• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高能溃决洪水侵蚀机理与地貌效应研究进展

    杨泽文 吴兵兵 刘维明 杨安娜 李雪梅 王昊 阮合春 周燕莲

    杨泽文, 吴兵兵, 刘维明, 杨安娜, 李雪梅, 王昊, 阮合春, 周燕莲, 2025. 高能溃决洪水侵蚀机理与地貌效应研究进展. 地球科学, 50(2): 718-736. doi: 10.3799/dqkx.2024.009
    引用本文: 杨泽文, 吴兵兵, 刘维明, 杨安娜, 李雪梅, 王昊, 阮合春, 周燕莲, 2025. 高能溃决洪水侵蚀机理与地貌效应研究进展. 地球科学, 50(2): 718-736. doi: 10.3799/dqkx.2024.009
    Yang Zewen, Wu Bingbing, Liu Weiming, Yang Anna, Li Xuemei, Wang Hao, Ruan Hechun, Zhou Yanlian, 2025. Progress in Erosion Mechanism and Geomorphological Effects of High-Energy Outburst Floods. Earth Science, 50(2): 718-736. doi: 10.3799/dqkx.2024.009
    Citation: Yang Zewen, Wu Bingbing, Liu Weiming, Yang Anna, Li Xuemei, Wang Hao, Ruan Hechun, Zhou Yanlian, 2025. Progress in Erosion Mechanism and Geomorphological Effects of High-Energy Outburst Floods. Earth Science, 50(2): 718-736. doi: 10.3799/dqkx.2024.009

    高能溃决洪水侵蚀机理与地貌效应研究进展

    doi: 10.3799/dqkx.2024.009
    基金项目: 

    第二次青藏高原综合科学考察研究项目 2019QZKK0903

    国家自然科学基金川藏铁路重大基础科学问题专项 41941017

    国家自然科学基金面上项目 42071017

    中国科学院海外评审专家项目 E1R2140140

    详细信息
      作者简介:

      杨泽文(1998-),男,博士研究生,主要从事溃决洪水与地貌响应研究. ORCID:0009-0002-5034-8112. E-mail:yangzewen21@mails.ucas.ac.cn

      通讯作者:

      刘维明, ORCID:0000-0002-8416-3530. E-mail:liuwm@imde.ac.cn

    • 中图分类号: P931.1

    Progress in Erosion Mechanism and Geomorphological Effects of High-Energy Outburst Floods

    • 摘要: 高能溃决洪水作为一种高量级、低频率的极端地表事件,其所具有的强烈侵蚀和重塑能力极大影响着地表形貌的演化. 近年来,有关高能溃决洪水的研究逐渐增多,然而相关的侵蚀机制与地貌效应仍缺乏系统性认识.通过系统梳理国内外高能溃决洪水侵蚀研究中的相关进展,总结了高能溃决洪水形成的大、中、小3种侵蚀地貌及相关特征,分析了包括拔蚀、空蚀、涡蚀和磨蚀四种高能溃决洪水侵蚀模式与发生条件,进一步归纳了高能溃决洪水典型侵蚀效应.最后结合国内外研究热点,从多方法揭示高能溃决洪水侵蚀机理与驱动因素、侵蚀运移作用下的“工具效应”与“覆盖效应”、高能溃决洪水与颗粒破碎的功能关系及侵蚀和构造抬升的耦合作用等方面对未来高能溃决洪水侵蚀研究进行了展望. 旨在深入理解高能溃决洪水的发生规律及其侵蚀过程,加深对此类灾难性极端地表事件与地貌演化之间关系的认识.

       

    • 图  1  溃决洪水规模重建的两类模型(据Perron and Venditti, 2016修改)

      Fig.  1.  Two of models for outburst flood magnitude reconstruction(modified from to reference Perron and Venditti, 2016)

      图  2  全球不同类型溃决洪水分布

      数据来源于文献Tacconi Stefanelli et al.(2016)Emmer(2017)Liu et al.(2019)Lützow and Veh(2022)

      Fig.  2.  Global distribution of different types of outburst floods

      图  3  大尺度地貌

      a为深谷(据Baker,2020修改);b为丘盆状疤地(据Baker,2009a)修改);c为峡谷网(据刘洋等,2021修改);d为流线岛或丘(据Lamb and Fonstad,2010修改)

      Fig.  3.  Large-scale landforms

      图  4  中尺度地貌

      a为跌水瀑布(据Baynes et al.,2015b修改);b为圆头峡谷(据Lamb et al.,2008修改);c为壶穴(据Benito and Thorndycraft,2020修改);d为块状基岩(据Carrivick and Rushmer,2006修改)

      Fig.  4.  Mesoscale-scale landforms

      图  5  小尺度地貌

      a冲槽(中小尺度)(据Lamb et al.,2014修改);b为凹坑(据Richardson et al.,2005修改);c为小坑洞(麻面)(据Lamb et al.,2008修改);d为冲刷痕(据Lamb et al.,2014修改)

      Fig.  5.  Small-scale landforms

      图  6  高能溃决洪水侵蚀模式示意图

      Fig.  6.  Schematic diagram of high-energy outburst flood erosion modes

      图  7  拔蚀的3种形式及其受力示意图

      符号注释见表 2,虚线箭头为岩块运动的方向

      Fig.  7.  Schematic diagram of the three modes of plucking and their forces

      图  8  3种拔蚀形式的临界启动关系

      Lamb et al.(2015)修改

      Fig.  8.  Critical movement relationships of three types of plucking

      图  9  溃决洪水水力特性、侵蚀地貌与空蚀关系

      Carling et al.(2017)修改,数据来源于Baker(2002)Carrivick(2007)Turzewski et al.,(2019)Yang et al.(2022b)

      Fig.  9.  Relationship between hydraulic characteristics; erosion landforms and cavitation of outburst flood

      图  10  高能溃决洪水侵蚀成河过程

      Fig.  10.  Erosion into river process of high-energy outburst floods

      图  11  高能溃决洪水侧向侵蚀导致河道宽度变化

      数据来源于Cook et al.(2018)Yang et al.(2021)Zhang et al.(2022a)

      Fig.  11.  Changes in channel width caused by lateral erosion of high-energy outburst flood

