• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川东红星地区上二叠统吴家坪组沉积相演化与核形石发育条件

    易雨昊 朱红涛 陆亚秋 李凯 孟志勇 陈发垚

    易雨昊, 朱红涛, 陆亚秋, 李凯, 孟志勇, 陈发垚, 2024. 川东红星地区上二叠统吴家坪组沉积相演化与核形石发育条件. 地球科学, 49(12): 4546-4563. doi: 10.3799/dqkx.2024.003
    引用本文: 易雨昊, 朱红涛, 陆亚秋, 李凯, 孟志勇, 陈发垚, 2024. 川东红星地区上二叠统吴家坪组沉积相演化与核形石发育条件. 地球科学, 49(12): 4546-4563. doi: 10.3799/dqkx.2024.003
    Yi Yuhao, Zhu Hongtao, Lu Yaqiu, Li Kai, Meng Zhiyong, Chen Fayao, 2024. Sedimentary Facies Evolution and Oncoidal Development Conditions of Wujiaping Formation of Upper Permian in Hongxing Area, East Sichuan. Earth Science, 49(12): 4546-4563. doi: 10.3799/dqkx.2024.003
    Citation: Yi Yuhao, Zhu Hongtao, Lu Yaqiu, Li Kai, Meng Zhiyong, Chen Fayao, 2024. Sedimentary Facies Evolution and Oncoidal Development Conditions of Wujiaping Formation of Upper Permian in Hongxing Area, East Sichuan. Earth Science, 49(12): 4546-4563. doi: 10.3799/dqkx.2024.003

    川东红星地区上二叠统吴家坪组沉积相演化与核形石发育条件

    doi: 10.3799/dqkx.2024.003
    基金项目: 

    中国石油化工股份有限公司科研项目“红星二叠系页岩气有效开发关键技术研究” P22045

    详细信息
      作者简介:

      易雨昊(1992-),女,博士,主要从事沉积学、地球生物学、页岩气地质评价方面的研究工作. ORCID:0000⁃0001⁃7495⁃3232. E⁃mail:cugyyh@163.com

    • 中图分类号: P52;581

    Sedimentary Facies Evolution and Oncoidal Development Conditions of Wujiaping Formation of Upper Permian in Hongxing Area, East Sichuan

    • 摘要: 微生物岩或微生物相关沉积的广泛发育是生物大灭绝之后常见的沉积学响应.近期研究认为中二叠世末灭绝事件是地质历史上第六大生物灭绝事件,但目前关于该灭绝后微生物沉积记录研究较为缺乏.本次研究对川东红星地区HY3井上二叠统吴家坪组底部的一套核形石灰岩展开了详细调查,并分析了其相关地层的沉积相演化.在HY3井茅口组顶部至长兴组底部,共识别出5个沉积相(组合)和11种沉积微相.纵向上,吴家坪组沉积相演化显示出3个整体水深逐步加大的3级海平面变化旋回,其中核形石仅见于吴家坪期第1沉积旋回海侵阶段的中-后期.根据核心和纹层特征,可将HY3井吴家坪组核形石分为4种类型.随着沉积水深加大,核形石的类型、直径、密度等参数在纵向上呈现出3个差异明显的发育阶段,这些参数变化均指示合适的水动力条件是核形石发育的关键因素之一.此外,这些核形石的发育可能还受到生物灭绝和陆源输入的影响.核形石发育层位对应于中二叠世末生物灭绝的灾后期,后生生物多样性锐减为以微生物诱导为沉积机制的核形石发育提供了充足的生态空间.在核形石灰岩之上相邻层位、水深条件相当的地层中,可能由于更靠近煤层,陆源输入增强,导致核形石不再发育.

       

    • 图  1  晚二叠世吴家坪期扬子板块岩相古地理图及HY3井位置(据刘宝珺和许效松,1994修改)

      Fig.  1.  Lithofacies paleogeographic map of Yangtze block in Wujiaping stage of Late Permian and location of well HY3 (modified after Liu and Xu, 1994)

      图  2  红星地区HY3井上二叠统-下三叠统岩性柱状图

      Fig.  2.  Lithologic column of Upper Permian⁃Lower Triassic series of well HY3 in Hongxing area

      图  3  红星地区HY3井吴家坪组综合柱状图

      Fig.  3.  Comprehensive column of Wujiaping Formation of well HY3 in Hongxing area

