• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    强降雨过程增加蔬菜种植区浅层地下水碳汇能力

    高振朋 肖春艳 陈昊 薛天 曹莹 范贺凯 张东

    高振朋, 肖春艳, 陈昊, 薛天, 曹莹, 范贺凯, 张东, 2025. 强降雨过程增加蔬菜种植区浅层地下水碳汇能力. 地球科学, 50(4): 1545-1558. doi: 10.3799/dqkx.2023.201
    引用本文: 高振朋, 肖春艳, 陈昊, 薛天, 曹莹, 范贺凯, 张东, 2025. 强降雨过程增加蔬菜种植区浅层地下水碳汇能力. 地球科学, 50(4): 1545-1558. doi: 10.3799/dqkx.2023.201
    Gao Zhenpeng, Xiao Chunyan, Chen Hao, Xue Tian, Cao Ying, Fan Hekai, Zhang Dong, 2025. Heavy Rainfall Increasing Carbon Sink in Shallow Groundwater in Vegetable Growing Areas. Earth Science, 50(4): 1545-1558. doi: 10.3799/dqkx.2023.201
    Citation: Gao Zhenpeng, Xiao Chunyan, Chen Hao, Xue Tian, Cao Ying, Fan Hekai, Zhang Dong, 2025. Heavy Rainfall Increasing Carbon Sink in Shallow Groundwater in Vegetable Growing Areas. Earth Science, 50(4): 1545-1558. doi: 10.3799/dqkx.2023.201

    强降雨过程增加蔬菜种植区浅层地下水碳汇能力

    doi: 10.3799/dqkx.2023.201
    基金项目: 

    国家自然科学基金 42073009

    国家自然科学基金 41573095

    详细信息
      作者简介:

      高振朋(1999-),男,硕士研究生,主要从事岩石化学风化过程中碳同位素示踪研究. ORCID:0009-0007-0679-8112. E-mail:g15993157962@163.com

      通讯作者:

      张东,教授, ORCID: 0000-0002-2168-5278. E-mail: d-zhang@shou.edu.cn

    • 中图分类号: P592

    Heavy Rainfall Increasing Carbon Sink in Shallow Groundwater in Vegetable Growing Areas

    • 摘要: 全球气候变暖背景下,寻找吸收大气二氧化碳(CO2)的碳汇途径十分紧迫和必要.农业区粪肥及化学肥料等人为输入产生的酸性物质,释放更多的溶解性无机碳(dissolved inorganic carbon,DIC)进入浅层地下水,是一个重要的碳汇过程,但强降雨过程对其影响仍不清楚.选择豫北某蔬菜种植区浅层地下水作为主要研究对象,对比选取粮食作物种植区浅层地下水以及研究区深层地下水,于2021年4月和10月分别采集水体样品,借助水化学组成,水体氢氧同位素(δDH2Oδ18OH2O)以及δ13CDIC组成,探讨强降雨过程对农业区浅层地下水无机碳循环的影响.研究结果表明:雨季强降雨过程导致更多人为污染物进入蔬菜种植区浅层地下水,总溶解性固体含量(TDS)均值由649 mg/L增加至1 195 mg/L,δ13CDIC均值从-12.25‰降至-14.14‰,变化幅度均大于对比区域地下水,表明更多有机质进入浅层地下水并发生降解;4月和10月蔬菜种植区浅层地下水DIC含量均值分别为7.87 mmol/L和7.74 mmol/L,虽然变化不大,但随着地下水水位增加11~15 m,DIC输入通量增加,碳汇能力显著增强.研究结果证实蔬菜种植区人为输入对浅层地下水的影响,同时验证强降雨过程可以将更多的DIC输入浅层地下水,增加地下水溶解组分含量,增强地下水碳汇能力.

       

    • 图  1  研究区2021年月降雨量和月均气温图

      Fig.  1.  Monthly rainfall and average temperature in 2021 in the studied area

      图  2  研究区采样点示意图

      Fig.  2.  Schematic diagram of sampling points in the studied area

      图  3  研究区不同类型地下水pH、TDS和温度(T)的组成特征

      Fig.  3.  The compositions of pH, TDS, and temperature (T) values in different types of groundwater in the studied area

      图  4  研究区不同类型地下水各离子组成特征

      Fig.  4.  Characteristics of ion compositions in different types of groundwater in the studied area

      图  5  研究区不同类型地下水同位素组成特征

      Fig.  5.  Isotopic composition characteristics of different types of groundwater in the studied area