      图  12  溃决洪水侧向侵蚀斜坡及斜坡失稳过程

      Yang et al.(2022)修改

      Fig.  12.  Lateral erosion of slope toe and slope failure by outburst floods

      图  13  堰塞-溃决对河流纵剖面的影响

      Ouimet et al.(2007)周丽琴等(2019)修改

      Fig.  13.  Response of dam-break on channel profiles

      表  1  溃决洪水侵蚀地貌类型

      Table  1.   High-energy outburst flood erosion landforms

      地貌名称 地貌特征 形成原因 参考文献
      大尺度地貌 深谷 宽度达数十上百千米,深度在数百米,多发现于火星表面 多次高能洪水不断侵蚀形成,其中拔蚀占主导 Baker and Milton(1974)
      丘盆状疤地
      (Butte and Basin Scabland,组合型)
      小型盆地与周围小丘相间分布,呈“结痂”状 洪水溃决后,将基岩表面松散土体运移,留下流线型残余沙土堆积体,此后由于受残余沙土堆积体影响,流场中生成垂向涡流结构,使得基岩受到向下侵蚀作用形成小型凹坑;随着侵蚀的加剧,小型凹坑规模逐渐扩大,最终与边缘未受侵蚀的基岩组合形成大型的丘盆状疤地 Baker(2009)
      峡谷网
      (组合型)
      由多条蜿蜒曲折大型深谷相互交错组合成的网状系统 由不同量级溃决事件侵蚀形成的深谷通道的组合 Ahmed et al.(2022)
      流线岛或丘
      (组合型)
      呈叶片状,长轴方向与水流方向一致,长度与面积多呈正比例关系 洪水侵蚀的残余地貌 Gupta et al.(2007); 王慧颖等(2020)
      中尺度地貌 跌水瀑布(Cataracts) 呈“┐”型,上下两地层之间高差在几十米范围 洪水短时间内不断侵蚀瀑布上层边缘,同时冲刷下层地表,详见4.2 Baynes et al. (2015a2015b)
      圆头峡谷
      (Amphitheater-headed/Box Canyons)
      头部高差较大,呈半圆形
      多分布于火星、土卫六等行星
      洪水流动过程中,岩块受到拔蚀作用,顺水流方向倒塌,并逐渐往上游扩张 Lamb et al.(2008, 2014); Lapotre et al.(2016)
      壶穴
      (Hole)
      多分布于比降较大河段,形态呈类壶状凹坑 洪水演进时,在河道两岸形成平面涡流,洪水夹带的砾石、泥沙等磨蚀河道两岸,并逐渐向两岸推进 Bretz(1923a); Baker(1978a); Benito and Thorndycraft(2020)
      块状基岩 节理裂隙发育,多呈块状或长条状 拔蚀残余地貌 Carrivick and Rushmer(2006)
      阶梯-深潭系统
      (组合型)
      由一系列干瀑布组合而成,比降较大(> 3%~5%) 洪水期间河床基岩在顺水流方向不断发生拔蚀(区别于山区小河道) Carling et al.(2009a); 余国安等(2011)
      冲槽(Flutes,中小尺度) 长宽比较大,呈长笛型,尺寸在厘米~百米均有分布,通常长轴方向与水流方向一致 与夹带粘性沉积的洪水磨蚀过程有关 Hancock et al.(1998); Lamb et al.(2014); Baynes et al.(2015a)
      小尺度地貌 凹坑
      (Potholes、Groove)
      多分布于收缩、受冲刷的基岩河段,其长轴方向与水流方向呈一定角度 目前认为由垂直于岩面的涡流与洪水夹带的泥沙磨蚀形成 Richardson et al.(2005); Kadivar et al.(2021)
      小坑洞
      (麻面)
      尺寸在毫米至厘米级,分布密集,呈圆孔状,类似蜂窝状,朝向与水流方向一致 空蚀或磨蚀作用形成(空蚀占主导) Carling et al.(2017)
      冲刷痕 呈长条或线状,多分布峡谷河道边缘且较为密集 洪水夹带泥沙沉积物冲刷侵蚀遗留的痕迹 Maizels(1997); 王慧颖等(2020)
      下载: 导出CSV