      图  4  红星地区HY3井核形石灰岩段岩心拼图(a)及其典型岩心照片(b, c)

      图b表示图a中黄色虚线框内的核形石段照片;图c表示图a中蓝色虚线框内的典型煤层照片

      Fig.  4.  Core puzzles (a) and typical core pictures (b, c) of oncoidal limestone in well HY3 of Hongxing area

      图  5  红星地区HY3井吴家坪组岩石学特征

      a. MF2,化石稀少的白云岩,HY3⁃011⁃003;b. MF3,富含黄铁矿的硅质钙质页岩,HY3⁃032⁃002;c. MF5,以钙藻为主的生屑灰岩,HY3⁃037⁃017;d~f. MF6,生物类型丰富,含钙藻碎屑的生屑灰岩,d来自HY3⁃039⁃002,e来自于HY3⁃052⁃008,f来自HY3⁃052⁃003;g. MF7,含海绵骨针的生屑灰岩,HY3⁃043⁃008;h. MF8,含大量被硅化介壳的钙质硅质岩,HY3⁃056⁃006Z(正交光);i. MF9,生屑含量较少的泥晶灰岩,HY3⁃062⁃003;j. MF10,富含放射虫的硅质页岩,HY3⁃080⁃001;k. MF10,富含放射虫的钙质硅质页岩,HY3⁃093⁃002;l. 生屑稀少的硅质钙质页岩,HY3⁃097⁃003Z(正交光)

      Fig.  5.  Petrological features of Wujiaping Formation of Well HY3 in Hongxing area

      图  6  红星地区HY3井吴家坪组核形石长轴统计

      N表示数量number,即在所有薄片中共挑选了802颗保存完整的核形石进行长轴直径统计

      Fig.  6.  Long axis statistics of oncoids from Wujiaping Formation of Well HY3 in Hongxing area

      图  7  红星地区HY3井吴家坪组类型A核形石典型薄片照片

      a~k. 典型类型A核形石,呈椭球状或近椭球状,除了F来自HY3⁃016之外,其余核形石均来自HY3⁃012;d. 核心为椭球状泥晶团块;e. 核心被重结晶为亮晶方解石;f. 核心直径较大,部分发生重结晶,形成泥晶和亮晶的混生现象;g~i. 纹层为由亮层和暗层相间排列而成的同心圈层结构;j. 黄色箭头指示核形石边缘发育的压溶缝合线;k.为j中黄色方框内的放大部分,黄色箭头指示微生物丝状体

      Fig.  7.  Typical thin section pictures of oncoids belonging to type A from Wujiaping Formation of well HY3 in Hongxing area

      图  8  红星地区HY3井吴家坪组类型B核形石典型薄片照片

      a~d. 典型类型b核形石,核心为生物碎屑,a和b来自HY3⁃014,c和d来自于HY3⁃016;b为a局部放大照片,b中黄色箭头指示微生物丝状体;d为c局部放大照片

      Fig.  8.  Typical thin section pictures of oncoids belonging to type B from Wujiaping Formation of Well HY3 in Hongxing area

      图  9  红星地区HY3井吴家坪组类型C核形石典型薄片照片

      a~c. 典型类型c核形石,具有“核大壳薄”的特征,均来自HY3⁃016;d. 核心由类型d核形石破碎的纹层组成,来自HY3⁃018;e. 为d中黄色方框内的放大部分,黄色箭头指示典型的微生物丝状体;f. 核心由类型d核形石破碎的纹层组成,来自HY3⁃014;g. 为f中黄色方框内的放大部分,黄色箭头指示典型的微生物丝状体

      Fig.  9.  Typical thin section pictures of oncoids belonging to type C from Wujiaping Formation of well HY3 in Hongxing area

      图  10  红星地区HY3井吴家坪组类型D核形石典型薄片照片

      a. 典型类型d核形石,来自HY3⁃016;b. 同心圈层结构与波纹状结构混生的组合纹层,来自HY3⁃016;c. 波纹状结构纹层,来自HY3⁃013;d. 同心圈层结构与波纹状结构混生的组合纹层,来自HY3⁃012;d1. 为d中黄色方框内的放大部分,显示纹层内部的微生物丝状体;e. 放射状结构与波纹状结构混生的组合纹层,来自HY3⁃014;e1. 为e中黄色方框内的放大部分,显示纹层内部的微生物丝状体;f. 放射状结构纹层,来自HY3⁃014;f1. 为f中黄色方框内的放大部分,显示纹层内部的微生物丝状体

