• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏唐格矽卡岩型铜铅锌矿床成矿时代:来自石榴子石U-Pb年龄的约束

    黄倩 吴松 刘晓峰 申亚辉 阿旺旦增 次琼 陈烈 魏守才

    黄倩, 吴松, 刘晓峰, 申亚辉, 阿旺旦增, 次琼, 陈烈, 魏守才, 2025. 西藏唐格矽卡岩型铜铅锌矿床成矿时代:来自石榴子石U-Pb年龄的约束. 地球科学, 50(2): 621-638. doi: 10.3799/dqkx.2024.017
    引用本文: 黄倩, 吴松, 刘晓峰, 申亚辉, 阿旺旦增, 次琼, 陈烈, 魏守才, 2025. 西藏唐格矽卡岩型铜铅锌矿床成矿时代:来自石榴子石U-Pb年龄的约束. 地球科学, 50(2): 621-638. doi: 10.3799/dqkx.2024.017
    Huang Qian, Wu Song, Liu Xiaofeng, Shen Yahui, Danzeng Awang, Ci Qiong, Chen Lie, Wei Shoucai, 2025. The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U-Pb Geochronology. Earth Science, 50(2): 621-638. doi: 10.3799/dqkx.2024.017
    Citation: Huang Qian, Wu Song, Liu Xiaofeng, Shen Yahui, Danzeng Awang, Ci Qiong, Chen Lie, Wei Shoucai, 2025. The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U-Pb Geochronology. Earth Science, 50(2): 621-638. doi: 10.3799/dqkx.2024.017

    西藏唐格矽卡岩型铜铅锌矿床成矿时代:来自石榴子石U-Pb年龄的约束

    doi: 10.3799/dqkx.2024.017
    基金项目: 

    国家自然科学基金 U22A20572

    国家自然科学基金 42072109

    西藏自治区中央引导地方科技计划项目 XZ202202YD0006C

    详细信息
      作者简介:

      黄倩(1999-),女,硕士研究生,主要从事矿物地球化学研究工作.ORCID:0009-0001-3460-2945. E-mail:hq_huang10@163.com

      通讯作者:

      吴松,ORCID: 0009-0005-3670-1073, E-mail:songwu@cugb.edu.cn

    • 中图分类号: P597

    The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U-Pb Geochronology

    • 摘要: 石榴子石原位U-Pb定年是近年来新发展的低U矿物同位素定年方法,目前已在矽卡岩矿床中广泛应用.首次报道了西藏唐格矽卡岩型铜铅锌矿床石榴子石LA-ICP-MS U-Pb年龄及微量元素组成,结合矿床石英斑岩锆石U-Pb年龄结果,对唐格矿床成岩成矿时代及过程进行了探讨.唐格石榴子石U-Pb年龄为65.5±3.9 Ma,石英斑岩锆石U-Pb年龄为68.1±0.9 Ma,限定了其成岩成矿时代为晚白垩世-古新世. 唐格石榴子石稀土配分曲线呈轻稀土富集、重稀土亏损,LREE/HREE比值为0.01~12.68,进一步可划分为两期石榴子石(GrtⅠ和GrtII),Eu异常由不明显(Eu/Eu*为0.87~0.94)向明显Eu正异常(Eu/Eu*为1.49~8.29)再向微弱Eu正异常(Eu/Eu*为0.67~1.83)变化,U平均含量先降低(GrtⅠ-1:1.14×10-6,GrtⅠ-2:0.65×10-6)后升高(GrtⅡ:2.34×10-6)都表明氧逸度先升高后降低. 第一期石榴子石核部(GrtⅠ-1)的Hf、Ta平均含量(8.84×10-6和0.52×10-6)均大于边部(GrtⅠ-2:1.60×10-6和0.23×10-6)和第二期石榴子石(GrtⅡ:1.47×10-6和0.37×10-6)平均含量,指示成矿过程由封闭状态转为开放、震荡的环境. 冈底斯成矿带同碰撞时期矽卡岩型矿床的成岩成矿年龄从西向东呈现由老变新的趋势,揭示了其火山活动具有穿时性,反映了印度-亚洲大陆不均匀碰撞的特征.唐格矿床为在南冈底斯带上新发现的同碰撞期矽卡岩型铜多金属矿床,将会为朱诺矿集区及周边乃至整个南冈底斯带找矿提供新方向.

