Accumulation Process and Phase Control Factors of Large Natural Gas Reservoirs in the Oil-Prone Bohai Bay Basin, East China
-
摘要: 渤海湾油型盆地内近几年发现了多个大型气藏,其中渤中19-6构造天然气储量超千亿方,突破了油型盆地内难以找到大型气藏的传统认识. 综合应用油气组分、天然气同位素、流体包裹体和PVT分析数据等分析了渤海湾油型盆地大型气藏成藏过程与相态控制因素. 研究结果表明:渤海湾油型盆地内已发现大型气藏普遍经历了“早油晚气”的成藏过程,CO2受到幔源与壳源的共同影响,为壳幔混合成因;CO2含量影响流体相态,表现为随含量增加体系临界温度降低而更易呈气相,高CO2含量的古生界碳酸盐岩潜山为气藏,低CO2含量的太古界潜山多为凝析气藏或高挥发性油藏. 在上述认识指导下,应将寻找大型凝析气藏作为油型盆地内天然气藏勘探方向.Abstract: In recent years, multiple large gas reservoirs have been discovered in the oil-prone Bohai Bay Basin, among which the natural gas reserves of the Bozhong 19-6 structure exceed 100 billion cubic meters, breaking the traditional understanding that large gas reservoirs cannot be found in oil-prone basins.This article comprehensively applies oil and gas components, natural gas isotopes, fluid inclusions, and PVT analysis data to analyze the formation process and phase control factors of large-scale gas reservoirs in the Bohai Bay oil type basin. The research results indicate that large gas reservoirs have been discovered in the Bohai Bay oil-bearing basin, and have generally undergone the process of "early oil and late gas" accumulation. CO2 is influenced by both mantle and crust sources, resulting in a mixed crust mantle origin; The CO2 content affects the fluid phase state, manifested as a decrease in the critical temperature of the system as the content increases, making it more prone to gas phase. High CO2 content Paleozoic carbonate buried hills are gas reservoirs, while low CO2 content Archean buried hills are mostly condensate gas reservoirs or high volatility oil reservoirs. Therefore, the search for large condensate gas reservoirs should be considered as the exploration direction for natural gas reservoirs in oil bearing basins.
-
Key words:
- large gas reservoir /
- accumulation process /
- carbon dioxide /
- phase state /
- Bohai Bay basin /
- petroleum geology
-
图 6 渤中19-6构造地层流体三元组成三角图(C1+N2, C2~C6+CO2, and C7+)
Fig. 6. Fluid type identification of the BZ19-6 gas reservoir according to the three-component diagram (C1+N2, C2~C6+CO2, and C7+)
表 1 渤中19-6凝析油物性参数
Table 1. The physical parameters of Bozhong 19-6 condensate oil
井号 深度(m) 层位 密度(g/cm3) 粘度(mPa·s) 含蜡量(%) 凝固点(℃) BZ19-6-A 3 566.8~3 634.0 古近系孔店组 0.795 1.42 13.95 22 BZ19-6-A 4 043.4~4 142.0 太古宇 0.793 1.24 11.80 12 BZ19-6-B 3 873.7~3 923.5 太古宇 0.799 1.54 15.04 17 BZ19-6-B 3 879.0~3 998.7 太古宇 0.809 2.14 13.84 22 BZ19-6-C 4 079.2 古近系孔店组 0.787 2.06 7.32 11 BZ19-6-E 4 411.0~4 499.8 太古宇 0.798 1.65 18.25 22 BZ19-6-G 3 500.0~3 566.0 古近系孔店组 0.791 10.52 16 平均值 0.798 1.78 13.56 18 表 2 渤中19-6/21-22天然气组分数据
Table 2. The natural gas composition data of Bozhong 19-6 & 21-22
井号 深度(m) 层位 天然气组分含量(体积百分比, %) C1 C2 C3 C4 C5 C6+ CO2 BZ19-6-A 3 566.80~3 634.00 古近系孔店组 76.750 8.680 2.980 1.350 0.540 0.200 9.370 BZ19-6-A 4 043.40~4 142.00 太古宇 70.850 8.040 2.820 1.300 0.460 0.110 16.270 BZ19-6-B 3 873.70~3 923.50 太古宇 78.270 8.190 2.590 1.070 0.320 0.100 9.350 BZ19-6-B 3 879.00~3 998.70 太古宇 77.780 8.220 2.780 1.280 0.490 0.160 9.190 BZ19-6-E 4 411.00~4 499.80 太古宇 75.410 8.830 3.010 1.360 0.540 0.170 10.490 BZ19-6-G 3 500.00~3 566.00 古近系孔店组 77.400 8.210 2.950 1.380 0.600 0.310 9.150 BZ22-1-B 4 354.00~4 611.00 古生界 59.600 3.320 0.780 1.240 34.600 BZ21-2-C 4 865.37~5 141.00 古生界 43.950 2.340 0.570 0.740 49.060 BZ21-2-D 5 114.48~5 363.00 古生界 45.930 2.039 0.461 0.109 0.130 0.07 51.021 -