      Fig.  10.  Typical thin section pictures of oncoids belonging to type D from Wujiaping Formation of well HY3 in Hongxing area

      图  11  红星地区HY3井吴家坪组核形石垂向分布特征

      a~c. 第1阶段,以类型a为主,含有一定量类型c和类型d,a来自HY3⁃012,b和c来自HY3⁃013;d~f. 第2阶段,4种类型混生,d来自HY3⁃014,e来自HY3⁃015,f来自HY3⁃016;g,h. 第3阶段前期,以类型c为主,其余类型数量均减少,g来自HY3⁃017,h来自HY3⁃018;i. 核形石暂时消失,i来自HY3⁃020;j~l. 第3阶段后期,以类型c为主,出现有少量类型a和类型d,均来自HY3⁃023

      Fig.  11.  Oncoidal vertical distribution characteristics of Wujiaping Formation of Well HY3 in Hongxing area

      表  1  红星地区HY3井吴家坪组4种类型核形石形态特征

      Table  1.   Four types of oncoidal morphological characteristics of Wujiaping Formation in Hongxing area

      类型 形态 核心 纹层 长轴直径
      A 多数呈椭球状或近椭球状,少数呈次椭球状 多数为椭球状泥晶团块,少数为亮晶方解石 由亮层和暗层相间排列构成同心圈层结构,暗层以泥晶为主,亮层含亮晶成分较多 0.5~10.0 mm
      B 多数呈长椭球状或长条状,少数呈不规则形态 生物碎屑,主要为双壳类和介形类 不连续、不规则,纹层多由泥晶组成,不同纹层之间的界线不明显 2.0~15.0 mm
      C 次椭球状或不规则形态,核大壳薄 不规则泥晶团块 纹层微弱发育,仅在核心的外圈生长出1~3圈薄纹层 0.5~5.0 mm
      D 不规则形态 多数为泥晶团块,少数为破碎的核形石 纹层厚且类型丰富,多为波纹状或放射状纹层,或多种形态的组合 5.0~20.0 mm,极个别大于20.0 mm
      下载: 导出CSV
    • Bambach, R. K., 2006. Phanerozoic Biodiversity Mass Extinctions. Annual Review of Earth and Planetary Sciences, 34: 127-155. https://doi.org/10.1146/annurev.earth.33.092203.122654
      Bao, H. Y., Zhao, S., Liang, B., et al., 2023. Enrichment and High Yield of Shale Gas in the Permian Wujiaping Formation in Hongxing Area of Eastern Sichuan and Its Exploration Implications. China Petroleum Exploration, 28(1): 71-82(in Chinese with English abstract).
      Barnosky, A. D., Matzke, N., Tomiya, S., et al., 2011. Has the Earth's Sixth Mass Extinction already Arrived? Nature, 471: 51-57. https://doi.org/10.1038/nature09678
      Baud, A., Cirilli, S., Marcoux, J., 1997. Biotic Response to Mass Extinction: The Lowermost Triassic Microbialites. Facies, 36: 238-242. https://doi.org/10.1007/bf02536884
      Bian, L. Z., Huang, Z. C., 1988. On Classification and Paleoecological Significance of Oncolite and Features of Non⁃Skeletal Oncolite in Ordovician, Anhui, China. Acta Palaeontologica Sinica, 27(5): 544-552 (in Chinese with English abstract).
      Campi, M. J., 2012. The Permian—A Time of Major Evolutions and Revolutions in the History of Life. In: Talent, J. A., ed., Earth and Life. Springer, Dordrecht, Netherlands, 705-718. https://doi.org/10.1007/978⁃90⁃481⁃3428⁃1_23
      Chen, F. Y., Xue, W. Q., Yan, J. X., et al., 2021. The Implications of the Giant Bivalve Family Alatoconchidae for the End⁃Guadalupian (Middle Permian) Extinction Event. Geological Journal, 56(12): 6073-6087. https://doi.org/10.1002/gj.4151
      Chen, Z. Q., Tu, C. Y., Pei, Y., et al., 2019. Biosedimentological Features of Major Microbe⁃Metazoan Transitions (MMTs) from Precambrian to Cenozoic. Earth⁃Science Reviews, 189: 21-50. https://doi.org/10.1016/j.earscirev.2019.01.015
      Dahanayake, K., 1977. Classification of Oncoids from the Upper Jurassic Carbonates of the French Jura. Sedimentary Geology, 18(4): 337-353. https://doi.org/10.1016/0037-0738(77)90058⁃6
      Dahanayake, K., 1978. Sequential Position and Environmental Significance of Different Types of Oncoids. Sedimentary Geology, 20: 301-316. https://doi.org/10.1016/0037⁃0738(78)90060⁃x