      表  2  不同形式的拔蚀临界公式

      Table  2.   Different forms of critical pluking equations

      拔蚀形式 公式 公式注释 适用条件 参考文献
      垂向拔除 $ {\tau }_{\mathrm{p}\mathrm{c}}^{\mathrm{*}}=0.001\mathrm{ }5{\left(\frac{\eta }{L}\right)}^{-1}+0.002 $ $ {\tau }_{\mathrm{p}\mathrm{c}}^{\mathrm{*}} $为临界Shield数(无量纲临界起动剪切力);$ \eta $为岩块凸起高度;L为岩块长度 河床为平面(斜坡角$ \theta =0 $),未考虑壁面摩擦力 Coleman et al.(2003)
      $ {\tau }_{\mathrm{p}\mathrm{c}}^{\mathrm{*}}=\frac{{\tau }_{\mathrm{b}}}{({\rho }_{\mathrm{r}}-{\rho }_{\mathrm{w}})\mathrm{g}H}=\frac{\left[\mathrm{c}\mathrm{o}\mathrm{s}\theta +2{\tau }_{\mathrm{w}}^{\mathrm{*}}\left(1+\frac{W}{L}\right)\right]}{{F}_{L}^{\mathrm{*}}\left[1+\frac{1}{2}{C}_{\mathrm{D}}{\left(\frac{u}{{u}_{\mathrm{*}}}\right)}^{2}\frac{\eta }{L}\right]} $ $ {\tau }_{b} $为临界起动剪切力;$ {F}_{L}^{\mathrm{*}} $为临界上举力;$ {\tau }_{w}^{\mathrm{*}} $为岩块两侧的临界应力($ {\tau }_{\mathrm{w}}^{\mathrm{*}}=\frac{{\tau }_{w}}{\left({\rho }_{r}-\rho \right)\mathrm{g}W} $);$ {C}_{\mathrm{D}} $为岩块的阻力系数;$ W $为岩块宽度;$ u $为平均流速;$ {u}_{{}^{\mathrm{*}}} $为床面剪切流速;$ \theta $为斜坡角;$ H $岩块高度 $ P\ll H $;考虑壁面摩擦力 Lamb et al.(2015)
      倾倒式 $ {\tau }_{\mathrm{p}\mathrm{c}}^{\mathrm{*}}=\frac{{\tau }_{\mathrm{b}}}{\left({\rho }_{\mathrm{r}}-{\rho }_{\mathrm{w}}\right)\mathrm{g}H}=\frac{\frac{L}{H}\mathrm{c}\mathrm{o}\mathrm{s}\theta \left[\frac{1}{2}\left(1-\frac{H}{L}\mathrm{t}\mathrm{a}\mathrm{n}\theta \right)+{\tau }_{\mathrm{w}}^{\mathrm{*}}\right]}{\left[1+\frac{1}{2}{C}_{\mathrm{D}}{\left(\frac{u}{{u}_{\mathrm{*}}}\right)}^{2}\frac{\eta }{L}\right]\left(1+\frac{1}{2}{F}_{L}^{\mathrm{*}}\frac{L}{H}\mathrm{c}\mathrm{o}\mathrm{s}\theta \right)} $ 同上 单位宽度岩块,岩块被部分淹没 Lamb et al.(2015)
      $ \tau_{\mathrm{c}}=\frac{\frac{\left(F_{\mathrm{g}} \cos \theta-F_L\right)\left(\frac{1}{2}-\alpha\right)}{W H}-\frac{F_{\mathrm{g}} \sin \theta+F_{\mathrm{w}}}{2 L W}-\frac{H}{3 L} \Delta P}{\frac{1}{2}\left(\frac{u}{u_*}\right)^2 \frac{\eta}{L}+1}$ $ {F}_{g} $为岩块重力;$ {F}_{L} $为上举力;$ {F}_{w} $为壁面摩擦力;$ \mathrm{\Delta }P $为岩块上下表面的压差力 考虑岩块宽度(W);岩块全淹没,无空腔低压区 Hurst et al.(2021)
      滑移式 $ H\cdot {S}_{\mathrm{e}}=\frac{W{\mu }_{\mathrm{s}}}{{\rho }_{\mathrm{w}}}({\rho }_{\mathrm{r}}-{\rho }_{\mathrm{w}}) $ $ {S}_{\mathrm{e}} $为河床比降;$ {\mu }_{\mathrm{s}} $为静摩擦系数 未考虑两侧摩擦 Hancock et al.(1998)
      $ \left({P}_{\mathrm{b}\mathrm{s}}-{P}_{\mathrm{t}\mathrm{s}}\right)\ge \left({\rho }_{\mathrm{s}}-\rho \right)\mathrm{g}H+\left({f}_{\mathrm{s}\left(\mathrm{u}\mathrm{s}\right)}+{f}_{\mathrm{s}\left(\mathrm{d}\mathrm{s}\right)}\right)\frac{H}{L}+2{f}_{\mathrm{s}}\frac{H}{W} $ $ {P}_{\mathrm{b}\mathrm{s}}-{P}_{\mathrm{t}\mathrm{s}} $岩块上、下表面的平均压差力;$ {f}_{\mathrm{s}\left(\mathrm{u}\mathrm{s}\right)} $、$ {f}_{\mathrm{s}\left(\mathrm{d}\mathrm{s}\right)} $和$ {f}_{\mathrm{s}} $分别为岩块上、下和侧面的单位面积上的摩擦力 未直接得到水流剪应力,平均压差力与平均剪应力成正比. 考虑两侧摩擦 Dubinski and Wohl(2013); Whipple et al.(2000)
      $ {\tau }_{\mathrm{o}}+\left({P}_{\mathrm{u}\mathrm{s}}-{P}_{\mathrm{d}\mathrm{s}}\right)\frac{H}{L}+\left({\rho }_{\mathrm{s}}-\rho \right)\left(\mathrm{g}\mathrm{s}\mathrm{i}\mathrm{n}\theta \right)H\ge {f}_{\mathrm{b}}+2{f}_{\mathrm{s}}\frac{H}{W} $ $ {P}_{\mathrm{u}\mathrm{s}} $和$ {P}_{\mathrm{d}\mathrm{s}} $上、下游面上(沿滑动方向)的水压力;$ {f}_{\mathrm{b}} $为底部摩擦力;$ {\tau }_{\mathrm{o}} $为顶部水流剪切应力 考虑岩块宽度及上下游面上的水压力 Dubinski and Wohl(2013)
      $ {\tau }_{\mathrm{p}\mathrm{c}}^{\mathrm{*}}=\frac{{\tau }_{\mathrm{b}}}{\left({\rho }_{\mathrm{r}}-{\rho }_{\mathrm{w}}\right)\mathrm{g}H}=\frac{\mathrm{c}\mathrm{o}\mathrm{s}\theta (\mathrm{t}\mathrm{a}\mathrm{n}\varphi -\mathrm{t}\mathrm{a}\mathrm{n}\theta )+2{\tau }_{\mathrm{w}}^{\mathrm{*}}}{\left(1+\frac{1}{2}{C}_{\mathrm{D}}{\left(\frac{u}{{u}_{\mathrm{*}}}\right)}^{2}\frac{P}{L}\right)\left(1+{F}_{L}^{\mathrm{*}}\mathrm{t}\mathrm{a}\mathrm{n}\varphi \right)} $ $ \varphi $为岩块的动摩擦系数 单位宽度 Lamb et al.(2015)
      $ {\tau }_{\mathrm{c}}=\frac{\left({\rho }_{\mathrm{r}}-{\rho }_{\mathrm{w}}\right)H\mathrm{g}\mathrm{c}\mathrm{o}\mathrm{s}\theta \left({\mu }_{\mathrm{s}}-\mathrm{t}\mathrm{a}\mathrm{n}\theta \right)+2{\tau }_{\mathrm{w}}\frac{H}{W}-\mathrm{\Delta }P\frac{H}{L}}{\frac{1}{2}{\left(\frac{u}{{u}_{\mathrm{*}}}\right)}^{2}\frac{\eta }{L}+\frac{1}{2}\frac{\left({u}_{\mathrm{t}}^{2}-{u}_{\mathrm{b}}^{2}\right)}{{u}_{\mathrm{*}}^{2}}\mu +1} $ $ {u}_{\mathrm{t}} $和$ {u}_{\mathrm{b}} $分别为上下面的流速 考虑岩块宽度 Hurst et al.(2021)
      下载: 导出CSV
    • Ahmed, J., Peakall, J., Balme, M., et al., 2022. Rapid Megaflood-Triggered Base-Level Rise on Mars. Geology, 51: 28-32. https://doi.org/10.1130/g50277.1
      Amidon, W. H., Clark, A. C., 2015. Interaction of Outburst Floods with Basaltic Aquifers on the Snake River Plain: Implications for Martian Canyons. Geological Society of America Bulletin, 127(5/6): 688-701. https://doi.org/10.1130/b31141.1
      Baker, V. R., 1996. Discovering Earth's Future in Its Past: Palaeohydrology and Global Environmental Change. Geological Society, London, Special Publications, 115(1): 73-83. https://doi.org/10.1144/GSL.SP.1996.115.01.07
      Baker, V. R., 2001. Water and the Martian Landscape. Nature, 412(6843): 228-236. https://doi.org/10.1038/35084172.