      图  6  研究区不同类型地下水SIc、SIdPCO2组成特征

      Fig.  6.  The compositions of SIc, SId, and PCO2 values in different types of groundwater in the studied area

      图  7  研究区不同类型地下水氢氧同位素组成关系和TDS与d-excess值的关系

      Fig.  7.  Hydrogen and oxygen isotopic composition relationship of different types of groundwater and relationship between TDS and d-excess values in the studied area

      图  8  研究区不同类型地下水δ13CDIC和DIC的关系

      Fig.  8.  Relationship between δ13CDIC and DIC in different types of groundwater in the studied area

      图  9  研究区地下水(Ca2++Mg2+)/HCO3-和NO3-/HCO3-(a)以及(Ca2++Mg2+)/HCO3-和SO42-/HCO3-(b)的关系

      Fig.  9.  Relationship between (Ca2++Mg2+)/HCO3- and NO3-/HCO3-, as well as (Ca2++Mg2+)/HCO3- and SO42-/HCO3- in different types of groundwater in the studied area

      图  10  研究区不同类型地下水SIc与SId的关系

      Fig.  10.  Relationship between different types of groundwater SIc and SId in the studied area

    • Brunet, F., Potot, C., Probst, A., et al., 2011. Stable Carbon Isotope Evidence for Nitrogenous Fertilizer Impact on Carbonate Weathering in a Small Agricultural Watershed. Rapid Communications in Mass Spectrometry, 25(19): 2682-2690. https://doi.org/10.1002/rcm.5050
      Chen, Y. Y., Feng, W. T., Kong, L., et al., 2019. Effects of Land Use on Soil Inorganic Carbon in an Inland Basin. Chinese Journal of Ecology, 38(10): 3042-3049(in Chinese with English abstract).
      Dansgaard, W. F., 1964. Stable Isotopes in Precipitation. Tellus, 16(4): 436-468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
      Eshel, G., Fine, P., Singer, M. J., 2007. Total Soil Carbon and Water Quality: An Implication for Carbon Sequestration. Soil Science Society of America Journal, 71(2): 397-405. https://doi.org/10.2136/sssaj2006.0061
      Fonyuy, E. W., Atekwana, E. A., 2008. Dissolved Inorganic Carbon Evolution and Stable Carbon Isotope Fractionation in Acid Mine Drainage Contaminated Streams: Insights from a Laboratory Study. Applied Geochemistry, 23(9): 2634-2648. https://doi.org/10.1016/j.apgeochem.2008.05.012
      Gerzabek, M. H., Haberhauer, G., Kirchmann, H., 2001. Soil Organic Matter Pools and Carbon-13 Natural Abundances in Particle-Size Fractions of a Long-Term Agricultural Field Experiment Receiving Organic Amendments. Soil Science Society of America Journal, 65(2): 352-358. https://doi.org/10.2136/sssaj2001.652352x
      Gong, F. Y., Wu, R. C., Zhan, R. B., et al., 2017. Upper Ordovician Carbon Isotope Chemostratigraphy in Shitai, Anhui Province. Journal of Stratigraphy, 41(4): 401-410(in Chinese with English abstract).
      Houghton, R. A., Davidson, E. A., Woodwell, G. M., 1998. Missing Sinks, Feedbacks, and Understanding the Role of Terrestrial Ecosystems in the Global Carbon Balance. Global Biogeochemical Cycles, 12(1): 25-34. https://doi.org/10.1029/97GB02729
      Hua, K., Xiao, J., Li, S. J., et al., 2020. Analysis of Hydrochemical Characteristics and Their Controlling Factors in the Fen River of China. Sustainable Cities and Society, 52: 101827. https://doi.org/10.1016/j.scs.2019.101827
      Huang, Q. B., Qin, X. Q., Liu, P. Y., et al., 2017. Impact of Sulfuric and Nitric Acids on Carbonate Dissolution, and the Associated Deficit of CO2 Uptake in the Upper-Middle Reaches of the Wujiang River, China. Journal of Contaminant Hydrology, 203: 18-27. https://doi.org/10.1016/j.jconhyd.2017.05.006
