• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    全新世长江中下游地区降水变化及其驱动机制

    徐家豪 张志平 陈钧伟 孙炜毅 申忠伟 贾鑫

    徐家豪, 张志平, 陈钧伟, 孙炜毅, 申忠伟, 贾鑫, 2025. 全新世长江中下游地区降水变化及其驱动机制. 地球科学, 50(2): 699-717. doi: 10.3799/dqkx.2023.214
    引用本文: 徐家豪, 张志平, 陈钧伟, 孙炜毅, 申忠伟, 贾鑫, 2025. 全新世长江中下游地区降水变化及其驱动机制. 地球科学, 50(2): 699-717. doi: 10.3799/dqkx.2023.214
    Xu Jiahao, Zhang Zhiping, Chen Junwei, Sun Weiyi, Shen Zhongwei, Jia Xin, 2025. Holocene Precipitation Change in the Middle and Lower Reaches of the Yangtze River and Its Forcing Mechanisms. Earth Science, 50(2): 699-717. doi: 10.3799/dqkx.2023.214
    Citation: Xu Jiahao, Zhang Zhiping, Chen Junwei, Sun Weiyi, Shen Zhongwei, Jia Xin, 2025. Holocene Precipitation Change in the Middle and Lower Reaches of the Yangtze River and Its Forcing Mechanisms. Earth Science, 50(2): 699-717. doi: 10.3799/dqkx.2023.214

    全新世长江中下游地区降水变化及其驱动机制

    doi: 10.3799/dqkx.2023.214
    基金项目: 

    国家自然科学基金项目 42301173

    江苏省自然科学基金资助 BK20230386

    详细信息
      作者简介:

      徐家豪(2000-),男,硕士研究生,主要从事全新世长江中下游气候与人类演化活动研究. ORCID:0009-0000-7456-0199. E-mail:221302020@njnu.edu.cn

      通讯作者:

      张志平,ORCID:0000-0001-8388-9631. E-mail:zhangzhp@njnu.edu.cn

    • 中图分类号: P92

    Holocene Precipitation Change in the Middle and Lower Reaches of the Yangtze River and Its Forcing Mechanisms

    • 摘要: 为调和不同研究重建的全新世长江中下游地区降水演化之间的矛盾,集成分析了具有年代可靠、指示意义明确的12条全新世长江中游降水记录和18条全新世长江下游降水记录. 结果显示,长江中下游地区降水自全新世伊始逐步增多,中全新世后降水逐渐减少;晚全新世,长江中下游地区降水演化模式出现分异:长江中游整体重新转为湿润,长江下游在波动中趋于干旱. 机制方面,全新世长江中下游地区降水演化总体受控于北半球夏季太阳辐射影响. 晚全新世,ENSO活动显著增强,亚洲西风急流位置偏南,叠加印度夏季风环流异常,不仅导致长江中下游地区降水演化模式偏离北半球夏季太阳辐射变化趋势,也造成长江中游相对于长江下游形成更为湿润的气候.

       

    • 图  1  研究区范围及降水记录位置点

      紫色图形表示长江中游降水记录;红色图形表示长江下游降水记录;蓝色轮廓为长江中下游流域边界,数据来源于国家科技基础条件平台-国家地球系统科学数据中心(http://www.geodata.cn);红色虚线表示长江中游与长江下游分界线

      Fig.  1.  Extent of the study area and location points of precipitation records

      图  2  长江中下游地区全新世湿润度变化

      横坐标0.5代表 1.0~0.0ka BP的时间阶段,1.5代表 2.0~1.0 ka BP的时间阶段,依此类推,11代表 11.7~10.0 ka BP的时间阶段. 每个时间阶段湿润度的误差用标准误差(Standard Error)表示

      Fig.  2.  Holocene wetness changes in the middle and lower reaches of the Yangtze River

      图  3  长江中下游地区全新世湿润期对比

      蓝色矩形表示原始文献所指湿润期,红色虚线以下为长江下游降水记录,以上为长江中游降水记录

      Fig.  3.  Comparison of Holocene wet periods in the middle and lower reaches of the Yangtze River

      图  4  长江中游地区湿润度变化与同区域古气候指标对比

      a. 大九湖泥炭正构烷烃碳优势指数(He et al.,2015);b. 大九湖地下水位深度(Liu et al.,2019);c. 和尚洞石笋中细菌3-羟基脂肪酸重建水文记录(Wang et al.,2018);d. 长江中游地区湿润度变化(本研究);记录下方以以区间形式展示记录所用原始年龄数据与误差范围

      Fig.  4.  Comparison of wetness changes in the middle reaches of the Yangtze River with paleoclimate indicators in the same region

      图  5  长江下游地区湿润度变化与同区域古气候指标对比

      a. TraCE-21ka模拟的全新世新街钻孔周边区域夏季降水变化(Liu et al.,2009);b. 长江三角洲YZ07岩芯中值粒径Md(μm)(Wang et al.,2012);c. 南漪湖钻孔中青冈花粉含量(Chen et al.,2021);d. 长江下游地区湿润度变化(本研究). 记录下方以区间形式展示记录所用原始年龄数据与误差范围

      Fig.  5.  Comparison of wetness changes in the lower reaches of the Yangtze River with paleoclimate indicators in the same region

      图  6  长江中下游地区湿润度变化序列与主要驱动机制对比

      a. 30°N6月太阳辐射变化(Laskar et al.,2004);b. 全新世以来北美洲冰盖消融面积百分比(Dyke,2004);c. Niño 3.4指数反映赤道东太平洋ENSO强度变化(Liu et al.,2014);d. 长江中游与长江下游湿润度变化时间序列(本研究)

      Fig.  6.  Comparison of the wetness change sequence and the main forcing mechanism in the middle and lower reaches of the Yangtze River

      图  7  晚全新世长江中下游地区降水变化驱动机制示意图

      黄色虚线表示亚洲夏季风北界(Chen et al.,2008);红色虚线表示东亚夏季风与印度夏季风边界;白色箭头表示印度夏季风、东亚夏季风(Xu et al.,2014)和西风急流(Yang et al.,2014);紫色和灰色区域分别表示ENSO活动增强时西太副高与雨带位置(Liu et al.,2019