      Dai, M. Y., Qi, Y. A., Chang, Y. G., et al., 2014. Oncoids and Their Significance from the Second Member of the Mantou Formation (Cambrian Series 3), Dengfeng Area, Henan. Acta Sedimentologica Sinica, 32(3): 410-417 (in Chinese with English abstract).
      Haq, B. U., Schutter, S. R., 2008. A Chronology of Paleozoic Sea⁃Level Changes. Science, 322(5898): 64-68. https://doi.org/10.1126/science.1161648
      He, B., Xu, Y. G., Guan, J. P., et al., 2010. Paleokarst on the Top of the Maokou Formation: Further Evidence for Domal Crustal Uplift Prior to the Emeishan Flood Volcanism. Lithos, 119(1-2): 1-9. https://doi.org/10.1016/j.lithos.2010.07.019
      He, Z. A., 1982. Classification and Origin of Oncolite. Oil & Gas Geology, 3(1): 41-48, 99-100 (in Chinese with English abstract).
      Huang, Y. G., Chen, Z. Q., Wignall, P. B., et al., 2019a. Biotic Responses to Volatile Volcanism and Environmental Stresses over the Guadalupian⁃Lopingian (Permian) Transition. Geology, 47(2): 175-178. https://doi.org/10.1130/g45283.1
      Huang, Y. G., Chen, Z. Q., Zhao, L. S., et al., 2019b. Restoration of Reef Ecosystems Following the Guadalupian-Lopingian Boundary Mass Extinction: Evidence from the Laibin Area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 8-22. https://doi.org/10.1016/j.palaeo.2017.08.027 doi: 10.3969/j.issn.1000-0569.2007.12.019
      Jiang, Y. H., Yue, W. Z., Ye, Z. Z., 1990. Oncoids in the Carbonate Rocks of Chuanshan Formation from Yangtze Terrane. Volcanology & Mineral Resources, 11(2): 57-72 (in Chinese).
      Jin, Y. G., Shen, S. Z., Henderson, C. M., et al., 2006. The Global Stratotype Section and Point (GSSP) for the Boundary between the Capitanian and Wuchiapingian Stage (Permian). Episodes, 29(4): 253-262. https://doi.org/10.18814/epiiugs/2006/v29i4/003
      Kershaw, S., Crasquin, S., Li, Y., et al., 2012. Microbialites and Global Environmental Change across the Permian⁃Triassic Boundary: A Synthesis. Geobiology, 10(1): 25-47. https://doi.org/10.1111/j.1472⁃4669.2011.00302.x
      Kolodka, C., Vennin, E., Vachard, D., et al., 2012. Timing and Progression of the End⁃Guadalupian Crisis in the Fars Province (Dalan Formation, Kuh⁃E Gakhum, Iran) Constrained by Foraminifers and Other Carbonate Microfossils. Facies, 58(1): 131-153. https://doi.org/10.1007/s10347⁃011⁃0265⁃1
      Li, F., Yi, C. H., Li, H., et al., 2022. Recent Advances in Ooid Microbial Origin: A Review. Acta Sedimentologica Sinica, 40(2): 319-334 (in Chinese with English abstract).
      Li, X. Z., Guan, S. R., Xie, Q. B., et al., 2000. The Oncoids Genesis in the Middle Member of the Guanzhuang Formation of Eocene in Pingyi Basin. Acta Petrologica Sinica, 16(2): 261-268 (in Chinese with English abstract).
      Liu, B. J., Xu, X. S., 1994. Lithofacies Paleogeography Atlas of South China. Science Press, Beijing, 134-138 (in Chinese).
      Mata, S. A., Bottjer, D. J., 2012. Microbes and Mass Extinctions: Paleoenvironmental Distribution of Microbialites during Times of Biotic Crisis. Geobiology, 10(1): 3-24. https://doi.org/10.1111/j.1472⁃4669.2011.00305.x