      Jeong, Y. J., Park, H. J., Jeon, B. J., et al., 2022. Land Use Types with Different Fertilization Management Affected Isotope Ratios of Bulk and Water-Extractable C and N of Soils in an Intensive Agricultural Area. Journal of Soils and Sediments, 22(2): 429-442. https://doi.org/10.1007/s11368-021-03097-5
      Jiang, H., 2004. Integrated Digitization Evaluation of Environmental Quality of Groundwater in the Bo'ai County Plain Area in Henan Province. Hydrogeology and Engineering Geology, 31(3): 46-50(in Chinese with English abstract).
      Jiang, Y. J., 2013. The Contribution of Human Activities to Dissolved Inorganic Carbon Fluxes in a Karst Underground River System: Evidence from Major Elements and δ13CDIC in Nandong, Southwest China. Journal of Contaminant Hydrology, 152: 1-11. https://doi.org/10.1016/j.jconhyd.2013.05.010
      Lapenis, A. G., Lawrence, G. B., Bailey, S. W., et al., 2008. Climatically Driven Loss of Calcium in Steppe Soil as a Sink for Atmospheric Carbon. Global Biogeochemical Cycles, 22(2): GB2010. https://doi.org/10.1029/2007GB003077
      Li, S. L., Liu, C. Q., Li, J., et al., 2010. Geochemistry of Dissolved Inorganic Carbon and Carbonate Weathering in a Small Typical Karstic Catchment of Southwest China: Isotopic and Chemical Constraints. Chemical Geology, 277(3/4): 301-309. https://doi.org/10.1016/j.chemgeo.2010.08.013
      Li, S. L., Liu, C. Q., Tao, F. X., et al., 2004. Chemical and Stable Carbon Isotopic Compositions of the Ground Waters of Guiyang City, China: Implications for Biogeochemical Cycle of Carbon and Contamination. Geochimica, 33(2): 165-170(in Chinese with English abstract).
      Li, T. T., Ji, H. B., Jiang, Y. B., et al., 2007. Hydro-Geochemistry and the Sources of DIC in the Upriver Tributaries of the Ganjiang River. Acta Geographica Sinica, 62(7): 764-775(in Chinese with English abstract).
      Li, Y., Liu, Y. H., Wang, X. Y., et al., 2022. Spatial-Temporal Characteristics of PM2.5 and PM10 and Their Relationships with Meteorological Factors in Jiaozuo, Henan. Environmental Engineering, 40(9): 44-53(in Chinese with English abstract).
      Liu, C. R., Fan, D. J., Wei, Y. Q., et al., 2022. Research on Evaluation, Exploitation and Utilization of Shallow Groundwater Resources of Jiaozuo City. Journal of Yellow River Conservancy Technical Institute, 34(2): 1-6, 17(in Chinese with English abstract).
      Liu, J. K., Han, G. L., 2020. Effects of Chemical Weathering and CO2 Outgassing on δ13C DIC Signals in a Karst Watershed. Journal of Hydrology, 589: 125192. https://doi.org/10.1016/j.jhydrol.2020.125192
      Liu, X., Xiang, W., Si, B. C., 2021. Hydrochemical and Isotopic Characteristics in the Shallow Groundwater of the Fenhe River Basin and Indicative Significance. Huan Jing Ke Xue, 42(4): 1739-1749. https://doi.org/10.13227/j.hjkx.202008315
      Maher, D. T., Santos, I. R., Golsby-Smith, L., et al., 2013. Groundwater-Derived Dissolved Inorganic and Organic Carbon Exports from a Mangrove Tidal Creek: The Missing Mangrove Carbon Sink? Limnology and Oceanography, 58(2): 475-488. https://doi.org/10.4319/lo.2013.58.2.0475
      Monger, H. C., Kraimer, R. A., Khresat, S., et al., 2015. Sequestration of Inorganic Carbon in Soil and Groundwater. Geology, 43(5): 375-378. https://doi.org/10.1130/g36449.1
      Pei, J. G., Tao, Y. L., Tong, C. S., 1993. Environmental Isotope of Natural Water and Its Application in Karst Hydrogeology in Jiaozuo Area. Carsologica Sinica, 12(1): 48-56 (in Chinese with English abstract).