      Baker, V. R., 2002. The Study of Superfloods. Science. 295: 2379-2380. https://doi.org/10.1126/science.1068448
      Baker, V. R., 2009. Channeled Scabland Morphology. Megaflooding on Earth and Mars, 65-77.
      Baker, V. R., 2013. Global Late Quaternary Fluvial Paleohydrology: With Special Emphasis on Paleofloods and Megafloods. Treatise on Geomorphology, 1: 511-527. https://doi.org/10.1016/B978-0-12-374739-6.00252-9
      Baker, V. R., 2020. Global Megaflood Paleohydrology. J. HERGET. A. FONTANA. Palaeohydrology: Traces. Tracks and Trails of Extreme Events. Springer International Publishing. Cham, 3-28.
      Baker, V. R., Benito, G., Brown, A. G., et al., 2021. Fluvial Palaeohydrology in the 21st Century and Beyond. Earth Surface Processes and Landforms, 47(1): 58-81. https://doi.org/10.1002/esp.5275
      Baker, V. R., Costa, J. E., 2020. Flood Power. Catastrophic Flooding. Routledge, 1-21.
      Baker, V. R., Milton, D. J., 1974. Erosion by Catastrophic Floods on Mars and Earth. Icarus, 23(1): 27-41. https://doi.org/10.1016/0019-1035(74)90101-8
      Baker, V., 1978a. Large-Scale Erosional and Depositional Features of the Channeled Scabland. National Aeroanutics and Space Administration. City. 81-115.
      Baker, V., 2002a. High-Energy Megafloods: Planetary Settings and Sedimentary Dynamics. Flood and Megaflood Processes and Deposits, John Wiley & Sons, Hoboken, 1-15.
      Baker, V., Kale, V., 1998. The Role of Extreme Floods in Shaping Bedrock Channels. Geophysical Monograph, 107: 153-165. https://doi.org/10.1029/GM107P0153
      Barnes, H. L., 1956. Cavitation as a Geological Agent. American Journal of Science, 254(8): 493-505. https://doi.org/10.2475/ajs.254.8.493
      Baynes, E. R. C., Attal, M., Dugmore, A. J., et al., 2015b. Catastrophic Impact of Extreme Flood Events on the Morphology and Evolution of the Lower Jökulsá á Fjöllum (Northeast Iceland) during the Holocene. Geomorphology, 250: 422-436. https://doi.org/10.1016/j.geomorph. 2015.05.009 doi: 10.1016/j.geomorph.2015.05.009
      Baynes, E. R. C., Attal, M., Niedermann, S., et al., 2015a. Erosion during Extreme Flood Events Dominates Holocene Canyon Evolution in Northeast Iceland. Proceedings of the National Academy of Sciences of the United States of America, 112(8): 2355-2360. https://doi.org/10.1073/pnas.1415443112
      Beer, A. R., Lamb, M. P., 2021. Abrasion Regimes in Fluvial Bedrock Incision. Geology. 49: 682-386. https://doi.org/10.1130/g48466.1
      Benito, G., Thorndycraft, V. R., 2020. Catastrophic Glacial-Lake Outburst Flooding of the Patagonian Ice Sheet. Earth-Science Reviews, 200: 102996. https://doi.org/10.1016/j.earscirev.2019.102996
      Borgohain, B., Mathew, G., Chauhan, N., et al., 2020. Evidence of Episodically Accelerated Denudation on the Namche Barwa Massif (Eastern Himalayan Syntaxis) by Megafloods. Quaternary Science Reviews, 245: 106410. https://doi.org/10.1016/j.quascirev.2020.106410
      Bretz, J., 1923a. The Channeled Scablands of the Columbia Plateau. The Journal of Geology. 31: 617-649. https://doi.org/10.1086/623053
      Burr, D., Wilson, L., Bargery, A., 2009. Floods from Fossae: a Review of Amazonian-Aged Extensional-Tectonic Megaflood Channels on Mars. In: Burr, D. M., Carling, P. A., Baker, V. R., eds., Megaflooding on Earth and Mars, Cambridge University Press. Cambridge, 194-208.
      Carling, P. A., Fan, X. M., 2020. Particle Comminution Defines Megaflood and Superflood Energetics. Earth-Science Reviews, 204: 103087. https://doi.org/10.1016/j.earscirev.2020.103087
      Carling, P. A., Herget, J., Lanz, J. K., et al., 2009b. Channel-Scale Erosional Bedforms in Bedrock and in Loose Granular Material: Character. Processes and Implications. In: Burr, D. M., Carling, P. A., Baker, V. R., eds., Megaflooding on Earth and Mars, Cambridge University Press. Cambridge, 13-32.
      Carling, P. A., Perillo, M., Best, J., et al., 2017. The Bubble Bursts for Cavitation in Natural Rivers: Laboratory Experiments Reveal Minor Role in Bedrock Erosion. Earth Surface Processes and Landforms, 42(9): 1308-1316. https://doi.org/10.1002/esp.4101
      Carling, P., Burr, D., Johnsen, T., et al., 2009a. a Review of Open-Channel Megaflood Depositional Landforms on Earth and Mars. Megaflooding on Earth and Mars, 33-49.
      Carling, P., Hoffmann, M., Silke-Blatter, A., et al., 2002. Drag of Emergent and Submerged Rectangular Obstacles in Turbulent Flow above Bedrock Surface, Lisse, 83-94.
      Carrivick, J. L., 2007. Hydrodynamics and Geomorphic Work of Jökulhlaups (Glacial Outburst Floods) from Kverkfjöll Volcano, Iceland. Hydrological Processes, 21(6): 725-740. https://doi.org/10.1002/hyp.6248
      Carrivick, J. L., Manville, V., Graettinger, A., et al., 2010. Coupled Fluid Dynamics-Sediment Transport Modelling of a Crater Lake Break-Out Lahar: Mt. Ruapehu, New Zealand. Journal of Hydrology, 388(3/4): 399-413. https://doi.org/10.1016/j.jhydrol.2010.05.023
      Carrivick, J. L., Rushmer, E. L., 2006. Understanding High-Magnitude Outburst Floods. Geology Today, 22(2): 60-65. https://doi.org/10.1111/j.1365-2451.2006.00554.x