       

    • 图  1  冈底斯成矿带地质矿产简图(据郑有业等,2021修编)

      主要矽卡岩矿床年龄数据来源于Tang et al.(2009);费光春等(2010);Li et al.2014);Li et al.(2014);Wanget al.(2015);姜军胜(2018);Zhang et al.(2019);谢桂青等(2021)

      Fig.  1.  Mineral resources and geological map of the Gangdesebelt(modified after Zheng et al., 2021 revision)

      图  2  唐格矿床地质简图(据多美曲Cu矿普查报告)

      Fig.  2.  Geological Map of the Tanggedeposit (according to the mineral survey report of the Duomeiqu Cu deposit)

      图  3  唐格矿床典型的矿化特征

      a.石榴子石矽卡岩中的石英-闪锌矿脉;b.星点状方铅矿,团块状磁黄铁矿发育于石榴子石矽卡岩中;c.石榴子石矽卡岩中的磁黄铁矿和少量的黄铁矿;d.黄铁矿-磁黄铁矿-黄铜矿-方铅矿-闪锌矿共生关系(反射光);e.石榴子石被后期的绿帘石交代蚀变,后被石英-闪锌矿充填(单偏光);f.石英斑岩样品ZK801. Q. 石英,Di. 辉石,Grt. 石榴子石,Chl. 绿泥石,Ep. 绿帘石,Cc. 方解石,Po. 磁黄铁矿,Py. 黄铁矿,Ccp. 黄铜矿,Sp. 闪锌矿,Ga. 方铅矿

      Fig.  3.  Typical mineralization characteristics of the Tangge deposit

      图  4  唐格矿床石榴子石LA-ICP-MS U-Pb测年结果

      Fig.  4.  LA-ICP-MS U-Pb dating results of garnet of the Tangge deposit

      图  5  唐格矿床石榴子石稀土元素球粒陨石标准化配分曲线

      Fig.  5.  Chondrite-normalized REE patterns of garnet in the Tangge deposit

      图  6  唐格矿床石英斑岩(D008-1)锆石阴极发光图像(a)和U-Pb谐和年龄图(b)

      Fig.  6.  Zircon cathodoluminescence image(a) and U-Pb harmonic age(b) of quartz porphyry(D008-1) in the Tangge deposit

      图  7  唐格石榴子石矿物特征

      a. 样品TG801-111中的石榴子石核部GrtⅠ-1与发育震荡环带的边部GrtⅠ-2,被辉石细脉穿切(正交偏光);b.样品801-85中GrtⅠ-2石榴子石发育震荡环带,被石英、方解石和辉石交代,发育少量黄铁矿化(正交偏光);c、d.样品TG001-70中石榴子石呈粒状,周围发育针状绿帘石化(正交偏光);Di. 辉石;Cal. 方解石;Ep. 绿帘石;Qtz. 石英;Grt-石榴子石;Py. 黄铁矿

      Fig.  7.  Mineral characteristics of Tangge garnet

      图  8  冈底斯成矿带同碰撞期矽卡岩矿床成岩成矿年龄

      Fig.  8.  Diagenetic and metallogenic ages of skarn deposits in syn-collisional period of Gangdese metallogenic belt

      表  1  唐格矿床石榴子石LA-ICP-MS U-Pb测年结果(*为有效数据点)

      Table  1.   LA-ICP-MS U-Pb data of garnet of the Tangge deposit(* abeled as valid data)