      Fig.  7.  Schematic diagram of the forcing mechanism of precipitation changes in the middle and lower reaches of the Yangtze River in the Late Holocene

      表  1  本研究中使用的降水记录详细信息

      Table  1.   Details of precipitation records used in this study

      地点序号 地点 经度(°E) 纬度(°N) 海拔(m) 地貌类型 时间阶段(ka BP) 测年材料和方法 全新世内年代控制点数量 指标类型 参考文献
      1 神农洞、九龙洞 117.250
      113.900
      28.700
      27.800
      383
      162
      山地 14.0~0.0 石笋,230Th 15 562 δ18O和δ13C Zhang et al.(2021a)
      2 神农洞 117.250 28.700 383 山地 14.0~0.9 石笋,230Th 48 δ18O和δ13C Zhang et al.(2021c)
      3 巢湖 117.375 31.530 5 平原 10.5~2.0 木炭(2)、植物残体(3)、粘土(3)、贝壳(2),AMS14C 10 孢粉 Chen et al.(2009)
      4 巢湖 117.394 31.562 5 盆地 10.0~0.0 有机沉积物(7),AMS14C 7 木炭浓度、磁化率 Wu et al.(2019)
      5 南漪湖 119.054 31.156 2.2 盆地 11.5~0.0 植物残体(4)、有机沉积物(3),AMS14C 7 地球化学指标 Liu et al.(2021)
      6 南漪湖 119.055 31.156 2.3 盆地 9.0~0.0 有机沉积物(5)、木炭(2),AMS14C 6 孢粉 Chen et al.(2021)
      7 新街 119.483 31.433 6 平原 12.5~0.0 有机沉积物(5)、木炭(3)、泥炭(2),AMS14C 10 孢粉 Lu et al.(2019)
      8 高淳剖面 119.092 31.307 5 平原 13.2~0.0 有机沉积物(11),AMS14C 10 孢粉、木炭浓度、腐殖化程度(DOH)、烧失量(LOI) Yao et al.(2017)
      9 长江下游集成a 118.935 31.304 - 平原 10.0~0.0 - - 孢粉 Li et al.(2018)
      10 青浦 121.184 31.134 2.67 平原 8.5~0.0 泥炭(3)、贝壳(1)、植物残体(1)有机沉积物(7),AMS14C 12 孢粉、地球化学指标 Tao et al.(2006)
      11 卜弋桥b - - 3 平原 11.0~0.0 有机沉积物(5),AMS14C
      有机沉积物(1),
      传统测年
      6 孢粉、磁化率、粒度 舒军武等(2007)
      12 平望 120.579 30.976 1.31 平原 11.0~0.0 含碳屑沉积物,AMS14C 4 孢粉 李冰等(2018)
      13 北湖桥 119.940 30.379 7 平原 11.3~4.2 泥炭(4)、有机沉积物(5)、贝壳(2)、木头(1)、碳酸盐(1),AMS14C 12 粒度、孢粉、地球化学指标 Ye et al.(2018)
      14 长江三角洲 119.754
      121.383
      32.307
      31.617
      7.2
      2.48
      平原 13.0~0.0 岩芯(5),210Pb软体动物壳(10),AMS14C 15 粒度、物源 Wang et al.(2013)
      15 长江三角洲北部海岸 121.597 32.084 -5 平原 10.3~0.0 石英,OSL 30 孢粉 Ye et al.(2022)
      16 长江三角洲
      东海大陆架c
      121.383
      121.782
      31.617
      27.723
      2.48 平原大陆架 10.0~0.0 软体动物壳(12),AMS14C
      软体动物壳(8),AMS14C
      20 粒度、地球化学指标 Bi et al.(2017)
      17 长江水下三角洲c 122.383 31.000 - 大陆架 9.5~0.0 腹足类动物(8)、软体动物壳(5)、植物残体(2),AMS14C 15 粒度、地球化学指标 Xu et al.(2020)
      18 长江水下三角洲c 122.383 30.717 - 大陆架 13.2~0.0 植物残体(5)、贝壳碎片(5)、木头碎片(1),AMS14C 7 C/N、δ13C Zhan et al.(2012)
      19 和尚洞 110.419 30.446 294 山地 9.0~0.0 石笋,U-Th 21 δ13C Li et al.(2014a)
      20 和尚洞 110.419 30.446 294 山地 9.0~0.0 石笋,U-Th 21 矿物磁记录 Zhu et al.(2017)
      21 大九湖和尚洞 110.003
      110.419
      31.481
      30.446
      1 700
      294
      盆地山地 13.0~0.0 植物残体,AMS14C石笋,U-Th 1221 好氧微生物矿物磁记录 Xie et al.(2013)
      22 和尚洞 110.419 30.446 294 山地 9.0~0.0 石笋,U-Th 21 革兰氏阴性细菌3-羟基脂肪酸 Wang et al.(2018)
      23 落水洞 109.117 29.733 975 山地 23.5~0.2 石笋,230Th 14 δ18O和δ13C Wang et al.(2022)
      24 大九湖 110.003 31.481 1 758 盆地 18.0~1.0 有机沉积物(20),AMS14C 13 δ2H、δ13C、δ18O Huang et al.(2018)
      25 大九湖 109.999 31.482 1 758 盆地 13.0~0.0 有机沉积物(20),AMS14C 13 植硅体 Liu et al.(2019)
      26 大九湖地区集成 109.996 31.491 1 760 盆地 16.0~0.0 泥炭(10),AMS14C 10 孢粉 Sun et al.(2019(
      27 洞庭湖地区集成a 112.956 29.295 20 盆地 10.0~4.0 - - 孢粉 Liu et al.(2012)
      28 江西大湖 115.034 24.751 246 盆地 16.5~1.0 有机沉积物,AMS14C 12 矿物磁记录 Wei et al.(2018)
      29 江汉平原 112.367 30.184 42.32 平原 12.7~0.0 泥炭(3)、有机沉积物(3),AMS14C 5 粒度、磁化率、地球化学指标 Li et al.(2014b)
      30 江汉平原b - - 28.2 平原 15.0~0.0 有机沉积物(4),AMS14C 4 植硅体 Gu et al.(2012)
      注:a. 记录为多个地点集成,具体信息中只显示时间阶段与指标类型, 图 1中地点10以固城湖经纬度表示,地点27以洞庭湖经纬度表示; b. 记录所用钻孔为地质调查项目钻取,具体经纬度不予显示; c. 采样地点位于东海大陆架(水下),海拔不予显示
      下载: 导出CSV
    • An, Z. S., Porter, S. C., Kutzbach, J. E., et al., 2000. Asynchronous Holocene Optimum of the East Asian Monsoon. Quaternary Science Reviews, 19(8): 743-762. https://doi.org/10.1016/s0277-3791(99)00031-1
      Bi, L., Yang, S. Y., Zhao, Y., et al., 2017. Provenance Study of the Holocene Sediments in the Changjiang (Yangtze River) Estuary and Inner Shelf of the East China Sea. Quaternary International, 441: 147-161. https://doi.org/10.1016/j.quaint.2016.12.004
      Bhushan, R., Sati, S. P., Rana, N., et al., 2018. High-Resolution Millennial and Centennial Scale Holocene Monsoon Variability in the Higher Central Himalayas. Palaeogeography, Palaeoclimatology, Palaeoecology, 489: 95-104. https://doi.org/10.1016/j.palaeo.2017.09.032
      Caley, T., Roche, D. M., Renssen, H., et al., 2014. Orbital Asian Summer Monsoon Dynamics Revealed Using an Isotope-Enabled Global Climate Model. Nature Communications, 5(1). https://doi.org/10.1038/ncomms6371
      Cai, Y. J., Fung, I. Y., Edwards, R. L., et al., 2015. Variability of Stalagmite-Inferred Indian Monsoon Precipitation over the Past 252, 000 y. Proceedings of the National Academy of Sciences, 112(10): 2954-2959. https://doi.org/10.1073/pnas.1424035112