      Piao, S. L., Fang, J. Y., Ciais, P., et al., 2009. The Carbon Balance of Terrestrial Ecosystems in China. Nature, 458(7241): 1009-1013. https://doi.org/10.1038/nature07944
      Qu, S., Shi, Z. M., Liang, X. Y., et al., 2022. Hydrochemical Characteristics and Evolution of Groundwater in Multilayer Aquifer System in the Dahaize Coalfield. Environmental Chemistry, 41(8): 2614-2624(in Chinese with English abstract).
      Raza, M., Lee, J. Y., 2019. Factors Affecting Spatial Pattern of Groundwater Hydrochemical Variables and Nitrate in Agricultural Region of Korea. Episodes, 42(2): 135-148. https://doi.org/10.18814/epiiugs/2019/019011
      Shin, W. J., Chung, G. S., Lee, D., et al., 2011. Dissolved Inorganic Carbon Export from Carbonate and Silicate Catchments Estimated from Carbonate Chemistry and δ13CDIC. Hydrology and Earth System Sciences, 15(8): 2551-2560. https://doi.org/10.5194/hess-15-2551-2011
      Shin, W. J., Ryu, J. S., Lee, K. S., et al., 2015. Identification of Anthropogenic Contaminant Sources in Urbanized Streams Using Multiple Isotopes. Environmental Earth Sciences, 73(12): 8311-8324. https://doi.org/10.1007/s12665-014-3992-0
      Sun, C. C., Wu, X. J., Zhang, C. S., et al., 2007. Study on the Present Situation and Countermeasures of Water Resources Utilization in Boai County. Henan Water Resources & South-to-North Water Diversion, 36(9): 33, 67 (in Chinese with English abstract).
      Xie, Y. C., Huang, F., Yang, H., et al., 2021. Role of Anthropogenic Sulfuric and Nitric Acids in Carbonate Weathering and Associated Carbon Sink Budget in a Karst Catchment (Guohua), Southwestern China. Journal of Hydrology, 599(3): 126287. https://doi.org/10.1016/j.jhydrol.2021.126287
      Xu, S., Li, S. L., Su, J., et al., 2021. Oxidation of Pyrite and Reducing Nitrogen Fertilizer Enhanced the Carbon Cycle by Driving Terrestrial Chemical Weathering. Science of the Total Environment, 768(3-4): 144343. https://doi.org/10.1016/j.scitotenv.2020.144343
      Xuan, Y. X., Cao, Y. J., Tang, C. Y., et al., 2020. Changes in Dissolved Inorganic Carbon in River Water Due to Urbanization Revealed by Hydrochemistry and Carbon Isotope in the Pearl River Delta, China. Environmental Science and Pollution Research International, 27(19): 24542-24557. https://doi.org/10.1007/s11356-020-08454-4
      Yan, X. Z., Li, W., Zhao, H. J., et al., 2007. Survy of Agroclimatic Resources and Change Characters in Jiaozuo. Meteorological and Environmental Sciences, 30(2): 68-71 (in Chinese with English abstract).
      Yang, F., Huang, J. P., Zhou, C. L., et al., 2020. Taklimakan Desert Carbon-Sink Decreases under Climate Change. Science Bulletin, 65(6): 431-433. https://doi.org/10.1016/j.scib.2019.12.022
      Yang, Y., Yin, G. X., Zhu, L. X., 2009. Fluorine Pollution and Its Formation Analysis of the Shallow Groundwater in Jiaozuo City. Environmental Science and Management, 34(10): 68-72 (in Chinese with English abstract).
      Yuan, H. Y., Yang, S. Q., Ding, X. H., et al., 2019. Evolution Characteristics of Nutrients and Chemical Compositions of Groundwater before and after Autumn Irrigation: Taking Wulate Irrigation Area as an Example. Environmental Chemistry, 38(10): 2336-2347 (in Chinese with English abstract).