      测点 元素含量(10-6) 同位素比值
      编号 Th U $ \frac{{}^{207}\mathrm{P}\mathrm{b}}{{}^{206}\mathrm{P}\mathrm{b}} $ $ \frac{{}^{207}\mathrm{P}\mathrm{b}}{{}^{235}\mathrm{U}} $ $ \frac{{}^{206}\mathrm{P}\mathrm{b}}{{}^{238}\mathrm{U}} $
      TG801-111-01* 0.02 0.20 0.84 0.11 165.21 26.92 1.57 0.24
      TG801-111-02 0.03 0.31 0.83 0.11 22.50 2.09 0.22 0.02
      TG801-111-03* 0.02 0.38 0.26 0.06 5.45 0.77 0.06 0.01
      TG801-111-04 0.03 0.31 0.23 0.05 5.23 0.88 0.08 0.01
      TG801-111-05 0.12 0.37 0.91 0.04 146.44 9.05 1.27 0.08
      TG801-111-06 0.02 0.30 0.11 0.05 3.03 0.47 0.02 < 0.01
      TG801-111-07 0.01 0.29 0.03 0.02 1.44 0.47 0.03 0.01
      TG801-111-08 0.07 0.02 0.24 0.07 48.37 18.63 0.59 0.13
      TG801-111-09* 1.65 0.71 0.86 0.03 106.79 4.39 0.93 0.04
      TG801-111-10 0.04 0.41 0.88 0.09 27.15 2.22 0.28 0.02
      TG801-111-11 0.02 0.47 0.03 0.02 1.00 0.56 0.02 < 0.01
      TG801-111-12 0.03 0.36 0.91 0.11 20.33 1.48 0.18 0.02
      TG801-85-13 1.64 2.38 0.84 0.01 142.28 2.87 1.24 0.02
      TG801-85-14* 0.17 1.04 0.94 0.13 7.27 0.59 0.07 0.01
      TG801-85-15* 0.27 1.40 0.63 0.09 3.38 0.29 0.04 < 0.01
      TG801-85-16 0.05 0.91 0.98 0.06 30.56 2.54 0.28 0.02
      TG801-85-17 0.02 0.69 0.94 0.05 60.77 2.46 0.52 0.02
      TG801-85-18* 0.24 1.41 0.85 0.05 24.35 2.64 0.22 0.02
      TG801-85-19 0.24 1.42 0.65 0.09 2.51 0.20 0.03 < 0.01
      TG801-85-20* 0.01 1.05 0.99 0.15 12.99 1.15 0.12 0.01
      TG801-85-21 0.03 0.82 0.06 0.02 0.83 0.13 0.02 < 0.01
      TG801-85-22 0.03 0.83 1.08 0.14 12.55 1.03 0.11 0.01
      TG801-85-23* 0.03 0.76 0.07 0.03 1.53 0.23 0.03 < 0.01
      TG801-85-24* 0.04 0.67 0.52 0.08 8.75 1.45 0.08 0.01
      TG801-85-25* 0.04 0.72 0.96 0.07 40.69 2.19 0.37 0.02
      TG801-85-26* 0.06 0.76 0.84 0.06 35.35 2.91 0.32 0.02
      TG801-85-27 0.18 1.23 0.81 0.03 44.72 1.49 0.42 0.01
      TG801-85-28 0.13 1.05 0.81 0.10 8.12 0.64 0.08 0.01
      TG001-70-29* 0.36 1.40 0.81 0.09 5.18 0.51 0.05 < 0.01
      TG001-70-30* 0.63 2.46 0.20 0.04 0.65 0.08 0.02 < 0.01
      TG001-70-31* 0.96 2.66 0.83 0.07 7.55 0.65 0.08 0.01
      TG001-70-32* 0.58 1.79 0.91 0.06 15.66 0.71 0.14 0.01
      TG001-70-33* 0.59 1.52 0.84 0.10 5.26 0.34 0.05 < 0.01
      TG001-70-34* 0.62 1.87 0.43 0.07 1.92 0.15 0.03 < 0.01
      TG001-70-35 0.82 3.20 0.28 0.06 0.53 0.07 0.01 < 0.01
      TG001-70-36* 0.79 3.18 0.16 0.03 0.38 0.06 0.01 < 0.01
      TG001-70-37* 0.78 3.01 0.54 0.07 1.67 0.21 0.02 < 0.01
      TG001-70-38 0.69 2.89 0.97 0.11 7.57 0.52 0.07 < 0.01
      TG001-70-39* 0.64 2.51 0.18 0.05 0.69 0.14 0.02 < 0.01
      TG001-70-40 0.62 2.31 0.68 0.09 3.36 0.28 0.04 < 0.01
      TG001-70-41 0.68 2.19 1.01 0.07 21.32 1.54 0.19 0.01
      TG001-70-42* 0.80 3.66 0.70 0.06 2.65 0.14 0.03 < 0.01
      TG001-70-43 0.09 0.46 0.33 0.06 5.84 1.04 0.09 0.01
      TG001-70-44* 0.50 1.93 0.38 0.07 1.14 0.12 0.02 < 0.01
      TG001-70-45* 0.77 2.05 0.14 0.05 0.51 0.13 0.01 < 0.01
      TG001-70-46* 0.70 1.94 0.07 0.02 0.25 0.05 0.01 < 0.01
      TG001-70-47 1.37 2.06 0.52 0.05 9.59 0.98 0.10 0.01
      TG001-70-48 0.58 1.84 0.12 0.04 0.56 0.09 0.01 < 0.01
      TG001-70-49* 0.52 2.03 0.14 0.04 0.67 0.07 0.01 < 0.01
      TG001-70-50 0.74 3.61 0.89 0.07 9.02 0.52 0.08 < 0.01
      TG001-70-51* 0.74 3.61 0.85 0.07 5.49 0.37 0.06 < 0.01
      TG001-70-52 2.50 1.95 1.06 0.14 12.14 0.76 0.11 0.01
      TG001-70-53 0.67 2.03 0.86 0.04 18.25 1.02 0.16 0.01
      TG001-70-54* 0.69 1.88 0.07 0.03 0.33 0.08 0.01 < 0.01
      TG001-70-55 0.87 1.90 0.83 0.06 11.37 0.74 0.12 0.01
      TG001-70-56 0.90 2.06 0.92 0.07 13.14 0.87 0.12 0.01
      下载: 导出CSV