      Cao, J., Wu, L., G., 2016. Asymmetric Impact of Last Glacial Maximum Ice Sheets on Global Monsoon Activity. Journal of the Meteorological Sciences, 36(4): 425-435 (in Chinese with English abstract).
      Chen, Z. Y., Hong, X. Q., Li S., et al., 1997. Study of Archaeology Related Environment Evolution of Taihu Lake in Southern Chang Jiang Delta Plain. Acta Geographica Sinica, 52(2): 131-137 (in Chinese with English abstract).
      Chen, F. H., Yu, Z. C., Yang, M., et al., 2008. Holocene Moisture Evolution in Arid Central Asia and Its Out-of-Phase Relationship with Asian Monsoon History. Quaternary Science Reviews, 27(3-4): 351-364. https://doi.org/10.1016/j.quascirev.2010.02.017
      Chen, W., Wang, W. M., Dai, X. R., 2009. Holocene Vegetation History with Implications of Human Impact in the Lake Chaohu Area, Anhui Province, East China. Vegetation History and Archaeobotany, 18(2): 137-146. https://doi.org/10.1007/s00334-008-0173-7
      Chen, S. S., Wang, X. F., 2014. The Terrain and Climatic Change of Jianghan Plain since Holocene. Geographical Science Research, 3: 39 (in Chinese with English abstract). doi: 10.12677/GSER.2014.34005
      Chen, F. H., Xu, Q. H., Chen, J. H., et al., 2015a. East Asian Summer Monsoon Precipitation Variability since the Last Deglaciation. Scientific Reports, 5(1): 1-11. https://doi.org/10.1038/srep11186
      Chen, J. H., Chen, F. H., Feng, S., et al., 2015b. Hydroclimatic Changes in China and Surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial Patterns and Possible Mechanisms. Quaternary Science Reviews, 107: 98-111. https://doi.org/10.1016/j.quascirev.2014.10.012
      Chen, J. H., Rao, Z. G., Liu, J. B., et al., 2016. On the Timing of the East Asian Summer Monsoon Maximum during the Holocene: Does the Speleothem Oxygen Isotope Record Reflect Monsoon Rainfall Variability?Science China Earth Sciences, 59(12): 2328-2338. https://doi.org/10.1007/s11430-015-5500-5
      Chen, F. H., Fu B. J., Xia J., et al., 2019. Major Advances in Studies of the Physical Geography and LIving Environment of China during the Past 70 Years and Future Prospects. Science China Earth Sciences, 62: 1665-1701 (in Chinese). doi: 10.1007/s11430-019-9522-7
      Chen, W., Song, B., Shu, J. W., et al., 2021. Vegetation History with Implication of Climate Changes and Human Impacts over the Last 9000 Years in the Lake Nanyi Area, Anhui Province, East China. Palaeoworld, 30(3): 583-592. https://doi.org/10.1016/j.palwor.2020.09.006
      Cheng, H., Sinha, A., Wang, X. F., et al., 2012. The Global Paleomonsoon as Seen through Speleothem Records from Asia and the Americas. Climate Dynamics, 39(5): 1045-1062. https://doi.org/10.1007/s00382-012-1363-7
      Cheng, H., Edwards, R. L., Sinha, A., et al., 2016. The Asian Monsoon over the Past 640, 000 Years and Ice Age Terminations. Nature, 534(7609): 640-646. https://doi.org/10.1038/nature18591
      Cohen, K. M., Finney, S. C., Gibbard, P. L., et al., 2013. The ICS International Chronostratigraphic Chart. Episodes, 36(3): 199-204. https://doi.org/10.18814/epiiugs/2013/v36i3/002
      Ding, Y. H., Chan, J. C. L., 2005. The East Asian Summer Monsoon: An Overview. Meteorology and Atmospheric Physics, 89(1-4): 117-142. https://doi.org/10.1007/s00703-005-0125-z
      Dong, J. G., Wang, Y. J., Cheng H., et al., 2010. A High-Resolution Stalagmite Record of the Holocene East Asian Monsoon from Mt Shennongjia, Central China. The Holocene, 20(2): 257-264. https://doi.org/10.1177/0959683609350393
      Du, X. J., Hendy, I., Hinnov, L., et al., 2021. High-Resolution Interannual Precipitation Reconstruction of Southern California: Implications for Holocene ENSO Evolution. Earth and Planetary Science Letters, 554: 116670. https://doi.org/10.1016/j.epsl.2020.116670
      Dyke, A. S., 2004. An Outline of North American Deglaciation with Emphasis on Central and Northern Canada. North America, Developments in Quaternary Sciences, 2: 373-424. https://doi.org/10.1016/s1571-0866(04)80209-4
      Gu, Y. S., Wang, H., Huang, X., et al., 2012. Phytolith Records of the Climate Change Since the Past 15000 Years in the Middle Reach of the Yangtze River in China. Frontiers of Earth Science, 6: 10-17. https://doi.org/10.1007/sl1707-012-0302-6
      Gu, Y. S., Liu, H. Y., Guan, S., et al., 2018. Possible El Niño-Southern Oscillation-Related Lacustrine Facies Developed in Southern Lake Poyang during the Late Holocene: Evidence from Spore-Pollen Records. The Holocene, 28(4): 503-512. https://doi.org/10.1177/0959683617735593