      Chatanantavet, P., Parker, G., 2009. Physically Based Modeling of Bedrock Incision by Abrasion, Plucking, and Macroabrasion. Journal of Geophysical Research: Earth Surface, 114(F4): F04018. https://doi.org/10.1029/2008JF001044
      Christensen, P. R., Bandfield, J. L., Bell, J. F. 3rd, et al., 2003. Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results. Science, 300(5628): 2056-2061. https://doi.org/10.1126/science.1080885
      Coleman, N. M., Baker, V. R., 2009. Surface Morphology and Origin of Outflow Channels in the Valles Marineris Region. In: Burr, D. M., Carling, P. A., Baker, V. R., eds., Megaflooding on Earth and Mars, Cambridge University Press. New York, 172-193.
      Cook, K. L., Andermann, C., Gimbert, F., et al., 2018. Glacial Lake Outburst Floods as Drivers of Fluvial Erosion in the Himalaya. Science, 362(6410): 53-57. https://doi.org/10.1126/science.aat4981
      Costa, J. E., 1985. Floods from Dam Failures. Open-File Report, 85-560.
      David, S. R., Larsen, I. J., Lamb, M. P., 2022. Narrower Paleo-Canyons Downsize Megafloods. Geophysical Research Letters, 49(11): e2022GL097861. https://doi.org/10.1029/2022GL097861
      DeConto, R. M., Nuterman, R., Hvidberg, C. S., et al., 2020. Pliocene-Pleistocene Megafloods as a Mechanism for Greenlandic Megacanyon Formation. Geology, 48: 737-741. https://doi.org/10.1130/g47253.1
      Denlinger, R. P., O'Connell, D. R. H., 2010. Simulations of Cataclysmic Outburst Floods from Pleistocene Glacial Lake Missoula. Geological Society of America Bulletin, 122(5/6): 678-689. https://doi.org/10.1130/B26454.1
      Dubinski, I. M., Wohl, E., 2013. Relationships between Block Quarrying, Bed Shear Stress, and Stream Power: a Physical Model of Block Quarrying of a Jointed Bedrock Channel. Geomorphology, 180: 66-81. https://doi.org/10.1016/j.geomorph.2012.09.007
      Emmer, A., 2017. Geomorphologically Effective Floods from Moraine-Dammed Lakes in the Cordillera Blanca, Peru. Quaternary Science Reviews, 177: 220-234. https://doi.org/10.1016/j.quascirev.2017.10.028
      Garcia-Castellanos, D., Estrada, F., Jiménez-Munt, I., et al., 2009. Catastrophic Flood of the Mediterranean after the Messinian Salinity Crisis. Nature, 462(7274): 778-781. https://doi.org/10.1038/nature08555
      George, M., Sitar, N., 2012. Evaluation of Rock Scour Using Block Theory(Dissertation). University of California, California.
      Goudge, T. A., Morgan, A. M., Stucky de Quay, G., et al., 2021. The Importance of Lake Breach Floods for Valley Incision on Early Mars. Nature, 597(7878): 645-649. https://doi.org/10.1038/s41586-021-03860-1
      Guan, M. F., Wright, N. G., Sleigh, P. A., et al., 2015. Assessment of Hydro-Morphodynamic Modelling and Geomorphological Impacts of a Sediment-Charged Jökulhlaup, at Sólheimajökull, Iceland. Journal of Hydrology, 530: 336-349. https://doi.org/10.1016/j.jhydrol. 2015. 09.062 doi: 10.1016/j.jhydrol.2015.09.062
      Guo, Y. Q., Ge, Y. G., Mao, P. N., et al., 2023. A Comprehensive Analysis of Holocene Extraordinary Flood Events in the Langxian Gorge of the Yarlung Tsangpo River Valley. Science of the Total Environment, 863: 160942. https://doi.org/10.1016/j.scitotenv.2022.160942
      Guo, Y. Q., Ge, Y. G, Chen, X. Q., et al., 2021. Progress in the Reconstruction of Palaeoflood Events in the Mountain Canyon Valleys around the Tibetan Plateau. Earth Science Frontiers, 28(2): 168-180(in Chinese with English abstract).
      Gupta, S., Collier, J. S., Palmer-Felgate, A., et al., 2007. Catastrophic Flooding Origin of Shelf Valley Systems in the English Channel. Nature, 448(7151): 342-345. https://doi.org/10.1038/nature06018
      Hancock, G. S., Anderson, R. S., Whipple, K. X., et al., 1998. Beyond Power: Bedrock River Incision Process and form. Geophysical Monograph-American Geophysical Union. 107: 35-60. https://doi.org/10.1029/GM107p0035
      Hu, K. H., Wei, L., Yang, A., et al., 2022. Broad Valleys and Barrier Dams in Upstream Brahmaputra Efficiently Retain Tibetan-Sourced Sediments: Evidence from Palaeoflood Records. Quaternary Science Reviews. 285: 107538. https://doi.org/10.1016/j.quascirev.2022.107538
      Hu, K. H., Wu, C. H., Wei, L., et al., 2021. Geomorphic Effects of Recurrent Outburst Superfloods in the Yigong River on the Southeastern Margin of Tibet. Scientific Reports, 11(1): 15577. https://doi.org/10.1038/s41598-021-95194-1
      Hurst, A. A., Anderson, R. S., Crimaldi, J. P., 2021. Toward Entrainment Thresholds in Fluvial Plucking. Journal of Geophysical Research: Earth Surface, 126(5): e2020JF005944. https://doi.org/10.1029/2020JF005944
      Jarrett, R. D., Tomlinson, E. M., 2000. Regional Interdisciplinary Paleoflood Approach to Assess Extreme Flood Potential. Water Resources Research, 36(10): 2957-2984. https://doi.org/10.1029/2000WR900098
      Jia, K. C., Zhuang, J. Q, Zhan, J. W., et al., 2023. Reconstruction of the Dynamic Process of the Holocene Gelongbu Landslide-Blocking-Flood Geological Disaster Chain Based on Numerical Simulation. Earth Science, 48(9): 3402-3419 (in Chinese with English abstract).