Baker, J. C., Bai, B. G., Hamilton, P. J., et al., 1995. Continental-Scale Magmatic Carbon Dioxide Seepage Recorded by Dawsonite in the Bowen-Gunnedah-Sydney Basin System, Eastern Australia. Journal of Sedimentary Research, 65(3): 522-530. Cheng, Y. Y., 2000. Origins of Carbon Dioxide in Petroliferous Basins. Advances in Earth Science, 15(6): 684-687(in Chinese with English abstract). doi: 10.3321/j.issn:1001-8166.2000.06.011 Dai, J., 1995. Abiogenic Gas in Oil-Gas Bearing Basins in China and Its Reserviors. Natural Gas Industry, 15(3): 22-27(in Chinese with English abstract). Da, J. X., Dai, Y., Song, C. S., 1996. Geochemistry and Accumulation of Carbon Dioxide Gases in China. AAPG Bulletin, 80: 1-15. https://doi.org/10.1306/64eda0d2-1724-11d7-8645000102c1865d Hou, D. L., Gao, L. H., Liu, H. C., et al., 2013. Dynamic Phase Behavior of Near-Critical Condensate Gas Reservoir Fluids. Natural Gas Industry, 33(11): 68-73(in Chinese with English abstract). Hou, G. T., Qian, X. L., Cai, D. S., 2000. Space Time Relationship between Tectonics and Sedimentation of Meso Cenozoic Bohai Basin. Oil & Gas Geology, 21(3): 201-206(in Chinese with English abstract). Hou, G. T., Qian, X. L., Song, X. M., 1998. Researchon Formation Mechanism of Bohai Bay Basin. Acta Scientiarum Naturalium Universitatis Pekinensis, 34(4): 503-509(in Chinese with English abstract). doi: 10.3321/j.issn:0479-8023.1998.04.014 Hu, J. Y., Xu, S. B., Tong, X. G., 1986. Formation and Distribution of Complex Petroleum Accumulation Zones in Bohaiwan Basin. Petroleum Expoloration and Development, 13(1): 1-8(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK198601000.htm Hutcheon, I., 1995. Geochemical Transformations of Sedimentary Sulfur: Controls of the Origin and Distribution of Elemental Sulfur, H2S and CO2, in Paleozoic Reservoirs of Western Canada. Geochemical Transformations of Sedimentary Sulfur, 612: 426-438. http://www.cabdirect.org/abstracts/19961909081.html Jiang, P., He, S. H., Yang, Z. Q., et al., 2022. High CO2 Natural Gas Charging Events, Timing and Accumulation Pattern in LD10 Area of Yinggehai Basin. Earth Science, 47(5): 1569-1585(in Chinese with English abstract). Li, X. Y., Qin, R. B., 2023. Method of Fracture Characterization and Productivity Prediction of 19-6 Buried Hill Fractured Reservoirs, Bohai Bay Basin. Earth Science, 48(2): 475-487(in Chinese with English abstract). Li, D. S., 1981. Geological Structure and Hydrocarbon Occurrence of Bohai Gulf Oil and Gas Basin (China). Marine Geology & Quaternary Geology, 1(1): 3-20(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ198101001.htm Li, X., Li, J. Z., Yang, T., et al., 2013. Oil-Gas Exploration Status and Future Targets in Bohai Bay Basin. Xinjiang Petroleum Geology, 34(2): 140-144(in chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201302004.htm Marty, B., Jambon, A., Sano, Y., 1989. Helium Isotopes and CO2 in Volcanic Gases of Japan. Chemical Geology, 76(1/2): 25-40. https://doi.org/10.1016/0009-2541(89)90125-3 Pan, C. C., Yu, L. P., Liu, J. Z., et al., 2006. Chemical and Carbon Isotopic Fractionations of Gaseous Hydrocarbons during Abiogenic Oxidation. Earth and Planetary Science Letters, 246(1/2): 70-89. https://doi.org/10.1016/j.epsl.2006.04.013 Stasiuk, L. D., 