez, M., Zeyen, H., 2008. FA2BOUG-A Fortran 90 Code to Compute Bouguer Gravity Anomalies from Gridded Free-Air Anomalies: Application to the Atlantic-Mediterranean Transition Zone. Computers & Geosciences, 34(12): 1665-1681. https://doi.org/10.1016/j.cageo.2008.02.018
      Gómez-Ortiz, D., Agarwal, B. N. P., 2005. 3DINVER. M: A Matlab Program to Invert the Gravity Anomaly over a 3D Horizontal Density Interface by Parker-Oldenburg's Algorithm. Computers & Geosciences, 31(4): 513-520. https://doi.org/10.1016/j.cageo.2004.11.004
      Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/S1367-9120(01)00069-4
      Hall, R., Ali, J. R., Anderson, C. D., et al., 1995. Origin and Motion History of the Philippine Sea Plate. Tectonophysics, 251(1-4): 229-250. https://doi.org/10.1016/0040-1951(95)00038-0
      Ishihara, T., Koda, K., 2007. Variation of Crustal Thickness in the Philippine Sea Deduced from Three-Dimensional Gravity Modeling. Island Arc, 16(3): 322-337. https://doi.org/10.1111/j.1440-1738.2007.00593.x
      Ishizuka, O., Taylor, R. N., Yuasa, M., et al., 2011. Making and Breaking an Island Arc: A New Perspective from the Oligocene Kyushu-Palau Arc, Philippine Sea. Geochemistry, Geophysics, Geosystems, 12(5): Q05005. https://doi.org/10.1029/2010gc003440
      Li, C. F., Li, G., Li, Z. L., et al., 2019. Study of the Caroline Plate: Initial Subduction, Initial Spreading and Fluid-Solid Interaction. Marine Geology & Quaternary Geology, 39(5): 87-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201905007.htm
      McKenzie, D., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. https://doi.org/10.1016/0012-821X(78)90071-7
      McKenzie, D., Jackson, J., Priestley, K., 2005. Thermal Structure of Oceanic and Continental Lithosphere. Earth and Planetary Science Letters, 233(3-4): 337-349. https://doi.org/10.1016/j.epsl.2005.02.005
      Müller, R. D., Sdrolias, M., Gaina, C., et al., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World's Ocean Crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. https://doi.org/10.1029/2007gc001743
      Nishizawa, A., Kaneda, K., Katagiri, Y., et al., 2007. Variation in Crustal Structure along the Kyushu-Palau Ridge at 15-21°N on the Philippine Sea Plate Based on Seismic Refraction Profiles. Earth, Planets and Space, 59(6): e17-e20. https://doi.org/10.1186/bf03352711
      Nishizawa, A., Kaneda, K., Oikawa, M., 2016. Crust and Uppermost Mantle Structure of the Kyushu-Palau Ridge, Remnant Arc on the Philippine Sea Plate. Earth, Planets and Space, 68(1): 30. https://doi.org/10.1186/s40623-016-0407-3
      Niu, X. W., Tan, P. C., Ding, W. W., et al., 2022. Oceanic Crustal Structure and Tectonic Origin of the Southern Kyushu-Palau Ridge in the Philippine Sea. Acta Oceanologica Sinica, 41(1): 39-49. https://doi.org/10.1007/s13131-021-1978-9
      Okino, K., Ohara, Y., Kasuga, S., et al., 1999. The Philippine Sea: New Survey Results Reveal the Structure and the History of the Marginal Basins. Geophysical Research Letters, 26(15): 2287-2290. https://doi.org/10.1029/1999gl900537
      Oldenburg, D. W., 1974. The Inversion and Interpretation of Gravity Anomalies. Geophysics, 39(4): 526-536. https://doi.org/10.1190/1.1440444
      Parker, R. L., 1973. The Rapid Calculation of Potential Anomalies. Geophysical Journal International, 31(4): 447-455. https://doi.org/10.1111/j.1365-246x.1973.tb06513.x
      Peng, X., Li, C. F., Song, T. R., et al., 2022. Deep Structures and Lithospheric Breakup Processes at Northern Continent-Ocean Transition Zone of the South China Sea. Earth Science, 47(11): 4245-4255 (in Chinese with English abstract).
      Sandwell, D. T., Mueller, R. D., Smith, W. H. F., et al., 2014. New Global Marine Gravity Model from CryoSat-2 and Jason-1 Reveals Buried Tectonic Structure. Science, 346(6205): 65-67. https://doi.org/10.1126/science.1258213
      Sclater, J. G., Christie, P. A. F., 1980. Continental Stretching: An Explanation of the Post-Mid-Cretaceous Subsidence of the Central North Sea Basin. Journal of Geophysical Research: Solid Earth, 85(B7): 3711-3739. https://doi.org/10.1029/jb085ib07p03711