      Mou, C. L., 2022. Suggested Naming and Classification of the Word Facies. Sedimentary Geology and Tethyan Geology, 42(3): 331-339 (in Chinese with English abstract).
      Peryt, T. M., Peryt, D., 2021. Foraminiferal Micro⁃Buildups ("Reefs") in the Wuchiapingian Basin Facies of the Basal Zechstein Carbonates in Western Poland. Journal of Palaeogeography, 10(4): 463-481. https://doi.org/10.1016/j.jop.2021.08.001
      Peryt, T. M., Piatkowski, T. S., 1977. Stromatolites from the Zechstein Limestone (Upper Permian) of Poland. In: Flügel, E., ed., Fossil Algae. Springer, Berlin, Heidelberg, 124-135. https://doi.org/10.1007/978⁃3⁃642⁃66516⁃5_13
      Peryt, T. M., Raczyński, P., Peryt, D., et al., 2012. Upper Permian Reef Complex in the Basinal Facies of the Zechstein Limestone (Ca1), Western Poland. Geological Journal, 47(5): 537-552. https://doi.org/10.1002/gj.2440
      Peterffy, O., Calner, M., Vajda, V., 2016. Early Jurassic Microbial Mats—A Potential Response to Reduced Biotic Activity in the Aftermath of the End⁃Triassic Mass Extinction Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 464: 76-85. https://doi.org/10.1016/j.palaeo.2015.12.024
      Qin, J. X., Zeng, Y. F., Chen, H. D., et al., 1998. Permian Sequence Stratigraphy and Sea⁃Level Changes in Southwestern China. Sedimentary Facies and Palaeogeography, 18(1): 19-35 (in Chinese with English abstract).
      Rampino, M. R., Shen, S. Z., 2021. The End⁃Guadalupian (259.8 Ma) Biodiversity Crisis: The Sixth Major Mass Extinction? Historical Biology, 33(5): 716-722. https://doi.org/10.1080/08912963.2019.1658096
      Raup, D. M., Jr Sepkoski, J. J., 1982. Mass Extinctions in the Marine Fossil Record. Science, 215(4539): 1501-1503. https://doi.org/10.1126/science.215.4539.1501
      Riding, R., 2006. Microbial Carbonate Abundance Compared with Fluctuations in Metazoan Diversity over Geological Time. Sedimentary Geology, 185(3-4): 229-238. https://doi.org/10.1016/j.sedgeo.2005.12.015
      Riding, R., Liang, L. Y., 2005. Geobiology of Microbial Carbonates: Metazoan and Seawater Saturation State Influences on Secular Trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1-2): 101-115. https://doi.org/10.1016/j.palaeo.2004.11.018
      Schubert, J. K., Bottjer, D. J., 1992. Early Triassic Stromatolites as Post⁃Mass Extinction Disaster Forms. Geology, 20(10): 883. https://doi.org/10.1130/0091⁃7613(1992)0200883:etsapm>2.3.co;2 doi: 10.1130/0091⁃7613(1992)0200883:etsapm>2.3.co;2
      Sepkoski, J. J., 1986. Phanerozoic Overview of Mass Extinction. In: Raup., D. M., Jablonski, D., eds., Patterns and Processes in the History of Life. Springer, Berlin, Heidelberg, 277-295.
      Sepkoski, J. J., 1996. Patterns of Phanerozoic Extinction: A Perspective from Global Data Bases. In: Walliser O. H., ed., Global Events and Event Stratigraphy in the Phanerozoic. Springer, Berlin, Heidelberg, 35-51. https://doi.org/10.1007/978⁃3⁃642⁃79634⁃0_4
      Sheehan, P. M., Harris, M. T., 2004. Microbialite Resurgence after the Late Ordovician Extinction. Nature, 430: 75-78. https://doi.org/10.1038/nature02654
      Shen, S. Z., Zhang, H., Zhang, Y. C., et al., 2019. Permian Integrative Stratigraphy and Timescale of China. Science China: Earth Sciences, 49(1): 160-193.