      表  2  唐格石榴子石LA-ICP-MS微量元素分析结果(10-6

      Table  2.   LA-ICP-MS results of garnet contents of trace elements from the Tangge deposit(10-6)

      样品 点号 Ti Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta Pb Th U
      GrtⅠ-1
      TG801-111 1 9 289.4 9.9 4.7 14.8 45.0 132.3 342.5 311.1 327.2 238.6 206.4 134.5 120.5 87.4 93.3 70.8 0.2 0.2 2.8 1.6 0.7
      TG801-85 2 13 261.9 2.2 1.2 9.0 29.3 88.3 280.2 308.9 428.4 435.0 534.0 497.4 561.1 473.1 551.7 472.1 11.6 0.3 0.2 0.2 1.0
      3 18 915.0 5.5 1.0 7.0 23.7 77.1 248.0 275.0 335.9 325.6 371.7 330.1 352.0 290.8 341.1 287.1 11.9 0.9 < 0.1 0.3 1.4
      4 18 824.6 5.3 0.8 5.8 20.9 68.3 225.1 259.2 329.0 319.1 369.8 322.1 349.7 293.3 337.4 281.6 11.6 0.8 0.7 0.2 1.4
      GrtⅠ-2
      TG801-111 1 4 070.4 17.4 0.1 0.1 1.2 8.4 51.1 69.6 42.1 26.4 23.0 15.2 16.2 11.5 13.7 12.9 2.2 0.3 1.0 < 0.1 0.2
      2 2 483.0 9.2 0.0 0.3 1.8 14.5 72.2 93.1 39.5 19.5 16.1 10.2 10.3 7.1 9.2 7.6 3.3 0.2 0.2 < 0.1 0.4
      TG801-85 3 824.6 1.6 0.0 0.8 4.3 16.9 23.0 58.0 7.0 3.8 3.3 2.4 2.1 1.4 1.2 1.5 0.7 < 0.1 0.4 < 0.1 1.1
      4 1 186.0 1.9 0.0 0.9 4.8 13.9 9.1 51.9 3.4 2.7 2.2 2.1 2.1 1.2 2.4 1.7 0.5 0.1 0.0 < 0.1 0.8
      5 2 961.0 4.3 0.1 0.8 4.5 12.1 9.3 35.8 4.9 4.2 5.1 4.1 4.8 4.3 4.6 3.9 1.2 0.2 0.4 < 0.1 0.7
      6 2 004.7 3.2 0.1 0.9 4.6 14.2 10.8 39.9 4.8 3.9 3.9 3.1 3.6 3.3 3.5 2.7 0.8 0.2 0.9 < 0.1 0.7
      7 7 560.1 9.5 0.1 0.9 4.3 12.2 10.0 24.6 8.1 7.5 8.6 8.9 9.6 7.7 10.3 8.7 2.5 0.6 0.6 0.1 0.8
      Grt Ⅱ
      TG001-70 1 3 759.6 7.7 0.5 5.0 22.0 47.1 41.4 31.5 27.0 15.8 14.7 9.6 10.6 8.8 10.9 11.2 0.9 0.3 0.1 0.4 1.4