1997. The Origin of Pyrobitumens in Upper Devonian Leduc Formation Gas Reservoirs, Alberta, Canada: an Optical and EDS Study of Oil to Gas Transformation. Marine and Petroleum Geology, 14(7/8): 915-929. https://doi.org/10.1016/S0264-8172(97)00031-7 Tian, L. X., Yang, H. F., Wang, D. Y., et al., 2013. Study on Genesis of High Contents of CO2 and Hydrocarbon Accumulation Period in Paleogene, Bohai Sea: an Example in Q Oil-Gas Field of Qinnan Sag. Journal of Central South University (Science and Technology), 44(2): 673-678(in Chinese with English abstract). Wang, Z. L., Xiao, S. D., Wang, F. L., et al., 2021. Phase Behavior Identification and Formation Mechanisms of the BZ19-6 Condensate Gas Reservoir in the Deep Bozhong Sag, Bohai Bay Basin, Eastern China. Geofluids, 2021(1): 6622795. https://doi.org/10.1155/2021/6622795 Xie, Y. H., Zhang, G. C., Shen, P., et al., 2018. Formation Conditions and Exploration Direction of Large Gas Field in Bozhong Sag of Bohai Bay Basin. Acta Petrolei Sinica, 39(11): 1199-1210(in Chinese with English abstract). doi: 10.7623/syxb201811001 Xue, Y. A., Li, H. Y., 2018. Large Condensate Gas Field in Deep Archean Metamorphic Buried Hill in Bohai Sea: Discovery and Geological Significance. China Offshore Oil and Gas, 30(3): 1-9(in chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201803001 Ye, J. R., Wu, J. F., Shu, Y., et al., 2012. Reservoir-Forming Characteristics of Hydrocarbon-Rich Depression in China Offshore. Bulletin of Geological Science and Technology, 31(5): 105-111(in Chinese with English abstract). Zhang, T. W., Ellis, G. S., Wang, K. S., et al., 2007. Effect of Hydrocarbon Type on Thermochemical Sulfate Reduction. Organic Geochemistry, 38(6): 897-910. https://doi.org/10.1016/j.orggeochem.2007.02.004 Zhang, T. W., Zhang, M. J., Bai, B. J., et al., 2008. Origin and Accumulation of Carbon Dioxide in the Huanghua Depression, Bohai Bay Basin, China. AAPG Bulletin, 92(3): 341-358. https://doi.org/10.1306/10230706141 Zhou, X. H., Wang, Q. B., Feng, C., et al., 2022. Formation Conditions and Geological Significance of Large Archean Buried Hill Reservoirs in Bohai Sea. Earth Science, 47(5): 1534-1548(in Chinese with English abstract). 程有义, 2000. 含油气盆地二氧化碳成因研究. 地球科学进展, 15(6): 684-687. 戴金星, 1995. 中国含油气盆地的无机成因气及其气藏. 天然气工业, 15(3): 22-27. 侯大力, 高黎惠, 刘浩成, 等, 2013. 近临界态凝析气藏地层流体特殊相态行为. 天然气工业, 33(11): 68-73. 侯贵廷, 钱祥麟, 蔡东升, 2000. 渤海中、新生代盆地构造活动与沉积作用的时空关系. 石油与天然气地质, 21(3): 201-206. 侯贵廷, 钱祥麟, 宋新民, 1998. 渤海湾盆地形成机制研究. 北京大学学报(自然科学版), 34(4): 503-509. doi: 10.3321/j.issn:0479-8023.1998.04.014 胡见义, 徐树宝, 童晓光, 1986. 渤海湾盆地复式油气聚集区(带)的形成与分布. 石油勘探与开发, 13(1): 1-8. 姜平, 何胜林, 杨朝强, 等, 2022. 莺歌海盆地LD10区高含CO2天然气充注期次精细厘定与成藏模式. 地球科学, 47(5): 1569-1585. doi: 10.3799/dqkx.2021.190 李德生, 1981. 渤海湾含油气盆地的地质构造特征与油气田分布规律. 海洋地质研究, 1(1): 3-20. 李欣, 李建忠, 杨涛, 等, 2013. 渤海湾盆地油气勘探现状与勘探方向. 新疆石油地质, 34(2): 140-144. 李雄炎, 秦瑞宝, 2023. 渤海湾盆地渤中19-6气田潜山储层裂缝表征与产能预测方法. 地球科学, 48(2): 475-487. doi: 10.3799/dqkx.2022.299 田立新, 杨海风, 王德英, 等, 2013. 渤海海域古近系油气藏高含量CO2的成因及成藏期研究: 以秦南凹陷Q油气田为例. 中南大学学报(自然科学版), 44(2): 673-678. 谢玉洪, 张功成, 沈朴, 等, 2018. 渤海湾盆地渤中凹陷大气田形成条件与勘探方向. 石油学报, 39(11): 1199-1210. 薛永安, 李慧勇, 2018. 渤海海域深层太古界变质岩潜山大型凝析气田的发现及其地质意义. 中国海上油气, 30(3): 1-9. 叶加仁, 吴景富, 舒誉, 等, 2012. 中国近海富烃凹陷油气成藏特征. 地质科技情报, 31(5): 105-111. 周心怀, 王清斌, 冯冲, 等, 2022. 渤海海域大型太古界潜山储层形成条件及地质意义. 地球科学, 47(5): 1534-1548. doi: 10.3799/dqkx.2021.249 -