      Jiang, X. G., Liu, W. M., Wen, S. S., et al., 2022. Simulation of Ancient High-Energy Flood in the Middle Reaches of the Yarlung Zangbo River Based on HEC-RAS Model. Mountain Research, 40(2): 276-288 (in Chinese with English abstract).
      Kadivar, M., Tormey, D., McGranaghan, G., 2021. A Review on Turbulent Flow over Rough Surfaces: Fundamentals and Theories. International Journal of Thermofluids, 10: 100077. https://doi.org/10.1016/j.ijft.2021.100077
      Karlstrom, K., Crow, R., Crossey, L., et al., 2008. Model for Tectonically Driven Incision of the Younger than 6 Ma Grand Canyon. Geology. 36: 835-838. https://doi.org/10.1130/g25032a.1
      Keszthelyi, L., Burr, D., McEwen, A., 2004. Geomorphologic/Thermophysical Mapping of the Athabasca Region, Mars, Using THEMIS Infrared Imaging. City. 1657
      King, G. E., Herman, F., Guralnik, B., 2016. Northward Migration of the Eastern Himalayan Syntaxis Revealed by OSL Thermochronometry. Science, 353(6301): 800-804. https://doi.org/10.1126/science.aaf2637
      Komar, P. D., 1979. Comparisons of the Hydraulics of Water Flows in Martian Outflow Channels with Flows of Similar Scale on Earth. Icarus, 37(1): 156-181. https://doi.org/10.1016/0019-1035(79)90123-4
      Komatsu, G., Baker, V. R., 1997. Paleohydrology and Flood Geomorphology of Ares Vallis. Journal of Geophysical Research: Planets, 102(E2): 4151-4160. https://doi.org/10.1029/96JE02564
      Korup, O., 2006. Rock-Slope Failure and the River Long Profile. Geology. 34: 45-48. https://doi.org/10.1130/g21959.1
      Korup, O., 2012. Earth's Portfolio of Extreme Sediment Transport Events. Earth-Science Reviews, 112(3/4): 115-125. https://doi.org/10.1016/j.earscirev.2012.02.006
      Korup, O., Montgomery, D. R., 2008. Tibetan Plateau River Incision Inhibited by Glacial Stabilization of the Tsangpo Gorge. Nature. 455: 786-789. https://doi.org/10.1038/nature07322
      Lamb, M. P., Finnegan, N. J., Scheingross, J. S., et al., 2015. New Insights into the Mechanics of Fluvial Bedrock Erosion through Flume Experiments and Theory. Geomorphology, 244: 33-55. https://doi.org/10.1016/j.geomorph.2015.03.003
      Lamb, M. P., Fonstad, M. A., 2010. Rapid Formation of a Modern Bedrock Canyon by a Single Flood Event. Nature Geoscience, 3: 477-481. https://doi.org/10.1038/ngeo894
      Lamb, M. P., MacKey, B. H., Farley, K. A., 2014. Amphitheater-Headed Canyons Formed by Megaflooding at Malad Gorge, Idaho. Proceedings of the National Academy of Sciences of the United States of America, 111(1): 57-62. https://doi.org/10.1073/pnas.1312251111
      Lamb, M., Dietrich, W., 2009. The Persistence of Waterfalls in Fractured Rock. Geological Society of America Bulletin, 121: 1123-1134. https://doi.org/10.1130/B26482.1
      Lamb, M., Dietrich, W., Aciego, S., et al., 2008. Formation of Box Canyon, Idaho, by Megaflood: Implications for Seepage Erosion on Earth and Mars. Science. 320: 1067-1070. https://doi.org/doi: 10.1126/science.1156630
      Lang, K. A., Huntington, K. W., Montgomery, D. R., 2013. Erosion of the Tsangpo Gorge by Megafloods, Eastern Himalaya. Geology, 41(9): 1003-1006. doi: 10.1130/G34693.1
      Lapotre, M. G. A., Lamb, M. P., Williams, R. M. E., 2016. Canyon Formation Constraints on the Discharge of Catastrophic Outburst Floods of Earth and Mars. Journal of Geophysical Research: Planets, 121(7): 1232-1263. https://doi.org/10.1002/2016JE005061
      Larsen, I. J., Lamb, M. P., 2016. Progressive Incision of the Channeled Scablands by Outburst Floods. Nature, 538(7624): 229-232. https://doi.org/10.1038/nature19817
      Larsen, I. J., Montgomery, D. R., 2012. Landslide Erosion Coupled to Tectonics and Riverincision. Nature Geoscience, 5: 468-473. https://doi.org/10.1038/ngeo1479
      Larsen, I. J., Montgomery, D. R., Korup, O., 2010. Landslide Erosion Controlled by Hillslope Material. Nature Geoscience, 3: 247-251. https://doi.org/10.1038/ngeo776
      Lehnigk, K. E., Larsen, I. J., 2022. Pleistocene Megaflood Discharge in Grand Coulee, Channeled Scabland, USA. Journal of Geophysical Research: Earth Surface, 127(1): e2021JF006135. https://doi.org/10.1029/2021JF006135.
      Li, D. F., Lu, X. X., Walling, D. E., et al., 2022. High Mountain Asia Hydropower Systems Threatened by Climate-Driven Landscape Instability. Nature Geoscience, 15: 520-530. https://doi.org/10.1038/s41561-022-00953-y
      Li, S. C., 2006. Cavitation Enhancement of Silt Erosion: An Envisaged Micro Model. Wear, 260(9/10): 1145-1150. https://doi.org/10.1016/j.wear.2005.07.002
      Lin, Y. P., An, C. G., Parker, G., et al., 2022. Morphodynamics of Bedrock-Alluvial Rivers Subsequent to Landslide Dam Outburst Floods. Journal of Geophysical Research: Earth Surface, 127(9): e2022JF006605. https://doi.org/10.1029/2022JF006605
      Liu, W., Carling, P. A., Hu, K., et al., 2019. Outburst Floods in China: A Review. Earth-Science Reviews. 197: 102895. https://doi.org/10.1016/j.earscirev.2019.102895
      Liu, Y., Wu, X., Liu, Z. H., et al. 2021. Geological Evolution and Habitable Environment of Mars: Progress and Prospects. Reviews of Geophysics and Planetary Physics, 52(4): 416-436 (in Chinese with English abstract).