      2 1 728.4 2.8 1.2 10.8 38.1 67.0 35.3 35.2 16.5 9.5 8.4 7.7 7.8 8.1 9.9 9.9 0.4 0.1 < 0.1 0.6 2.5
      3 3 315.1 2.6 1.3 11.3 40.4 75.7 50.5 43.5 33.4 27.0 30.1 28.1 31.7 30.5 38.7 39.1 1.2 0.4 0.4 1.0 2.7
      4 1 811.6 3.3 0.7 8.0 33.6 64.5 29.8 34.9 11.6 6.9 5.8 4.4 6.0 5.8 6.5 5.6 0.3 0.2 0.6 0.6 1.8
      5 2 520.5 11.0 0.5 6.3 27.2 63.1 47.0 35.9 21.2 11.9 10.9 7.8 8.7 8.2 9.6 10.0 0.3 0.2 0.5 0.6 1.5
      6 2 928.9 8.1 0.9 8.2 31.3 61.3 36.4 35.2 20.1 11.9 11.2 9.2 10.5 9.0 12.5 13.6 0.7 0.3 0.2 0.6 1.9
      7 159.4 0.7 1.7 14.6 47.8 79.9 32.6 35.3 10.8 5.9 5.5 4.4 5.4 5.4 7.6 7.5 < 0.1 < 0.1 < 0.1 0.8 3.2
      8 164.7 0.8 1.5 14.0 46.1 76.1 29.3 36.2 10.3 5.7 4.5 4.2 4.9 3.9 6.7 7.0 < 0.1 < 0.1 0.1 0.8 3.0
      9 1 717.4 2.8 1.1 10.9 38.0 67.9 37.5 35.0 16.3 9.7 7.9 6.7 7.0 7.1 9.8 9.1 0.3 0.2 0.0 0.6 2.5
      10 63.3 0.3 1.9 16.9 57.1 91.3 36.8 41.8 19.9 16.9 20.7 21.8 33.3 37.4 57.6 74.0 0.1 < 0.1 0.5 0.8 3.7
      11 14 623.4 13.9 0.3 2.4 11.3 33.0 42.6 24.1 29.1 21.1 18.2 12.5 11.9 9.3 10.1 8.6 4.1 1.5 < 0.1 0.5 1.9
      12 8 974.0 12.6 0.3 3.4 15.9 47.3 46.4 32.1 17.3 8.7 5.6 3.9 4.9 4.8 5.8 6.1 5.6 1.1 < 0.1 0.8 2.0
      13 8 059.5 11.2 0.3 3.3 16.2 47.5 42.8 30.5 16.1 7.5 5.6 3.7 4.7 4.3 5.4 5.3 4.9 0.8 < 0.1 0.7 1.9
      14 384.9 1.5 0.6 6.2 29.6 73.5 42.4 44.8 10.2 3.3 1.0 0.4 0.2 0.2 0.2 0.1 < 0.1 < 0.1 < 0.1 0.5 2.0
      15 62.0 0.3 1.8 16.6 54.1 86.4 33.7 39.0 19.6 16.1 18.0 19.4 24.9 28.7 45.4 55.6 0.1 < 0.1 0.7 0.7 3.6
      16 8 049.8 11.2 0.3 3.2 15.6 45.3 45.3 29.5 17.0 8.3 5.5 3.6 3.7 4.2 5.4 4.7 4.7 0.9 < 0.1 0.7 1.9
      下载: 导出CSV