      Guo, Y. Q., Huang, C. C., Zhou, Y. L., et al., 2016. Extraordinary Flood Events and the Response to Monsoonal Climatic Change during the Last 3000 Years along the Middle Yangtze River Valley, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 462: 70-84. https://doi.org/10.1016/j.palaeo.2016.09.005
      Guan, S., Yang, Q., Li, Y. N., et al., 2022. River Flooding Response to ENSO-Related Monsoon Precipitation: Evidence from Late Holocene Core Sediments in the Jianghan Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 589: 110834. https://doi.org/10.1016/j.palaeo.2022.110834
      Hao, Q. Z., Wang, L., Oldfield, F., et al., 2012. Delayed Build-Up of Arctic Ice Sheets during 400, 000-Year Minima in Insolation Variability. Nature: 490(7420): 393-396. https://doi.org/10.1038/nature11493
      He, Y. X., Zhao, C., Zheng, Z., et al., 2015. Peatland Evolution and Associated Environmental Changes in Central China over the Past 40, 000 Years. Quaternary Research, 84(2): 255-261. https://doi.org/10.1016/j.yqres.2015.06.004
      Herzschuh, U., Cao, X. Y., Laepple, T., et al., 2019. Position and Orientation of the Westerly Jet Determined Holocene Rainfall Patterns in China. Nature Communications, 10(1): 2376. https://doi.org/10.1038/s41467-019-09866-8
      Hori, K., Saito, Y., 2007. An Early Holocene Sea-Level Jump and Delta Initiation. Geophysical Research Letters, 34(18). https://doi.org/10.1029/2007gl031029
      Hu, C. Y., Henderson, G. M., Huang, J. H., et al., 2008. Quantification of Holocene Asian Monsoon Rainfall from Spatially Separated Cave Records. Earth and Planetary Science Letters, 266(3-4): 221-232. https://doi.org/10.1016/j.epsl.2007.10.015
      Hu, S., Fedorov, A. V. 2018. Cross-Equatorial Winds Control El Niño Diversity and Change. Nature Climate Change, 8(9): 798-802. https://doi.org/10.1038/s41558-018-0248-0
      Huang, X. Y., Pancost, R. D., Xue, J. T., et al., 2018. R Response of Carbon Cycle to Drier Conditions in the Mid-Holocene in Central China. Nature Communications, 9(1): 1369. https://doi.org/10.1038/s41467-018-03804-w
      Jiang, S. W., Zhou, X., Sachs, J. P., et al., 2021. Central Eastern China Hydrological Changes and ENSO-Like Variability over the Past 1 800 Yr. Geology, 49(11): 1386-1390. https://doi.org/10.1130/g48894.1
      Jiang, S. W., Zhou, X., Tu, L. Y., et al., 2022. Radiocarbon Age Offset of Lake Sediments from Central Eastern China Modulated by Both Hydroclimate and Human Activity. Quaternary Science Reviews, 293: 107726. https://doi.org/10.1016/j.quascirev.2022.107726
      Jiang, X. W., Li, Y. Q., Yang, S., 2011. Interannual and Interdecadal Variations of the South Asian and Western Pacific Subtropical Highs and Their Relationships with Asian-Pacific Summer Climate. Meteorology and Atmospheric Physics, 113(3-4): 171-180. https://doi.org/10.1007/s00703-011-0146-8
      Jiang, Z. C., 1960. The Achaeological Discoveries in Jiangsu and Their Significance to the Study of Ancient History. Jianghai Academic Journal, (7): 39-47 (in Chinese).
      Jin, L. Y., Schneider, B., Park, W., et al., 2014. The Spatial-Temporal Patterns of Asian Summer Monsoon Precipitation in Response to Holocene Insolation Change: A Model-Data Synthesis. Quaternary Science Reviews, 85: 47-62. https://doi.org/10.1016/j.quascirev. 2013. 11.004 doi: 10.1016/j.quascirev.2013.11.004
      Kong, W. W., Swenson, L. M., Chiang, J. C., 2017. Seasonal Transitions and the Westerly Jet in the Holocene East Asian Summer Monsoon. Journal of Climate, 30(9): 3343-3365. https://doi.org/10.1016/10.1175/JCLI-D-16-0087.1
      Kuang, X. Y., Zhang, Y. C., 2006. Impact of the Position Abnormalities of East Asian Subtropical Westerly Jet on Summer Precipitation in Middle-Lower Reaches of Yangtze River. Plateau Meteorology, 25(3): 382-389 (in Chinese with English abstract).
      Laskar, J., Robutel, P., Joutel, F., et al., 2004. A Long-Term Numerical Solution for the Insolation Quantities of the Earth. Astronomy & Astrophysics, 428(1): 261-285. https://doi.org/10.1051/0004-6361:20041335
      Li, X. L., Hu, C. Y., Huang, J. H., et al., 2014a. A 9 000-Year Carbon Isotopic Record of Acid-Soluble Organic Matter in a Stalagmite from Heshang Cave, Central China: Paleoclimate Implications. Chemical Geology, 388: 71-77. https://doi.org/10.1016/j.chemgeo.2014.08.029
      Li, F., Zhu, C., Wu, L., Sun, W., et al., 2014b. "Environmental Humidity Changes Inferred from Multi-Indicators in the Jianghan Plain, Central China during the Last 12, 700 Years. Quaternary International, 349: 68-78. https://doi.org/10.1016/j.quaint.2013.09.040
