New Reconstruction of Glacier Debris Flows Based on Tree Ring Response
-
摘要: 冰川型泥石流在瓤打曲流域频发,对当地安全造成了严重威胁,重建泥石流的暴发历史、流动范围和成因,可以为工程建设提供防灾减灾参数.基于树木年轮的愈伤组织和生长抑制响应,给出了年轮生长抑制的评判阈值和年轮定灾的Wit指数的新计算方法,并重建了1890—2021年的泥石流的暴发时间和流动范围;用泥石流实际暴发时间验证了年轮生长抑制的评判阈值和Wit新计算方法的合理性. 结果表明:(1)冰川活跃区年轮生长抑制的阈值修订为25%;(2)Wit指数计算需要排除生长释放因子,利用年轮的创伤组织和生长抑制会增大泥石流灾害事件的定年准确率.Abstract: Glacial debris flows occur frequently in the Rangdaqu River Basin, posing a serious threat to local safety. Reconstructing the eruption history, flow range, and causes of debris flows can provide disaster prevention and mitigation parameters for engineering construction. Based on the cambial injury tissue and growth inhibition response of trees, this study provides a new calculation method for the evaluation threshold of growth inhibition in tree rings and the Wit index of debrisflow identification in tree rings, and reconstructs the outbreak time and flow range of debris flows from 1890 to 2021. The results show that: (1) the threshold for growth inhibition in the active zone of glaciers has been revised to 25%; (2) the calculation of the Wit index needs to exclude growth release factors, and the use of traumatic tissue and growth inhibition in tree rings can improve the accuracy of dating debris flow events.
-
Key words:
- debris flows /
- glaciers /
- damaged tissue /
- growth inhibition /
- disaster reconstruction /
- engineering geology
-
表 1 基于树木年轮的灾害定年方法
Table 1. Standard for tree ring disaster dating
作者 国家 地区 样品数量 时期(年份) 海拔(m) 年均降水(mm) GD总数 定灾标准 灾害类型 It GD数量 Wit Mayera et al.(2010) 奥地利 Gratzental 227 1800-2007 2 106~1 166 1 526 1 155 It≥4% 未提及 未提及 泥石流 Corona et al.(2012) 法国 Arve 209 1771-1998 1 100~3 650 1 262 645 It > 1.7 GD数 > 5% 未提及 雪崩 Peitzsch et al.(2013) 美国 Rocky 673 1636-2017 1 100~2 700 未提及 2 134 样品数=10~20:
GD数≥3个,It≥15%高:Wit≥0.3 雪崩 样品数=21~50:
GD数≥5个,It≥10%中:Wit≥0.2 样品数=51~100:
GD数≥7个,It≥7%样品数 > 100:
GD数≥9个,It≥4.5%低:Wit < 0.2 Vădean et al.(2015) 罗马尼亚 Apuseni 20 1940-2010 平均835 800~1 000 72 It≥15% GD数≥3个 未提及 泥石流 Šilhán et al.(2021) 捷克共和国 Hostynsko-vsetınskahornatina Mts. 153 1920-2017 平均550 700~1 200 179 可能发生:5%~10%
一定发生:It≥10%未提及 未提及 滑坡 Franco-Ramos et al.(2019) 墨西哥 La Malinche 65 1933-2017 3 000~4 400 754 205 未提及 确定:GD≥4和Wit≥2
“潜在”泥石流:Wit≥1.5但GD≤4
噪声:GD数≤2个,Wit≤2泥石流 Schneuwly-Bollschweilera et al.(2013) 瑞士 Zermatt 385 1600-2008 1 420~4 545 690 581 未提及 未提及 Wit > 1 泥石流 注:GD. 生长扰动;It. 响应指数;Wit. 加权指数 表 2 生长扰动强度的分类阈值
Table 2. Classification of growth disturbances (GDs)
Ts Tm Tw Ti 年轮变化(%) 持续时间 年轮变化(%) 持续时间 年轮变化(%) 持续时间 生长抑制 ≥60% ≥5年 ≥60% < 5年且≥2年 ≥40%且 < 60% ≥2年 生长释放 ≥60% ≥5年 ≥60% < 5年且≥2年 ≥50%且 < 60% ≥2年 创伤及愈伤组织 存在创伤及愈伤组织 表 3 遥感数据集