      表  3  唐格石英斑岩LA-ICP-MS锆石U-Pb分析结果

      Table  3.   LA-ICP-MS U-Pb data of ziron from the quartz porphyry in Tangge ore district

      点号 元素含量(10-6 Th/U 同位素比值 年龄(Ma)
      Th U 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ
      1 474 473 1.00 0.066 0 0.006 6 0.010 0 0.000 2 64.9 6.2 64.4 1.1
      2 593 723 0.82 0.068 7 0.004 4 0.010 5 0.000 1 67.4 4.2 67.6 0.9
      3 466 272 1.71 0.070 3 0.010 4 0.010 6 0.000 2 69.0 9.8 67.7 1.6
      4 336 226 1.49 0.072 4 0.010 9 0.011 1 0.000 3 71.0 10.3 70.9 1.6
      5 639 674 0.95 0.185 5 0.008 3 0.012 6 0.000 2 172.7 7.1 80.7 1.3
      6 338 253 1.34 0.067 4 0.010 1 0.010 4 0.000 2 66.2 9.6 66.5 1.3
      7 162 158 1.02 0.067 3 0.015 3 0.010 4 0.000 3 66.2 14.5 66.9 2.2
      8 165 163 1.01 0.071 1 0.014 0 0.011 0 0.000 3 69.7 13.3 70.4 1.8
      9 191 190 1.01 0.070 9 0.012 9 0.010 7 0.000 3 69.6 12.2 68.8 1.6
      10 220 189 1.16 0.071 5 0.010 9 0.011 0 0.000 2 70.2 10.4 70.3 1.4
      11 486 365 1.33 0.085 5 0.008 5 0.013 3 0.000 2 83.3 7.9 85.2 1.6
      12 180 173 1.04 0.145 6 0.015 3 0.011 3 0.000 3 138.1 13.6 72.5 1.8
      13 189 146 1.30 13.324 5 0.909 6 0.124 5 0.007 7 2 702.9 64.5 756.2 44.2
      14 158 151 1.04 0.080 1 0.015 2 0.012 1 0.000 4 78.2 14.3 77.4 2.3
      15 274 202 1.36 0.073 2 0.014 5 0.011 3 0.000 3 71.8 13.7 72.4 1.8
      16 368 305 1.20 0.072 6 0.008 0 0.011 1 0.000 2 71.2 7.6 70.9 1.4
      17 124 267 0.46 0.726 3 0.034 8 0.083 9 0.003 2 554.4 20.5 519.3 18.9
      下载: 导出CSV
    • Aysal, N., Guillong, M., Bayanova, T., et al., 2023. A New Natural Secondary Reference Material for Garnet U-Pb Dating by TIMS and LA-ICP-MS. Geostandards and Geoanalytical Research, 47(2): 297-310. https://doi.org/10.1111/ggr.12493
      Chang, Z., Shu, Q., Meinert, L. D., 2019. Skarn Deposits of China. Society of Economic Geologists, Special Publication, 22: 189-234.
      Chen, H., Zheng, Y. Y., Yu, Z. Z., et al., 2022. Petrogenesis and Prospecting Significance of Ore-Bearing Rocks in Dajiacuo Silver Polymetallic Deposit, Tibet. Earth Science, 47(6): 2199-2218(in Chinese with English abstract).
      Chung, S., Liu, D. Y., Ji, J., et al., 1998. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31: 1021-1024. https://doi.org/10.1130/G19796.1
      Deng, X. D., Li, J. W., Luo, T., et al., 2017. Dating Magmatic and Hydrothermal Processes Using Andradite-Rich Garnet U-Pb Geochronometry. Contributions to Mineralogy and Petrology, 172(9): 71. https://doi.org/10.1007/s00410-017-1389-2
      Fan, X. J., Wang, X. D., Lü, X. B., et al., 2019. Garnet Composition as an Indicator of Skarn Formation: LA-ICP-MS and EPMA Studies on Oscillatory Zoned Garnets from the Haobugao Skarn Deposit, Inner Mongolia, China. Geological Journal, 54(4): 1976-1992. https://doi.org/10.1002/gj.3273
      Fei, G. C., Wen, C. Q., Zhou, X., et al., 2010. Laser Microprobe 40Ar-39Ar Geochronology of Quartz from Dongzhongla Lead-Zinc Deposit in Tibet and Its Significance. Journal of Mineralogy and Petrology, 30(3): 38-43(in Chinese with English abstract).