      Li, Q., Wu, H. B., Yu, Y. Y, Sun, A. Z., et al., 2014c. Reconstructed Moisture Evolution of the Deserts in Northern China since the Last Glacial Maximum and Its Implications for the East Asian Summer Monsoon. Global and Planetary Change, 121: 101-112. https://doi.org/10.1016/j.gloplacha.2014.07.009
      Li, J. Y, Xu, Q. H., Zheng, Z., et al., 2015. A Dataset of Spatial Distribution of Bioclimatic Variables in China at 1km Resolution. Quaternary Research, 83(2): 287-297. https://doi.org10.1016/j.yqres.2014.12.002
      Li, B., Ma, C. M., Zhu, C., et al., 2018. Environmental Evolution of Eastern Taihu Plain During the Holocene Achieved by Pingwang Core. Acta PalaeontologicaSinica, 57(4): 513-523 (in Chinese with English abstract).
      Li, J. Y., Dodson, J., Yan, H., et al., 2018. Q Quantitative Holocene Climatic Reconstructions for the Lower Yangtze Region of China. Climate Dynamics, 50(3-4): 1101-1113. https://doi.org/10.1007/s00382-017-3664-3
      Li, C. A., Zhang, Y. F., Xu, W. S., et al., 2023. Paleogeographic Pattern of Hankou and Hanjiang Estuary 350 Years Ago. Earth Science, 48(9): 3552-3561 (in Chinese with English abstract).
      Lin, Z. D., Fu, Y. H., Lu, R. Y., 2019. Intermodel Diversity in the Zonal Location of the Climatological East Asian Westerly Jet Core in Summer and Association with Rainfall over East Asia in CMIP5 Models. Advances in Atmospheric Sciences, 36(6): 614-622. https://doi.org/10.1007/s00376-019-8221-z
      Liu, Z. Y., Otto-Bliesner, B. L., He, F., et al., 2009. T Transient Simulation of Last Deglaciation with a New Mechanism for Bølling-Allerød Warming. Science, 325(5938): 310-314. https://doi.org/10.1126/science. 1171041 doi: 10.1126/science.1171041
      Liu, T., Chen, Z. Y., Sun, Q. L., et al., 2012. Migration of Neolithic Settlements in the Dongting Lake Area of the Middle Yangtze River Basin, China: Lake-Level and Monsoon Climate Responses. The Holocene, 22(6): 649-657. https://doi.org/10.1177/0959683611405084
      Liu, Z. Y., Lu, Z. Y., Wen, X. Y., et al., 2014. Evolution and Forcing Mechanisms of El Niño over the Past 21, 000 Years. Nature, 515(7528): 550-553. https://doi.org/10.1038/nature13963
      Liu, Z. y., Wen, X. y., Brady, E. C., et al., 2014. Chinese Cave Records and the East Asia Summer Monsoon. Quaternary Science Reviews, 83: 115-128. https://doi.org/10.1016/j.quascirev.2013.10.021
      Liu, J. B., Chen, J. H., Zhang, X. J., et al., 2015. Holocene East Asian Summer Monsoon Records in Northern China and Their Inconsistency with Chinese Stalagmite δ18O Records. Earth-Science Reviews, 148: 194-208. https://doi.org/10.1016/j.earscirev.2015.06.004
      Liu, J. B., Chen, S. Q., Chen, J. H., et al., 2017. Chinese Cave δ18O Records Records Do Not Represent Northern East Asian Summer Monsoon Rainfall. Proceedings of the National Academy of Sciences, 114(15): E2987-E2988. https://doi.org/10.1073/pnas.1703471114
      Liu, H. Y., Gu, Y. S., Huang, X. Y, et al., 2019. A 13, 000-Year Peatland Palaeohydrological Response to the ENSO-Related Asian Monsoon Precipitation Changes in the Middle Yangtze Valley. Quaternary Science Reviews, 212: 80-91. https://doi.org/10.1016/j.quascirev.2019.03.034
      Liu, X. K., Liu, J. B., Chen, S. Q., et al., 2020. New Insights on Chinese Cave δ18O Records and Their Paleoclimatic Significance. Earth-Science Reviews, 207: 103216. https://doi.org/10.1016/j.earscirev.2020.103216
      Liu, J. B., Shen, Z. W., Chen, W., et al., 2021. Dipolar Mode of Precipitation Changes between North China and the Yangtze River Valley Existed over the Entire Holocene: Evidence from the Sediment Record of Nanyi Lake. International Journal of Climatology, 41(3): 1667-1681. https://doi.org/10.1002/joc.6906
      Lu, F. Z., Ma, C. M., Zhu, C., et al., 2019. Variability of East Asian Summer Monsoon Precipitation during the Holocene and Possible Forcing Mechanisms. Climate Dynamics, 52: 969-989. https://doi.org/10.1007/s00382-018-4175-6
      Maher, B. A., 2016. Palaeoclimatic Records of the Loess/Palaeosol Sequences of the Chinese Loess Plateau. Quaternary Science Reviews, 154: 23-84. https://doi.org/10.1016/j.quascirev.2016.08.004
      Mu, D. X., 2021. A Comparative Study of the Middle and Lower Reaches of the Yangtze River in the Middle Neolithic Age(Dissertation). Shandong University, Jinan, 1-2 (in Chinese with English abstract).
      Orton, G. J., Reading, H. G., 1993. Variability of Deltaic Processes in Terms of Sediment Supply, with Particular Emphasis on Grain Size. Sedimentology, 40(3): 475-512. https://doi.org/10.1111/j.1365-3091.1993.tb01347.x