      Shi, G. R., Chen, Z. Q., 2006. Lower Permian Oncolites from South China: Implications for Equatorial Sea⁃Level Responses to Late Palaeozoic Gondwanan Glaciation. Journal of Asian Earth Sciences, 26(3/4): 424-436. https://doi.org/10.1016/j.jseaes.2005.10.009
      Stanley, S. M., Yang, X., 1994. A Double Mass Extinction at the End of the Paleozoic Era. Science, 266(5189): 1340-1344. https://doi.org/10.1126/science.266.5189.1340
      Tang, X., Liu, S. G., Song, J. M., et al., 2018. Characteristics and Environmental Significance of the Sinian Dengying Formation Oncoids in the Northeastern Sichuan Basin. Acta Sedimentologica Sinica, 36(2): 232-242 (in Chinese with English abstract).
      Tian, T. Z., Li, Z. Q., Lu, P. D., et al., 2023. Genetic Mechanism and Significance of Oncoidal Dolostone in Sinian Dengying Formation: A Case Study of Liuwan Section. Earth Science, 48(4): 1568-1586(in Chinese with English abstract).
      Védrine, S., Strasser, A., Hug, W., 2007. Oncoid Growth and Distribution Controlled by Sea⁃Level Fluctuations and Climate (Late Oxfordian, Swiss Jura Mountains). Facies, 53(4): 535-552. https://doi.org/10.1007/s10347⁃007⁃0114⁃4
      Wang, G. Q., Xia, W. C., 2004. Upper Permian Conodonts Zonation and Its Implication in Western Hubei Province. Geological Science and Technology Information, 23(4): 30-34 (in Chinese with English abstract).
      Wang, X., Foster, W. J., Yan, J., et al., 2019. Delayed Recovery of Metazoan Reefs on the Laibin⁃Heshan Platform Margin Following the Middle Permian (Capitanian) Mass Extinction. Global and Planetary Change, 180: 1-15. https://doi.org/10.1016/j.gloplacha.2019.05.005
      Wang, C. S., Chen, H. D., Shou, J. F., et al., 1999. Characteristics and Correlation of Permian Depositional Sequences in South China. Acta Sedimentologica Sinica, 17(4): 499-509 (in Chinese with English abstract).
      Wignall, P. B., Sun, Y. D., Bond, D. P. G., et al., 2009. Volcanism, Mass Extinction, and Carbon Isotope Fluctuations in the Middle Permian of China. Science, 324(5931): 1179-1182. https://doi.org/10.1126/science.1171956
      Wu, K., Tong, J. N., Li, H. J., et al., 2022. Advance in the Study of Global Conodont during the Palaeozoic⁃Mesozoic Upheavals. Earth Science, 47(3): 1012-1037 (in Chinese with English abstract).
      Yang, B. Z., 2007. Evolution of Conodont and Palaeogeographic Characteristics in Middle to Upper Permian at North Part of the Yangtze Platform (Dissertation). China University of Geosciences, Wuhan, 8-27(in Chinese with English abstract).
      Yang, R. C., Fan, A. P., Han, Z. Z., et al., 2011. Status and Prospect of Studies on Oncoid. Advances in Earth Science, 26(5): 465-474 (in Chinese with English abstract).
      Yao, L., Aretz, M., Chen, J. T., et al., 2016. Global Microbial Carbonate Proliferation after the End⁃Devonian Mass Extinction: Mainly Controlled by Demise of Skeletal Bioconstructors. Scientific Reports, 6: 39694. https://doi.org/10.1038/srep39694
      Zeng, Y. F., Zhang, J. Q., Lin., W. Q., et al., 1983. Types and Environmental Significance of Oncoids from Yongxian Formation of the Upper Devonian in Siding, Guangxi. Acta Sedimentologica Sinica, 1(1): 42-49, 140 (in Chinese with English abstract).