      Fu, W. C., Kang, Z. Q., Pan, H. B., 2014. Geochemistry, Zircon U-Pb Age and Implications of the Linzizong Group Volcanic Rocks in Shiquan River Area, Western Gangdise Belt, Tibet. Geological Bulletin of China, 33(6): 850-859(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2014.06.008
      Gao, S. B., Chen, X., Zhang, Y. C., et al., 2021. Timing and Genetic Link of Porphyry Mo and Skarn Pb-Zn Mineralization in the Chagele Deposit, Western Nyainqentanglha Belt, Tibet. Ore Geology Reviews, 129: 103929. https://doi.org/10.1016/j.oregeorev.2020.103929
      Gao, X., Deng, J., Meng, J. Y., et al., 2014. Characteristics of Garnet in the Hongniu Skarn Copper Deposit Western Yunnan. Acta Petrologica Sinica, 30(9): 2695-2708(in Chinese with English abstract).
      Gaspar, M., Knaack, C., Meinert, L. D., et al., 2008. REE in Skarn Systems: a LA-ICP-MS Study of Garnets from the Crown Jewel Gold Deposit. Geochimica et Cosmochimica Acta, 72(1): 185-205. https://doi.org/10.1016/j.gca.2007.09.033
      Hou, Z. Q., Yang, Z. M., Qu, X. M., et al., 2009. The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen. Ore Geology Reviews, 36(1/2/3): 25-51. https://doi.org/10.1016/j.oregeorev.2008.09.006
      Hou, Z. Q., Gao, Y. F., Meng, X. S., et al., 2004. Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen. Acta Petrologica Sinica, 20(2): 239-248(in Chinese with English abstract).
      Hou, Z. Q., Wang, E. Q., 2008. Metallogenesis of the Indo-Asian Collisional Orogen: New Advances. Acta Geoscientica Sinica, 29(3): 275-292(in Chinese with English abstract).
      Jamtveit, B., Ragnarsdóttir, K., Wood, B., 1995. On the Origin of Zoned Grossular-Andradite Garnets in Hydrothermal Systems. European Journal of Mineralogy, 7(6): 1399-1410. https://doi.org/10.1127/ejm/7/6/1399
      Jiang, J. S., 2018. Genesis of Polymetallic Deposits and Prospecting Potential in the Linzizong Group Volcanic Rock Area, Western Gangdise(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Jiang, X. J., Zheng, Y. Y., Gao, S. B., et al., 2021. In-Situ U-Pb Geochronology of Ti-Bearing Andradite as a Practical Tool for Linking Skarn Alteration and Pb-Zn Mineralization: a Case Study of the Mengya'a Deposit, Tibet. Ore Geology Reviews, 139: 104565. https://doi.org/10.1016/j.oregeorev.2021.104565
      Kamvong, T., Zaw, K., 2009. The Origin and Evolution of Skarn-Forming Fluids from the Phu Lon Deposit, Northern Loei Fold Belt, Thailand: Evidence from Fluid Inclusion and Sulfur Isotope Studies. Journal of Asian Earth Sciences, 34(5): 624-633. https://doi.org/10.1016/j.jseaes.2008.09.004
      Li, G. M., Liu, B., Qu, W. J., et al., 2005. The Porphyry-Skarn Ore-Forming System in Gangdese Metallogenic Belt, Southern Xizang: Evidence from Molybdenite Re-Os Age of Porphyry-Type Copper Deposits and Skarn-Type Copper Polymetallic Deposits. Geotectonica et Metallogenia, 29(4): 482-490(in Chinese with English abstract).