      Prell, W. L., Kutzbach, J. E., 1987. Monsoon Variability Over the Past 150, 000 Years. Journal of Geophysical Research: Atmospheres, 92(D7): 8411-8425. https://doi.org/10.1029/JD092iD07p08411
      Rohatgi, A., 2022. Webplotdigitizer: Version 4.6. Available from https://automeris.io/WebPlotDigitizer. (Last accessed on September, 2022)
      Shu, J. W., Wang, W. M., Chen, W., 2007. Holocene Vegetation and Environment Changes in the NwTaihu Plain, Jiangsu Province, East China. Acta Micropalaeontologica Sinica, (2): 210-221 (in Chinese).
      Sun, J., Ma, C. M., Cao, X. Y., et al., 2019. Quantitative Precipitation Reconstruction in the East-Central Monsoonal China since the Late Glacial Period. Quaternary International, 521: 175-184. https://doi.org/10.1016/j.quaint. 2019.05.033 doi: 10.1016/j.quaint.2019.05.033
      Tao, J., Chen, M. T., Xu, S. Y., 2006. A Holocene Environmental Record from the Southern Yangtze River Delta, Eastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 230(3-4): 204-229. https://doi.org/10.1016/j.palaeo.2005.07.015
      Tian, S. H., Xiao, G. Q., Yin, Q. Z., et al., 2023. ENSO-related East Asian Climate Transition at ~3 600 BP and Its Implications for the Rise of Pastoralism in North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 630: 111810. https://doi.org/10.1021/acsomega.3c07134
      Wang, Y. J., Cheng, H., Edwards, R. L., et al., 2008. Millennial- and Orbital-Scale Changes in the East Asian Monsoon over the Past 224, 000 Years. Nature, 451(7182): 1090-1093. https://doi.org/10.1038/nature06692
      Wang, W. M., Shu, J. W., Chen, W., 2010. Holocene Environmental Changes and Human Impact in the Yangtze River Delta Area/East China. Quaternary Sciences, 30(2): 233-244 (in Chinese with English abstract).
      Wang, Z. H., Zhuang, C. C., Saito, Y., et al., 2012. Early Mid-Holocene Sea-Level Change and Coastal Environmental Response on the Southern Yangtze Delta Plain, China: Implications for the Rise of Neolithic Culture. Quaternary Science Reviews, 35: 51-62. https://doi.org/10.1016/j.quascirev.2012.01.005
      Wang, Q., Yang, S. Y., 2013. Clay Mineralogy Indicates the Holocene Monsoon Climate in the Changjiang (Yangtze River) Catchment, China. Applied Clay Science, 74: 28-36. https://doi.org/10.1016/j.clay.2012.08.011
      Wang, H. P, Chen, J. H., Zhang, X. J., et al., 2014. Palaeosol Development in the Chinese Loess Plateau as an Indicator of the Strength of the East Asian Summer Monsoon: Evidence for a Mid-Holocene Maximum. Quaternary International, 334: 155-164. https://doi.org/10.1016/j.quaint.2014.03.013
      Wang, B., Li, J., He, Q., 2017. Variable and Robust East Asian Monsoon Rainfall Response to El Niño over the Past 60 Years (1957-2016). Advances in Atmospheric Sciences, 34(10): 1235-1248. https://doi.org/10.1007/s00376-017-7016-3
      Wang, C. F., Bendle, J. A., Zhang, H. B., et al., 2018. Holocene Temperature and Hydrological Changes Reconstructed by Bacterial 3-Hydroxy Fatty Acids in a Stalagmite from Central China. Quaternary Science Reviews, 192: 97-105. https://doi.org/10.1016/j.quascirev. 2018.05.030 doi: 10.1016/j.quascirev.2018.05.030
      Wang, Z. J., Chen, S. T., Wang, Y. J., et al., 2022. Climatic Implication of Stalagmite δ13C in the Middle Reaches of the Yangtze River since the Last Glacial Maximum and Coupling with δ18O. Palaeogeography, Palaeoclimatology, Palaeoecology, 608: 111290. https://doi.org/10.1016/j.palaeo.2022.111290
      Wei, Z. Q., Zhong, W., Shang, S. T., et al., 2018. Lacustrine Mineral Magnetic Record of Postglacial Environmental Changes from Dahu Swamp, Southern China. Global and Planetary Change, 170: 62-75. https://doi.org/10.1016/j.gloplacha.2018.08.010
      Wen, X. Y., Liu, Z. Y., Wang, S. W., et al., 2016. Correlation and Anti-Correlation of the East Asian Summer and Winter Monsoons during the Last 21, 000 Years. Nature Communications, 7(1): 11999. https://doi.org/10.1038/ncomms11999
      Wu, C., 2018. Risk Assessment of Flood Disasters in the Middle-Lower Reaches of the Yangtze River. Wuhan University, Wuhan, 11-12 (in Chinese with English abstract).
      Wu, L., Li, L. Y., Zhou, H., et al., 2019. Holocene Fire in Relation to Environmental Change and Human Activity Reconstructed from Sedimentary Charcoal of Chaohu Lake, East China. Quaternary International, 507: 62-73. https://doi.org/10.1016/j.quaint.2018.11.035
      Wu, L., Lu, S. G., Zhu, C., et al., 2021. Holocene Environmental Archaeology of the Yangtze River Valley in China: A Review. Land, 10(3): 302. https://doi.org/10.3390/land10030302