      Shi, X. F., Yan, Q. S., 2013. Magmatism of Typical Marginal Basins (or Back-Arc Basins) in the West Pacific. Advances in Earth Science, 28(7): 737-750 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201307003.htm
      Sdrolias, M., Roest, W. R., Müller, R. D., 2004. An Expression of Philippine Sea Plate Rotation: The Parece Vela and Shikoku Basins. Tectonophysics, 394(1-2): 69-86. https://doi.org/10.1016/j.tecto.2004.07.061
      Straume, E. O., Gaina, C., Medvedev, S., et al., 2019. GlobSed: Updated Total Sediment Thickness in the World's Oceans. Geochemistry, Geophysics, Geosystems, 20(4): 1756-1772. https://doi.org/10.1029/2018gc008115
      Su, D. Q., White, N., McKenzie, D., 1989. Extension and Subsidence of the Pearl River Mouth Basin, Northern South China Sea. Basin Research, 2(4): 205-222. https://doi.org/10.1111/j.1365-2117.1989.tb00036.x
      Sun, W., Zhang, L., Li, H., et al., 2020. The Synchronic Cenozoic Subduction Initiations in the West Pacific Induced by the Closure of the Neo-Tethys Ocean. Science Bulletin, 65(24): 2068-2071. https://doi.org/10.1016/j.scib.2020.09.001
      Tang, Y., Li, M. B., Li, J. B., et al., 2011. The Geomorphological Features and Continuity of the Kyushu-Palau Ridge (KPR). Acta Oceanologica Sinica, 30(5): 114-124. https://doi.org/10.1007/s13131-011-0136-1
      Taylor, B., Goodliffe, A. M., 2004. The West Philippine Basin and the Initiation of Subduction, Revisited. Geophysical Research Letters, 31(12): L12602. https://doi.org/10.1029/2004gl020136
      Wang, G., Jiang, S. H., Li, S. Z., et al., 2017. Basement-Involved Faults and Deep Structures in the West Philippine Basin: Constrains from Gravity Field. Marine Geophysical Research, 38(1-2): 149-167. https://doi.org/10.1007/s11001-017-9310-y
      Wei, X. D., Ding, W. W., Ruan, A. G., et al., 2022. Crustal Structure and Variation along the Southern Part of the Kyushu-Palau Ridge. Acta Oceanologica Sinica, 41(1): 50-57. https://doi.org/10.1007/s13131-021-1979-8
      White, R. S., Detrick, R. S., Sinha, M. C., et al., 1984. Anomalous Seismic Crustal Structure of Oceanic Fracture Zones. Geophysical Journal International, 79(3): 779-798. https://doi.org/10.1111/j.1365-246x.1984.tb02868.x
      Wu, J., Suppe, J., Lu, R. Q., et al., 2016. Philippine Sea and East Asian Plate Tectonics since 52 Ma Constrained by New Subducted Slab Reconstruction Methods. Journal of Geophysical Research: Solid Earth, 121(6): 4670-4741. https://doi.org/10.1002/2016JB012923
      Wu, S. G., Fan, J. K., Dong, D. D., 2013. Discussion on the Tectonic Division of the Philippine Sea Plate. Chinese Journal of Geology (Scientia Geologica Sinica), 48(3): 677-692 (in Chinese with English abstract).
      Wu, Z. C., Gao, J. Y., Ding, W. W., et al., 2017. Moho Depth of the South China Sea Basin from Three-Dimensional Gravity Inversion with Constraint Points. Chinese Journal of Geophysics, 60(7): 2599-2613 (in Chinese with English abstract). doi: 10.1002/cjg2.30053/abstract
      Xie, X. N., Zhao, S., Ren, J. Y., et al., 2022. Marginal Sea Closure Process and Genetic Mechanism of South China Sea during Post-Spreading Period. Earth Science, 47(10): 3524-3542 (in Chinese with English abstract).
      Yen, H. Y., Lo, Y. T., Yeh, Y. L., et al., 2015. The Crustal Thickness of the Philippine Sea Plate Derived from Gravity Data. Terrestrial, Atmospheric and Oceanic Sciences, 26(3): 253-259. https://doi.org/10.3319/tao.2014.11.17.01(t)
      丁巍伟, 李家彪, 2019. 九州‒帕劳海脊南段的深部结构探测及对板块俯冲起始机制的可能启示. 海洋地质与第四纪地质, 39(5): 98-103.
      李春峰, 李刚, 厉子龙, 等, 2019. 卡罗琳海板块实验: 初始俯冲、初始扩张与流固耦合. 海洋地质与第四纪地质, 39(5): 87-97.
      彭希, 李春峰, 宋陶然, 等, 2022. 南海北部洋‒陆过渡带深部结构与岩石圈破裂过程. 地球科学, 47(11): 4245-4255. doi: 10.3799/dqkx.2022.366
      石学法, 鄢全树, 2013. 西太平洋典型边缘海盆的岩浆活动. 地球科学进展, 28(7): 737-750.
      吴时国, 范建柯, 董冬冬, 2013. 论菲律宾海板块大地构造分区. 地质科学, 48(3): 677-692.
      吴招才, 高金耀, 丁巍伟, 等, 2017. 南海海盆三维重力约束反演莫霍面深度及其特征. 地球物理学报, 60(7): 2599-2613.
      解习农, 赵帅, 任建业, 等, 2022. 南海后扩张期大陆边缘闭合过程及成因机制. 地球科学, 47(10): 3524-3542. doi: 10.3799/dqkx.2022.265
    • 加载中
    图(10)
    计量
    • 文章访问数:  266
    • HTML全文浏览量:  102
    • PDF下载量:  40
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-09-01
    • 网络出版日期:  2025-02-10
    • 刊出日期:  2025-01-25

    目录

      /

      返回文章
      返回