      Zhang, L., Wu, J., Yuan, D. X., et al., 2021. Integrated Radiolarian and Conodont Biostratigraphy of the Middle to Late Permian Linghao Formation in Northwestern Guangxi, South China. Acta Geologica Sinica (English Edition), 95(6): 1984-1997. https://doi.org/10.1111/1755⁃6724.14721
      Zhang, L. L., Zhang, N., Xia, W. C., 2007. Conodont Succession in the Guadalupian⁃Lopingian Boundary Interval of the Maoershan Section, Hubei Province, China. Micropaleontology, 53(6): 433-446. https://doi.org/10.2113/gsmicropal.53.6.433
      Zhang, Y., Chang, S., Feng, Q. L., et al., 2023. A Diverse Microfossil Assemblage from the Ediacaran⁃Cambrian Deep⁃Water Chert of the Liuchapo Formation in Guizhou Province, South China. Journal of Earth Science, 34(2): 398-408. https://doi.org/10.1007/s12583⁃021⁃1485⁃0
      Zhang, Y. Y., Yang, H. J., Wang, J. P., et al., 2009. Oncolites from the Lianglitag Formation(Kaitian, Upper Ordovician), Tazhong, Tarim Block, NW China. Acta Micropalaeontologica Sinica, 26(3): 234-242 (in Chinese with English abstract).
      Zheng, S. C., Feng, Q. L., van de Velde, S., et al., 2022. Microfossil Assemblages and Indication of the Source and Preservation Pattern of Organic Matter from the Early Cambrian in South China. Journal of Earth Science, 33(3): 802-819. https://doi.org/10.1007/s12583⁃020⁃1117⁃0
      包汉勇, 赵帅, 梁榜, 等, 2023. 川东红星地区二叠系吴家坪组页岩气富集高产主控因素与勘探启示. 中国石油勘探, 28(1): 71-82.
      边立曾, 黄志诚, 1988. 核形石的分类及生态研究. 古生物学报, 27(5): 544-552, 666-670.
      代明月, 齐永安, 常玉光, 等, 2014. 河南登封地区寒武系第三统馒头组二段中的核形石及其意义. 沉积学报, 32(3): 410-417.
      贺自爱, 1982. 藻灰结核分类及其成因. 石油与天然气地质, 3(1): 41-48.
      姜月华, 岳文浙, 业治铮, 1990. 扬子地体船山组碳酸盐岩中的核形石. 中国地质科学院南京地质矿产研究所所刊, 11(2): 57-72.
      李飞, 易楚恒, 李红, 等, 2022. 微生物成因鲕粒研究进展. 沉积学报, 40(2): 319-334.
      李熙哲, 管守锐, 谢庆宾, 等, 2000. 平邑盆地下第三系官中段核形石成因分析. 岩石学报, 16(2): 261-268.
      刘宝珺, 许效松, 1994. 中国南方岩相古地理图集. 北京: 科学出版社.
      牟传龙, 2022. 关于相的命名及其分类的建议. 沉积与特提斯地质, 42(3): 331-339.
      沈树忠, 张华, 张以春, 等, 2019. 中国二叠纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 160-193.
      覃建雄, 曾允孚, 陈洪德, 等, 1998. 西南地区二叠纪层序地层及海平面变化. 岩相古地理, (1): 19-35.
      唐玄, 刘树根, 宋金民, 等, 2018. 四川盆地东北缘灯影组核形石特征及环境意义. 沉积学报, 36(2): 232-242.
      田腾振, 李泽奇, 鲁鹏达, 等, 2023. 震旦系灯影组核形石白云岩成因机制及其意义: 以柳湾剖面为例. 地球科学, 48(4): 1568-1586. doi: 10.3799/dqkx.2022.358
      王成善, 陈洪德, 寿建峰, 等, 1999. 中国南方二叠纪层序地层划分与对比. 沉积学报, 17(4): 499-509.
      王国庆, 夏文臣, 2004. 鄂西地区上二叠统的牙形石及其分带意义. 地质科技情报, 23(4): 30-34.
      吴奎, 童金南, 李红军, 等, 2022. 全球古-中生代之交牙形石研究进展. 地球科学, 47(3): 1012-1037. doi: 10.3799/dqkx.2021.196
      杨宝忠, 2007. 扬子北缘中-上二叠统牙形石演化及古地理特征(博士学位论文). 武汉: 中国地质大学, 8-27.
      杨仁超, 樊爱萍, 韩作振, 等, 2011. 核形石研究现状与展望. 地球科学进展, 26(5): 465-474.
      曾允孚, 张锦泉, 林文球, 等, 1983. 广西泗顶泥盆系上统融县组中核形石的类型及其环境意义. 沉积学报, 1(1): 42-49, 140.
      张园园, 杨海军, 王建坡, 等, 2009. 塔里木板块塔中上奥陶统良里塔格组的核形石. 微体古生物学报, 26(3): 234-242.
    • 加载中
    图(11) / 表(1)
    计量
    • 文章访问数:  273
    • HTML全文浏览量:  65
    • PDF下载量:  34
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-06-13
    • 网络出版日期:  2025-01-09
    • 刊出日期:  2024-12-25

    目录

      /

      返回文章
      返回