      Xie, S. C., Evershed, R. P., Huang, X. Y., et al., 2013. Concordant Monsoon-Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China. Geology, 41(8): 827-830. https://doi.org/10.1130/g34318.1
      Xie, Z. Q., Du, Y., Yang, S., 2015. Zonal Extension and Retraction of the Subtropical Westerly Jet Stream and Evolution of Precipitation over East Asia and the Western Pacific. Journal of Climate, 28(17): 6783-6798. https://doi.org/10.1175/jcli-d-14-00649.1
      Xu, D., Lu, H. Y., Chu, G. Q., et al., 2014. 5500-Year Climate Cycles Stacking of Recent Centennial Warming Documented in an East Asian Pollen Record. Scientific Reports. https://doi.org/10.1038/srep03611
      Xu, G., Liu, J., Gugliotta, M., et al., 2020. Link between East Asian Summer Monsoon and Sedimentation in River-Mouth Sandbars since the Early Holocene Preserved in the Yangtze River Subaqueous Delta Front. Quaternary Research, 95: 84-96. https://doi.org/10.1017/qua.2020.1
      Xu, C. C., 2021. Summer Westerly Jet in Northern Hemisphere in Typical Period during the Holocene: A Multi-Model Study. (Dissertation). Nanjing Normal University, Nanjing, 27-28 (in Chinese with English abstract).
      Yang, F., Lau, K. M., 2004. Trend and Variability of China Precipitation in Spring and Summer: Linkage to Sea Surface Temperatures. International Journal of Climatology, 24(13): 1625-1644. https://doi.org/10.1002/joc.1094
      Yang, K., Wu, H., Qin, J., et al., 2014. Recent Climate Changes over the Tibetan Plateau and Their Impacts on Energy and Water Cycle: A Review. Global and Planetary Change, 112: 79-91. https://doi.org/10.1016/j.gloplacha.2013.12.001
      Yang, J. S., Wang, Y., Yin, J. H., et al., 2023. Progress and Prospects in Reconstruction of Flood Events in Chinese Alluvial Plains. Earth Science, 47(11): 3944-3959 (in Chinese with English abstract).
      Yao, F. L., Ma, C. M., Zhu, C., et al., 2017. Holocene Climate Change in the Western Part of Taihu Lake Region, East China. Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 963-973. https://doi.org/10.1016/j.palaeo.2017.08.022
      Ye, W., Chen, Q., Zhu, L. D., et al., 2018. Early Middle Holocene Climate Oscillations Recorded in the Beihuqiao Core, Yuhang, Zhejiang Province, China. Journal of Paleolimnology, 59(2): 263-278. https://doi.org/10.1007/s10933-017-9959-x
      Ye, L. T., Gao, L. Li, Y. F., et al., 2022. Palynology-Based Reconstruction of Holocene Environmental History in the Northern Yangtze Delta, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 603: 111186. https://doi.org/10.1016/j.palaeo.2022.111186
      Yi, S., Saito, Y., Yang, D. Y. 2006. Palynological Evidence for Holocene Environmental Change in the Changjiang (Yangtze River) Delta, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 241(1): 103-117. https://doi.org/10.1016/j.palaeo.2006.06.016
      Yin, Z. J., Liu, X. Y., Zhang, H. Y., 2014. Analysis of Storm Flood Occurred in Yangtze River Basin in July 2012. Journal of China Hydrology, 34(5): 81-87 (in Chinese with English abstract).
      Berger, A., Driesschaert, E., Goosse, H., et al., 2010. The Eurasian Ice Sheet Reinforces the East Asian Summer Monsoon during the Interglacial 500 000 Years Ago. Climate of the Past, 4(2): 79-90. https://doi.org/10.5194/cp-4-79-2008
      Yu, J., Yu, Y. Y., Wu, H. B., et al., 2022. Spatiotemporal Changes in Early Human Land Use during the Holocene throughout the Yangtze River Basin, China. . The Holocene, 32(4): 334-345. https://doi.org/10.1177/09596836211066605
      Zhan, W., Yang, S. Y., Liu, X. L., et al., 2010. Reconstruction of Flood Events over the Last 150 Years in the Lower Reaches of the Changjiang River. Chinese Science Bulletin, 55(21): 2268-2274. https://doi.org/10.1007/s11434-010-3263-8
      Zhan, Q., Wang, Z. H., Xie, Y., et al., 2012. Assessing C/N and δ13C as Indicators of Holocene Sea Level and Freshwater Discharge Changes in the Subaqueous Yangtze Delta, China. The Holocene, 22(6): 697-704. https://doi.org/10.1177/0959683611423685
      Zhang, H. L., Yu, K. F., Zhao, J. X., et al., 2013. East Asian Summer Monsoon Variations in the Past 12.5 ka: High-Resolution Delta O-18 Record from a Precisely Dated Aragonite Stalagmite in Central China. Journal of Asian Earth Sciences, 73: 162-175. https://doi.org/10.1016/j.jseaes.2013.04.015
      Zhang, H. B., Griffiths, M. L., Chiang, J. C. H., et al., 2018. East Asian Hydroclimate Modulated by the Position of the Westerlies during Termination I. Science, 362(6414): 580-583. https://doi.org/10.1126/science.aat9393