      Lützow, N., Veh, G., 2022. Glacier Lake Outburst Flood Database V3.0. ZENODO. V3.0 edn.
      Lützow, N., Veh, G., Korup, O., 2023. A Global Database of Historic Glacier Lake Outburst Floods. Earth System Science Data, 15(7), 2983-3000. https://doi.org/10.5194/essd-15-2983-2023
      Maizels J, 1997. Jökulhlaup Deposits in Proglacial Areas. Quaternary Science Reviews. 16: 793-819. https://doi.org/10.1016/S0277-3791(97)00023-1
      Miyamoto, H., Komatsu, G., Baker, V. R., et al., 2007. Cataclysmic Scabland Flooding: Insights from a Simple Depth-Averaged Numerical Model. Environmental Modelling & Software, 22(10): 1400-1408. https://doi.org/10.1016/j.envsoft.2006.07.006
      Montgomery, D. R., Hallet, B., Liu, Y. P., et al., 2004. Evidence for Holocene Megafloods down the Tsangpo River Gorge, Southeastern Tibet. Quaternary Research, 62(2): 201-207. https://doi.org/10.1016/j.yqres. 2004. 06.008 doi: 10.1016/j.yqres.2004.06.008
      O'Connor, J. E., Clague, J. J., Walder, J. S., et al., 2013. 9.25 Outburst Floods. S. J. Treatise on Geomorphology. John Wiley & Sons. Ltd. Academic Press, Hoboken, 475-510.
      O'Connor, J., 1993. Hydrology, Hydraulics, and Geomorphology of the Bonneville Flood. Geological Society of America, USA.
      O'Connor, J., Baker, V., Waitt, R., et al., 2020. The Missoula and Bonneville Floods: A Review of Ice-Age Megafloods in the Columbia River Basin. Earth-Science Reviews, 210: 103401. https://doi.org/10.1016/j.earscirev.2020.103401
      Ouimet, W., Whipple, K., Royden, L., et al., 2007. The Influence of Large Landslides on River Incision in a Transient Landscape: Eastern Margin of the Tibetan Plateau (Sichuan, China). Geological Society of America Bulletin. 119(11-12), 1462-1476. https://doi.org/10.1130/b26136.1
      Pasternack, G., Ellis, C., Leier, K. A., et al., 2006. Convergent Hydraulics at Horseshoe Steps in Bedrock Rivers. Geomorphology. 82: 126-145. https://doi.org/10.1016/j.geomorph.2005.08.022
      Perron, J. T., Venditti, J. G., 2016. Megafloods Downsized. Nature. 538: 174-175. https://doi.org/10.1038/538174a
      Pico, T., David, S. R., Larsen, I. J., et al., 2022. Glacial Isostatic Adjustment Directed Incision of the Channeled Scabland by Ice Age Megafloods. Proceedings of the National Academy of Sciences of the United States of America, 119(8): e2109502119. https://doi.org/10.1073/pnas.2109502119
      Richardson, K., Carling, P. A., Richardson, K., et al., 2005. A Typology of Sculpted Forms in Open Bedrock Channels. Geological Society of America Special Papers. 392: 1-108. https://doi.org/10.1130/0-8137-2392-2.1
      Robinson, M., Tanaka, K. L., 1990. Magnitude of a Catastrophic Flood Event at Kasei Valles, Mars. Geology. 18: 902-905. https://doi.org/10.1130/0091-7613(1990)018<0902:MOACFE>2.3.CO.2 doi: 10.1130/0091-7613(1990)018<0902:MOACFE>2.3.CO.2
      Roep, T. B., Holst, H., Vissers, R. L. M., et al., 1975. Deposits of Southward-Flowing, Pleistocene Rivers in the Channel Region, near Wissant, NW France. Palaeogeography Palaeoclimatology Palaeoecology, 17(4): 289-308. https://doi.org/10.1016/0031-0182(75)90003-6
      Shen, Y. C., Gong, G. Y., 1986. Introduction to River Geomorphology. Science Press, Beijing, 47-48(in Chinesewith English abstract).
      Sincavage, R., Liang, M., Pickering, J., et al., 2022. Antecedent Topography and Sediment Dispersal: The Influence of Geologically Instantaneous Events on Basin Fill Patterns. Journal of Geophysical Research: Earth Surface, 127(6): e2021JF006539. https://doi.org/10.1029/2021JF006539
      Sklar, L., Dietrich, W., 1998. River Longitudinal Profiles and Bedrock Incision Models: Stream Power and the Influence of Sediment Supply. Geophysical Monograph, 107: 237-260. https://doi.org/10.1029/GM107P0237
      Smith, A. J., 1985. A Catastrophic Origin for the Palaeovalley System of the Eastern English Channel. Marine Geology, 64(1/2): 65-75. https://doi.org/10.1016/0025-3227(85)90160-4
      Stefanelli, C. T., Segoni, S., Casagli, N., et al., 2016. Geomorphic Indexing of Landslide Dams Evolution. Engineering Geology. 208: 1-10. https://doi.org/10.1016/j.enggeo.2016.04.024
      Su, H., Shi, Z. T., Dong, M., et al., 2021. The Geomorphic Process and Sedimentary Characteristics of the "11-3" BaigeDammed Lake Outburst Flood Event in the Upper Reaches of the Jinsha River from Benzilan to Shigu. Earth Science Frontiers, 28(2): 202-210 (in Chinese with English abstract).
      Turzewski, M. D., Huntington, K. W., LeVeque, R. J., 2019. The Geomorphic Impact of Outburst Floods: Integrating Observations and Numerical Simulations of the 2000 Yigong Flood, Eastern Himalaya. Journal of Geophysical Research: Earth Surface, 124(5): 1056-1079. https://doi.org/10.1029/2018JF004778
      Turzewski, M. D., Huntington, K. W., Licht, A., et al., 2020. Provenance and Erosional Impact of Quaternary Megafloods through the Yarlung-Tsangpo Gorge from Zircon U-Pb Geochronology of Flood Deposits, Eastern Himalaya. Earth and Planetary Science Letters, 535: 116113. https://doi.org/10.1016/j.epsl.2020.116113