Table 3. Collected Satellite datasets in this work
编号 数据来源 日期(日/月/年) 分辨率(m) 编号 数据来源 日期(日/月/年) 分辨率(m) 1 Landsat5 17/01/1987 30 15 Landsat5 17/02/2004 30 2 Landsat5 05/02/1988 30 16 Landsat5 23/12/2006 30 3 Landsat5 08/12/1989 30 17 Landsat5 30/04/2007 30 4 Landsat5 11/12/1990 30 18 Landsat5 26/11/2008 30 5 Landsat5 14/12/1991 30 19 Landsat5 29/11/2009 30 6 Landsat5 30/11/1992 30 20 Landsat5 18/12/2010 30 7 Landsat5 01/11/1993 30 21 Landsat5 04/02/2011 30 8 Landsat5 06/12/1994 30 22 Landsat8 24/11/2013 30 9 Landsat5 07/11/1995 30 23 Landsat8 29/12/2014 30 10 Landsat5 07/11/1996 30 24 Landsat8 30/11/2015 30 11 Landsat5 15/11/1998 30 25 Landsat8 21/12/2017 30 12 Landsat5 18/01/1999 30 26 Landsat8 22/11/2018 30 13 Landsat5 22/12/2000 30 27 Landsat8 11/11/2020 30 14 Landsat5 15/12/2003 30 28 Landsat8 06/03/2022 30 表 4 生长扰动年代分布表(GDs)
Table 4. Distribution of growth disturbance (GDs)
生长抑制 创伤及
愈伤组织生长抑制 创伤及
愈伤组织生长抑制 创伤及
愈伤组织数量 占比 数量 占比 数量 占比 数量 占比 数量 占比 数量 占比 1896 1 1.00 0 0 1938 2 0.25 0 0.00 1980 8 0.17 0 0.00 1897 0 0.00 0 0 1939 2 0.25 0 0.00 1981 11 0.23 1 0.02 1898 0 0.00 0 0 1940 0 0.00 0 0.00 1982 12 0.25 1 0.02 1899 0 0.00 0 0 1941 4 0.50 0 0.00 1983 13 0.27 2 0.04 1900 0 0.00 0 0 1942 1 0.13 0 0.00 1984 4 0.08 3 0.06 1901 1 1.00 0 0 1943 2 0.22 0 0.00 1985 13 0.25 2 0.04 1902 0 0.00 0 0 1944 2 0.22 0 0.00 1986 10 0.19 2 0.04 1903 1 0.33 0 0 1945 4 0.44 0 0.00 1987 9 0.17 2 0.04 1904 1 0.33 0 0 1946 5 0.56 0 0.00 1988 17 0.30 2 0.04 1905 2 0.67 0 0 1947 0 0.00 0 0.00 1989 10 0.18 1 0.02 1906 0 0.00 0 0 1948 3 0.27 0 0.00 1990 16 0.29 1 0.02 1907 1 0.33 0 0 1949 2 0.18 0 0.00 1991 13 0.23 2 0.04 1908 0 0.00 0 0 1950 4 0.36 0 0.00 1992 11 0.19 2 0.03 1909 1 0.33 0 0 1951 1 0.09 0 0.00 1993 14 0.24 3 0.05 1910 1 0.33 0 0 1952 3 0.25 0 0.00 1994 18 0.31 4 0.07 1911 1 0.33 0 0 1953 3 0.25 0 0.00 1995 8 0.13 3 0.05 1912 1 0.33 0 0 1954 3 0.25 1 0.08 1996 22 0.35 3 0.05 1913 1 0.33 0 0 1955 5 0.31 1 0.06 1997 11 0.17 3 0.05 1914 0 0.00 0 0 1956 2 0.13 0 0.00 1998 18 0.29 2 0.03 1915 1 0.33 0 0 1957 7 0.44 0 0.00 1999 18 0.28 3 0.05 1916 1 0.33 0 0 1958 4 0.24 1 0.06 2000 14 0.22 3 0.05 1917 1 0.33 0 0 1959 4 0.21 1 0.05 2001 20 0.30 4 0.06 1918 0 0.00 0 0 1960 4 0.20 0 0.00 2002 11 0.16 4 0.06 1919 1 0.33 0 0 1961 0 0.00 0 0.00 2003 17 0.25 2 0.03 1920 1 0.33 0 0 1962 7 0.33 1 0.05 2004 18 0.26 4 0.06 1921 0 0.00 0 0 1963 3 0.14 1 0.05 2005 12 0.17 2 0.03 1922 1 0.25 0 0 1964 3 0.13 2 0.09 2006 19 0.27 3 0.04 1923 1 0.25 0 0 1965 7 0.27 0 0.00 2007 20 0.29 4 0.06 1924 1 0.25 0 0 1966 6 0.23 1 0.04 2008 15 0.21 4 0.06 1925 2 0.50 0 0 1967 2 0.07 1 0.04 2009 18 0.25 4 