      Yue, F. J., Li, S. L., Liu, C. Q., et al., 2015. Sources and Transport of Nitrate Constrained by the Isotopic Technique in a Karst Catchment: An Example from Southwest China. Hydrological Processes, 29(8): 1883-1893. https://doi.org/10.1002/hyp.10302
      Zhang, D., Liu, C. Q., Wang, F. S., et al., 2015. Inorganic Carbon Cycling in Subsurface Environment Influenced by Agricultural Activities. China Environmental Science, 35(11): 3359-3370 (in Chinese with English abstract).
      Zhang, D., Xue, T., Qin, Y., et al., 2023. Dissolved Ion Concentrations and Isotope Values in Agricultural Fertilizer Locally Applied in Henan Province. Environmental Science, 44(2): 1040-1050(in Chinese with English abstract).
      Zhang, Y. Z., Jiang, Y. J., Yuan, D. X., et al., 2020. Source and Flux of Anthropogenically Enhanced Dissolved Inorganic Carbon: A Comparative Study of Urban and Forest Karst Catchments in Southwest China. Science of the Total Environment, 725: 138255. https://doi.org/10.1016/j.scitotenv.2020.138255
      Zhang, Y. H., Liu, F., Zhong, S., 2021. Research Progress on Soil Inorganic Carbon. Hubei Agricultural Sciences, 60(10): 5-9, 14(in Chinese with English abstract).
      Zhao, M., Zeng, C., Liu, Z. H., et al., 2010. Effect of Different Land Use/Land Cover on Karst Hydrogeochemistry: A Paired Catchment Study of Chenqi and Dengzhanhe, Puding, Guizhou, SW China. Journal of Hydrology, 388(1/2): 121-130. https://doi.org/10.1016/j.jhydrol.2010.04.034
      Zou, X. G., Yang, Y., Xu, G., et al., 2018. Chemical Characteristics of Surface Spring in the Rehabilitation Area of Karst Rock Desertification: A Case Study at Laoquan in the Pepper Planting Base of Ganxi Town, Youyang County, Chongqing City, China. Earth and Environment, 46(6): 524-533(in Chinese with English abstract).
      陈园园, 冯文婷, 孔璐, 等, 2019. 内陆河流域土地利用对土壤无机碳的影响. 生态学杂志, 38(10): 3042-3049.
      龚方怡, 吴荣昌, 詹仁斌, 等, 2017. 安徽石台上奥陶统稳定碳同位素地层研究及其意义. 地层学杂志, 41(4): 401-410.
      蒋辉, 2004. 河南省博爱县平原区地下水环境质量数字化综合评价. 水文地质工程地质, 31(3): 46-50.
      李思亮, 刘丛强, 陶发祥, 等, 2004. 碳同位素和水化学在示踪贵阳地下水碳的生物地球化学循环及污染中的应用. 地球化学, 33(2): 165-170. doi: 10.19700/j.0379-1726.2004.02.008
      李甜甜, 季宏兵, 江用彬, 等, 2007. 赣江上游河流水化学的影响因素及DIC来源. 地理学报, 62(7): 764-775.
      李杨, 刘永和, 王西岳, 等, 2022. 焦作市PM2.5和PM10时空变化特征及其与气象因子的关系. 环境工程, 40(9): 44-53. doi: 10.13205/j.hjgc.202209006
      刘翠然, 樊德军, 魏艳卿, 等, 2022. 焦作市浅层地下水资源评价与开发利用研究. 黄河水利职业技术学院学报, 34(2): 1-6, 17.
      裴建国, 陶友良, 童长水, 1993. 焦作地区天然水环境同位素组成及其在岩溶水文地质中的应用. 中国岩溶, 12(1): 48-56.
      屈伸, 史浙明, 梁向阳, 等, 2022. 大海则井田多层含水层系统水化学特征及演化规律. 环境化学, 41(8): 2614-2624.
      孙长才, 毋先进, 张苍松, 等, 2007. 博爱县水资源利用现状及对策研究. 河南水利与南水北调, 36(9): 33, 67.
      闫小珍, 李伟, 赵海军, 等, 2007. 焦作市农业气候资源及变化特点. 气象与环境科学, 30(2): 68-71. doi: 10.16765/j.cnki.1673-7148.2007.02.017
      杨英, 尹国勋, 朱利霞, 2009. 焦作市浅层地下水氟污染及成因分析. 环境科学与管理, 34(10): 68-72.
      袁宏颖, 杨树青, 丁雪华, 等, 2019. 秋浇前后地下水营养盐与水化学演变特征: 以乌拉特灌域为例. 环境化学, 38(10): 2336-2347.
      张东, 刘丛强, 汪福顺, 等, 2015. 农业活动干扰下地下水无机碳循环过程研究. 中国环境科学, 35(11): 3359-3370.
      张东, 薛天, 秦勇, 等, 2023. 河南省部分市售农用化肥中溶解性离子浓度及同位素组成. 环境科学, 44(2): 1040-1050. doi: 10.13227/j.hjkx.202201251
      张永红, 刘飞, 钟松, 2021. 土壤无机碳研究进展. 湖北农业科学, 60(10): 5-9, 14.
      邹晓岗, 杨琰, 徐刚, 等, 2018. 岩溶槽谷石漠化治理区表层泉水化学特征研究: 以重庆酉阳泔溪花椒基地老泉为例. 地球与环境, 46(6): 524-533.
    • dqkxzx-50-4-1545-附图1.zip
    • 加载中
    图(10)
    计量
    • 文章访问数:  325
    • HTML全文浏览量:  257
    • PDF下载量:  18
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-07-21
    • 网络出版日期:  2025-05-10
    • 刊出日期:  2025-04-25

    目录

      /

      返回文章
      返回