      Zhang, L. J., Li, Y. H., Ren Han., et al., 2020. Prediction of the Suitable Distribution of Cyclobalanopsis Glauca and Its Implications for the Northern Boundary of Subtropical Zone of China. Geographical Research, 39(4): 990-1001 (in Chinese with English abstract).
      Zhang, H. W., Cheng, H., Sinha, A., et al., 2021a. Collapse of the Liangzhu and Other Neolithic Cultures in the Lower Yangtze Region in Response to Climate Change. Science Advances, 7(48): Eabi9275. https://doi.org/10.1126/sciadv.abi9275
      Zhang, Z. P., Liu, J. B., Chen, J. H., et al., 2021b. Holocene Climatic Optimum in the East Asian Monsoon Region of China Defined by Climatic Stability. Earth-Science Reviews, 212: 103450. https://doi.org/10.1016/j.earscirev.2020.103450
      Zhang, H. W., Zhang, X., Cai, Y. J, et al., 2021c. A Data-Model Comparison Pinpoints Holocene Spatiotemporal Pattern of East Asian Summer Monsoon. Quaternary Science Reviews, 261: 106911. https://doi.org/10.1016/j.quascirev.2021.106911
      Zhao, C. S. P., Mo, D. W., et al., 2020. Holocene Hydro-Environmental Evolution and Its Impacts on Human Occupation in Jianghan-Dongting Basin, Middle Reaches of the Yangtze River, China. Journal of Geographical Sciences, 30(3): 423-438. https://doi.org/10.1007/s11442-020-1735-6
      Zhou, T. J., Yu, R. C., 2005. Atmospheric Water Vapor Transport Associated with Typical Anomalous Summer Rainfall Patterns in China. Journal of Geophysical Research. 110(D8). https://doi.org/10.1029/2004jd005413
      Zhou, X., 2012. Asian Monsoon Precipitation Changes and the Holocene Methane Anomaly. The Holocene, 22(7): 731-738. https://doi.org/10.1177/0959683611430408
      Zhou, H. Y., Liu, S. H., Peng, X. T., et al., 2016. Paleoclimatic Interpretations of Speleothem δ18O Record In Monsoonal China: Controversies and Some Key Issues. Tropical Geography, 36(3): 448-456. (in Chinese with English abstract).
      Zhou, W. J., Chui, Y. D., Yang, L., et al., 2022. 14C Geochronology and Radiocarbon Reservoir Effect of Reviewed Lakes Study in China. Radiocarbon, 64(4): 833-844. https://doi.org/10.1017/rdc.2021.92
      Zhou, P. C., Yan, H., Han, T., et al., 2022. Mid to Late Holocene ENSO Variability Reconstructed by High-Resolution Tridacna Sr/Ca Records from the Northern Part of the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 601: 111117. https://doi.org/10.1016/j.palaeo.2022.111117
      Zhu, C., Wu, L., Li, L., et al., 2014. Research Progress on Holocene Environmental Archaeology in the Yangtze river Valley, China. Acta Geographica Sinica, 69(9): 1268-1283 (in Chinese with English abstract).
      Zhu, Z. M., Feinberg, J. M., Xie, S. C., et al., 2017. Holocene ENSO-Related Cyclic Storms Recorded by Magnetic Minerals in Speleothems of Central China. Proceedings of the National Academy of Sciences, 114(5): 852-857. https://doi.org/10.1073/pnas.1610930114
      Zuo, X. X., Lu, H. Y., Jiang, L. P., et al., 2017. Dating Rice Remains through Phytolith Carbon-14 Study Reveals Domestication at the Beginning of the Holocene. Proceedings of the National Academy of Sciences, 114(25): 6486-6491. https://doi.org/10.1073/pnas.1704304114
      曹剑, 吴立广, 2016. 末次盛冰期冰盖对全球季风活动的非对称性影响. 气象科学, 36(4): 425-435.
      陈发虎, 傅伯杰, 夏军, 等, 2019. 近70年来中国自然地理与生存环境基础研究的重要进展与展望. 中国科学: 地球科学, 49(11): 1659-1696.
      陈中原, 洪雪晴, 李山, 等, 1997. 太湖地区环境考古. 地理学报, 52(2): 131-137.
      陈思思, 王熊飞, 2014. 全新世以来江汉平原地形及其环境变化探讨, 地理科学研究, 3: 39.
      况雪源, 张耀存, 2006. 东亚副热带西风急流位置异常对长江中下游夏季降水的影响. 高原气象, (3): 382-389.
      蒋赞初, 1960. 江苏地区的考古发现及其对古史研究的意义. 江海学刊, (7): 39-47.
      穆东旭, 2021. 新石器时代中期长江中游和下游地区的比较研究(博士学位论文). 济南: 山东大学, 1-2.
      李冰, 马春梅, 朱诚, 等, 2018. 太湖东部平原平望孔全新世环境演变地层记录. 古生物学报, 57(04): 513-523.
      李长安, 张玉芬, 徐望生, 等, 2023. 350年前的汉口及汉江河口段古地理格局. 地球科学, 48(9): 3552-3561. doi: 10.3799/dqkx.2021.259
      舒军武, 王伟铭, 陈炜, 2007. 太湖平原西北部全新世以来植被与环境变化. 微体古生物学报, (2): 210-221.
      王伟铭, 舒军武, 陈炜, 等, 2010. 长江三角洲地区全新世环境变化与人类活动的影响. 第四纪研究, 30(2): 233-244.
      吴畅, 2018. 长江中下游地区洪水灾害风险评价(硕士学位论文). 武汉: 武汉大学, 11-12
      徐楚楚, 2018. 全新世以来特征时期北半球夏季西风急流变化特征及机制的多模式研究(硕士学位论文). 南京: 南京师范大学, 27-28.
      杨劲松, 王永, 尹金辉, 等, 2022. 我国冲积平原区洪水事件重建研究进展及展望. 地球科学, 47(11): 3944-3959. doi: 10.3799/dqkx.2022.192
      尹志杰, 刘晓音, 张海燕, 2014. 长江流域"2012· 07"暴雨洪水分析. 水文, 34(5): 81-87.
      张立娟, 李艳红, 任涵, 等, 2020. 气候变化背景下青冈分布变化及其对中国亚热带北界的指示意义. 地理研究, 39(4): 990-1001.
      周厚云, 刘淑华, 彭小桃, 等, 2016. 中国季风区石笋氧同位素气候指示意义: 主要争议与几个重要问题. 热带地理, 36(3): 448-456
      朱诚, 吴立, 李兰, 等, 2014. 长江流域全新世环境考古研究进展. 地理学报, 69(9): 1268-1283.
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  169
    • HTML全文浏览量:  151
    • PDF下载量:  44
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-11-25
    • 网络出版日期:  2025-02-26
    • 刊出日期:  2025-02-25

    目录

      /

      返回文章
      返回