0.06 1926 0 0.00 0 0 1968 8 0.28 2 0.07 2010 25 0.35 3 0.04 1927 1 0.25 0 0 1969 4 0.13 2 0.07 2011 10 0.14 5 0.07 1928 2 0.40 0 0 1970 7 0.22 0 0.00 2012 15 0.21 6 0.08 1929 2 0.40 0 0 1971 8 0.24 1 0.03 2013 17 0.24 4 0.06 1930 0 0.00 0 0 1972 8 0.24 0 0.00 2014 16 0.22 3 0.04 1931 2 0.40 0 0 1973 9 0.26 0 0.00 2015 9 0.13 1 0.01 1932 0 0.00 0 0 1974 10 0.29 0 0.00 2016 24 0.33 2 0.03 1933 1 0.17 0 0 1975 10 0.26 0 0.00 2017 12 0.17 1 0.01 1934 1 0.14 0 0 1976 5 0.12 0 0.00 2018 15 0.21 1 0.01 1935 1 0.14 0 0 1977 11 0.26 0 0.00 2019 23 0.32 1 0.01 1936 2 0.29 0 0 1978 7 0.17 0 0.00 2020 17 0.24 2 0.03 1937 1 0.14 0 0 1979 11 0.24 0 0.00 2021 14 0.19 2 0.03 表 5 生长扰动强度的新分类阈值
Table 5. New classification of growth disturbances (GDs)
Ts Tm Tw Ti 年轮变化(%) 持续时间 年轮变化(%) 持续时间 年轮变化(%) 持续时间 生长抑制 ≥60% ≥5年 ≥60% < 5年且≥2年 ≥25%且 < 40% ≤2年 创伤及愈伤组织 存在创伤及愈伤组织 -
Corona, C., Lopez Saez, J., Stoffel, M., et al., 2012. How much of the Real Avalanche Activity Can Be Captured with Tree Rings? An Evaluation of Classic Dendrogeomorphic Approaches and Comparison with Historical Archives. Cold Regions Science and Technology, 74: 31-42. https://doi.org/10.1016/j.coldregions.2012.01.003 Ding, M., Bai, S. B., Wang, J., et al., 2016. Basic Procedures of Using Tree Rings to Reconstruct the Ttime of Landslide Reactivation. Mountain Research, 34(5): 545-554(in Chinese with English abstract). Franco-Ramos, O., Stoffel, M., Ballesteros-Cánovas, J. A., 2019. Reconstruction of Debris-Flow Activity in a Temperate Mountain Forest Catchment of Central Mexico. Journal of Mountain Science, 16(9): 2096-2109. https://doi.org/10.1007/s11629-019-5496-6 Huang, T., 2019. Study on the Response of Debris Flow Activity in the Upper Reaches of Minjiang River to Vertical Climate(Differentiation). Southwest University of Science and Technology, Mianyang (in Chinese with English abstract). Kogelnig-Mayer, B., Stoffel, M., Schneuwly-Bollschweiler, M., et al., 2011. Possibilities and Limitations of Dendrogeomorphic Time-Series Reconstructions on Sites Influenced by Debris Flows and Frequent Snow Avalanche Activity. Arctic, Antarctic, and Alpine Research, 43(4): 649-658. https://doi.org/10.1657/1938-4246-43.4.649 Lai, Z. P., Yang, A. N., Cong, L., et al., 2021. A Review on the Dating Techniques for Mountain Hazards-Induced Sediments. Earth Science Frontiers, 28(2): 1-18(in Chinese with English abstract). Li, Y., Cui, Y. F., Li, Z. H., et al., 2022. Evolution of Glacier Debris Flow and lts Monitoring System along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 1969-1984(in Chinese with English abstract). Lundström, T., Stoffel, M., Stöckli, V., 