      Wang, H., Cui, P., Liu, D. Z., et al., 2019. Evolution of a Landslide-Dammed Lake on the Southeastern Tibetan Plateau and Its Influence on River Longitudinal Profiles. Geomorphology. 343: 15-32. https://doi.org/10.1016/j.geomorph.2019.06.023
      Wang, P., Scherler, D., Jing, L. Z., et al., 2014. Tectonic Control of Yarlung Tsangpo Gorge Revealed by a Buried Canyon in Southern Tibet. Science, 346(6212): 978-981. https://doi.org/10.1126/science.1259041
      Wang, H., Cui, P., Carling, P. A., 2021. The Sedimentology of High-Energy Outburst Flood Deposits an Overview. Earth Science Frontiers, 2021, 28(2): 140-167 (in Chinese with English abstract).
      Wang, H. Y., Wang, P., Hu, G., et al., 2020. Landform, Sedimentary Features and Hydraulic Models of High-Magnitude Outburst Flood. Quaternary Sciences, 40(5): 1334-1349(in Chinese with English abstract).
      Warner, Sowe, Gupta, et al., 2013. Fill and Spill of Giant Lakes in the Eastern Valles Marineris Region of Mars. Geology, 41(6): 675-678. https://doi.org/10.1130/g34172.1
      Weckwerth, P., Wysota, W., Piotrowski, J. A., et al., 2019. Late Weichselian Glacier Outburst Floods in North-Eastern Poland: Landform Evidence and Palaeohydraulic Significance. Earth-Science Reviews, 194: 216-233. https://doi.org/10.1016/j.earscirev.2019.05.006
      Whipple, K., Hancock, G., Anderson, R., 2000. River Incision into Bedrock: Mechanics and Relative Efficacy of Plucking, Abrasion and Cavitation. Geological Society of America Bulletin. 112: 490-503. https://doi.org/10.1130/0016-7606(2000)112<490:Riibma>2.0.Co.2 doi: 10.1130/0016-7606(2000)112<490:Riibma>2.0.Co.2
      Wilkinson, C., Harbor, D., Helgans, E., et al., 2018. Plucking Phenomena in Nonuniform Flow. Geosphere. 14: 2157-2170. https://doi.org/10.1130/ges01623.1
      Williams, R. M., Phillips, R. J., Malin, M. C., 2000. Flow Rates and Duration within Kasei Valles, Mars: Implications for the Formation of a Martian Ocean. Geophysical Research Letters, 27(7): 1073-1076. https://doi.org/10.1029/1999GL010957
      Yang, A. N., Wang, H., Liu, W. M., et al., 2022a. Two Megafloods in the Middle Reach of Yarlung Tsangpo River since Last-Glacial Period: Evidence from Giant Bars. Global and Planetary Change, 208: 103726. https://doi.org/10.1016/j.gloplacha.2021.103726
      Yang, J. S., Wang, Y., Yin J. H., et al., 2022. Progress and Prospects in Recon-Struction of Flood Events in Chinese Alluvial Plains. Earth Science, 47(11): 3944-3959(in Chinese with English abstract).
      Yang, W. T., Fang, J., Jing, L. Z., 2021. Landslide-Lake Outburst Floods Accelerate Downstream Slope Slippage. Earth Surface Dynamics. 9: 1251-1262. https://doi.org/10.5194/esurf-9-1251-2021
      Yang, Z. W., Liu, W. M., Garcia-Castellanos, D., et al., 2022b. Geomorphic Response of Outburst Floods: Insight from Numerical Simulations and Observations: The 2018 Baige Outburst Flood in the Upper Yangtze River. Science of the Total Environment, 851: 158378. https://doi.org/10.1016/j.scitotenv.2022.158378
      Yu, G. A., Huang, H. Q., Wang, Z. Y., et al., 2011. Research Progress and Application of Step-Pool Systems in Mountain Streams. Progress in Geography, 30(1): 42-48(in Chinese).
      Zhang, Q. Y., Hu, K. H., Wei, L., et al., 2022a. Rapid Changes in Fluvial Morphology in Response to the High-Energy Yigong Outburst Flood in 2000: Integrating Channel Dynamics and Flood Hydraulics. Journal of Hydrology, 612: 128199. https://doi.org/10.1016/j.jhydrol.2022.128199
      Zhang, T., Li, D. F., East, A. E., et al., 2022b. Warming-Driven Erosion and Sediment Transport in Cold Regions. Nature Reviews Earth & Environment, 3: 832-851. https://doi.org/10.1038/s43017-022-00362-0
      Zhao, J. N., Shi, Y. T, Zhang, M. J., et al., 2021. Advancesin Martian Water-Related Landforms. Acta Geologica Sinica, 95(9): 2755-2768(in Chinese with English abstract).
      Zhou, L. Q., Liu, W. M., Lai, Z. P., et al., 2019. Ceomorphologic Response of River Damming. Quaternary Sciences, 39(2): 366-380 (in Chinese with English abstract).
      郭永强, 葛永刚, 陈晓清, 等, 2021. 高山峡谷区古洪水事件重建研究进展. 地学前缘, 28: 168-180.
      贾珂程, 庄建琦, 占洁伟, 等, 2023. 基于数值模拟的戈龙布滑坡-水地质灾害链动力学过程重建. 地球科学, 48(9), 3402-3419. doi: 10.3799/dqkx.2021.124
      蒋先刚, 刘维明, 文宿菘, 等, 2022. 基于HEC-RAS模型的雅江中游古高能洪水的模拟研究. 山地学报, 40: 276-288.
      刘洋, 吴兴, 刘正豪, 等, 2021. 火星的地质演化和宜居环境研究进展. 地球与行星物理论评, 52(4): 416-436.
      沈玉昌, 龚国元, 1986. 河流地貌学概论. 北京: 科学出版社, 47-48.
      苏怀, 史正涛, 董铭, 等, 2021. 金沙江"11.3"白格堰塞湖溃决洪水事件在奔子栏-石鼓段的地貌作用和沉积特征. 地学前缘, 28: 202-210.
      王昊, 崔鹏, P. A. Carling, 2020. 高能洪水沉积研究综述. 地学前缘, 28: 140-167.
      王慧颖, 王萍, 胡钢, 等, 2020. 溃决大洪水的地貌、沉积特征与水力学重建. 第四纪研究, 40(5): 1334-1349.
      杨劲松, 王永, 尹金辉, 等, 2022. 我国冲积平原区洪水事件重建研究进展及展望. 地球科学, 47(11): 3944-3959. doi: 10.3799/dqkx.2022.192
      余国安, 黄河清, 王兆印, 等, 2011. 山区河流阶梯-深潭研究应用进展. 地理科学进展, 30(1): 42-48.
      赵健楠, 史语桐, 张明杰, 等, 2021. 火星水成地貌研究进展. 地质学报, 95: 2755-2768.
      周丽琴, 刘维明, 赖忠平, 等, 2019. 河流堰塞的地貌响应. 第四纪研究, 32: 336-380.
    • 加载中
    图(13) / 表(2)
    计量
    • 文章访问数:  188
    • HTML全文浏览量:  536
    • PDF下载量:  66
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-01-11
    • 刊出日期:  2025-02-25

    目录

      /

      返回文章
      返回