2008. Fresh-Stem Bending of Silver Fir and Norway Spruce. Tree Physiology, 28(3): 355-366. https://doi.org/10.1093/treephys/28.3.355 Lyu, L. Q., 2017. Research on the Initiation and Motion of Gully Debris Flows in Tibetan Plateau(Dissertation). Tsinghua University, Beijing, 3-5(in Chinese with English abstract). Lyu, L. Q., Wang, Z. Y., Meng, Z., 2022. Reconstruction of Debris Flow Disasters in Polong Gully Based on Dendrochronology. Earth Science, 49(1): 335-346(in Chinese with English abstract). Mayer, B., Stoffel, M., Bollschweiler, M., et al., 2010. Frequency and Spread of Debris Floods on Fans: a Dendrogeomorphic Case Study from a Dolomite Catchment in the Austrian Alps. Geomorphology, 118(1/2): 199-206. https://doi.org/10.1016/j.geomorph.2009.12.019 Meng, Z., Lyu, L. Q., Yu, G. A., et al., 2022. Reconstruction of Glacial Debris Flow Disaster Based on Dendrochronology: A Case Study on Tianmo Gully, Tibet. Science Technology and Engineering, 22(32): 14124-14136(in Chinese with English abstract). Miao, X. Q., 2022. Research on the Movement Characteristics and Parameters of Debris Flow in Rangdaqu. Journal of Railway Engineering Society, 39(4): 20-25(in Chinese with English abstract). Peitzsch, E., Hendrikx, J., Stahle, D., et al., 2013. A Regional Spatiotemporal Analysis of Large Magnitude Snow Avalanches Using Tree Rings. Natural Hazards and Earth System Sciences, 21: 533-557. https://doi.org/10.5194/NHESS-21-533-2021 Schneuwly, D. M., Stoffel, M., Dorren, L. K. A., et al., 2009. Three-Dimensional Analysis of the Anatomical Growth Response of European Conifers to Mechanical Disturbance. Tree Physiology, 29(10): 1247-1257. https://doi.org/10.1093/treephys/tpp056 Schneuwly-Bollschweiler, M., Corona, C., Stoffel, M., 2013. How to Improve Dating Quality and Reduce Noise in Tree-Ring Based Debris-Flow Reconstructions. Quaternary Geochronology, 18: 110-118. https://doi.org/10.1016/j.quageo.2013.05.001 Šilhán, K., 2021. A New Tree-Ring-Based Index for the Expression of Spatial Landslide Activity and the Assessment of Landslide Hazards. Geomatics, Natural Hazards and Risk, 12(1): 3409-3428. https://doi.org/10.1080/19475705.2021.2011790 Stoffel, M., Bollschweiler, M., Hassler, G., 2006. Differentiating Past Events on a Cone Influenced by Debris‐Flow and Snow Avalanche Activity: a Dendrogeomorphological Approach. Earth Surface Processes and Landforms, 31(11): 1424-1437. Strunk, H., 1997. Dating of Geomorphological Processes Using Dendrogeomorphological Methods. CATENA, 31(1/2): 137-151. https://doi.org/10.1016/S0341-8162(97)00031-3 Tie, Y. B., Malik, I., Owczarek, P., 2014. Dendrochronological Dating of Debris Flow Historical Events in High Mountain Area: Take Daozao Debris Flow as an Example. Mountain Research, 32(2): 226-232(in Chinese with English abstract). Vădean, R., Arghiuş, V., Pop, O., 2015. Dendrogeomorphic Reconstruction of Past Debris-Flood Activity along a Torrential Channel: an Example from Negoiul Basin (Apuseni Mountains, Romanian Carpathians). Zeitschrift Fur Geomorphologie, 59(3): 319-335. https://doi.org/10.1127/zfg/2014/0156 Wang, K., 2016. Larixgmelini Tree-Ring Width Index with Responses to Climate Change In the West of Sichuan Subalpine Zone(Dissertation). Sichuan Agricultural University, Chengdu(in Chinese with English abstract). Wang, Z. L., Ma, C., Wu, J. L., et al., 2022. Debris Flow Event in Xiaoxitian Watershed of Miyun Based on Tree Ringreconstruction. Journal of Natural Disasters, 31(5): 183-192(in Chinese with English abstract). Wu, J. L., Ma, C., Wang, R., et al., 2021. Reconstruction of Torrent and Debris Flow Events Based Ondendro Geomorphology: A Case Study of Longtangou Basin in Miyun District, Beijing. Journal of Natural Disasters, 30(1): 183-190(in Chinese with English abstract). Zeng, X. Y., Zhang, J. J., Yang, D. X., et al., 2019. Characteristics and Geneses of Low Frequency Debris Flow along Parlongzangbo River Zone: Take Chaobulongba Gully as an Example. Science Technology and Engineering, (34): 103-107(in Chinese with English abstract). Zhang, J. S., Xie, H., Wang, X. D., et al., 2015. Debris-Flow of Jianmupuqu Ravine in Tibet. Journal of Catastrophology, 30(3): 99-103(in Chinese with English abstract). 曾宪阳, 张佳佳, 杨东旭, 等, 2019. 帕隆藏布流域低频泥石流的成因机制分析——以倾多镇抄布隆巴泥石流为例. 科学技术与工程, 19(34): 103-107. 丁苗, 白世彪, 王建, 等, 2016. 利用树木年轮重建滑坡复活时间的方法. 山地学报, 34(5): 545-554. 黄涛, 2019. 岷江上游泥石流活动对气候垂直分异的响应研究(硕士学位论文). 绵阳: 西南科技大学. 赖忠平, 杨安娜, 丛禄, 等, 2021. 山地灾害沉积物的测年综述. 地学前缘, 28(2): 1-18. 李尧, 崔一飞, 李振洪, 等, 2022. 川藏交通廊道林波段冰川泥石流发育动态演化分析及监测预警方案. 地球科学, 47(6): 1969-1984. doi: 10.3799/dqkx.2021.194 吕立群, 2017. 青藏高原泥石流的形成运动过程研究(博士学位论文). 北京: 清华大学, 3-5. 吕立群, 王兆印, 孟哲, 2024. 基于树木年代学的迫龙沟泥石流灾害历史重建. 地球科学, 49(1): 335-346. doi: 10.3799/dqkx.2022.142 孟哲, 吕立群, 余国安, 等, 2022. 基于树木年代学的冰川型泥石流灾害历史重建方法——以西藏天摩沟为例. 科学技术与工程, 22(32): 14124-14136. 苗晓岐, 2022. 瓤打曲泥石流运动特征及参数研究. 铁道工程学报, 39(4): 20-25. 铁永波, Ireneusz Malik, Piotr Owczarek, 2014. 树木年代学在高寒山区泥石流历史事件重建中的应用——以磨西河流域倒灶沟为例. 山地学报, 32(2): 226-232. 王珂, 2016. 川西亚高山落叶松径向生长与气候变化的关系(硕士学位论文). 成都: 四川农业大学. 王志兰, 马超, 吴佳亮, 等, 2022. 基于树木年轮重建密云小西天流域泥石流事件. 自然灾害学报, 31(5): 183-192. 吴佳亮, 马超, 王锐, 等, 2021. 基于树木地貌法重建山洪泥石流历史事件——以北京密云区龙潭沟流域为例. 自然灾害学报, 30(1): 183-190. 张金山, 谢洪, 王小丹, 等, 2015. 西藏尖姆普曲泥石流. 灾害学, 30(3): 99-103. -