      Li, J. Z., Wu, S., Lin, Y. B., et al., 2022. Alteration-Mineralization Style and Prospecting Potential of Cimabanshuo Porphyry Copper Deposit in Tibet. Earth Science, 47(6): 2219-2244(in Chinese with English abstract).
      Li, X. F., Wang, C. Z., Mao, W., et al., 2014. The Fault-Controlled Skarn W-Mo Polymetallic Mineralization during the Main India-Eurasia Collision: Example from Hahaigang Deposit of Gangdese Metallogenic Belt of Tibet. Ore Geology Reviews, 58: 27-40. https://doi.org/10.1016/j.oregeorev.2013.10.006
      Li, Y. Y., Xie, Y. L., Chen, W., et al., 2017. U-Pb Age and Geochemical Characteristics of Zircon in Monzogranite Porphyry from Qiagong Deposit, Tibet, and Geological Implication. Acta Petrologica Sinica, 27(7): 2023-2033(in Chinese with English abstract).
      Liu, P., Wu, S., Zheng, Y. Y., et al., 2022. Geology and Factors Controlling the Formation of the Newly Discovered Beimulang Porphyry Cu Deposit in the Western Gangdese, Southern Tibet. Ore Geology Reviews, 144: 104823. https://doi.org/10.1016/j.oregeorev.2022.104823
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Liu, Z. C., Wu, F. Y., Guo, C. L., et al., 2011. In Situ U-Pb Dating of Xenotime by Laser Ablation (LA)-ICP-MS. Chinese Science Bulletin, 56(27): 2948-2956
      Massimo, C., Urs, S., Richard, S., et al., 2013. How Accurately Can We Date the Duration of Magmatic-Hydrothermal Events in Porphyry Systems? An Invited Paper. Economic Geology, 108(4): 565-584. https://doi.org/10.2113/econgeo.108.4.565
      Meinert, L. D., Dipple, G. M., Nicolescu, S., 2005. World Skarn Deposits. Economic Geology, 100th Anniversarry Volume, 299-336.
      Mo, X. X., Zhao, Z. D., Depaolo, D., et al., 2006. Three Types of Collisional and Post-Collisional Magmatism in the Lhasa Block, Tibet and Implications for India Intra-Continental Subduction and Mineralization: Evidence from Sr-Nd Isotopes. Acta Petrologica Sinica, 22(4): 795-803(in Chinese with English abstract).
      Ouyang, Y. P., Zhou, X. R., Yao, Z. Y., et al., 2020. Study on the Two-Stage Garnets and Their Indication of Mineralization in the Zhuxi W(Cu)Deposit, Northeastern Jiangxi Province. Earth Science Frontiers, 27(4): 219-231(in Chinese with English abstract).
      Pan, G. T., Mo, X. X., Hou, Z. Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533(in Chinese with English abstract).
      Park, C., Song, Y., Kang, I. M., et al., 2017. Metasomatic Changes during Periodic Fluid Flux Recorded in Grandite Garnet from the Weondong W-Skarn Deposit, South Korea. Chemical Geology, 451: 135-153. https://doi.org/10.1016/j.chemgeo.2017.01.011
      Qin, K. Z., Xia, D. X., Li, G. M., et al., 2014. The Qulong Porphyry-Skarn Copper-Molybdenum Deposit in Tibet. Science Press, Beijing(in Chinese with English abstract).
      Shu, Q. H., Deng, J., Chang, Z. S., et al., 2024. Skarn Zonation of the Giant Jiama Cu-Mo-Au Deposit in Southern Tibet, SW China. Economic Geology, 119 (1): 1-22. https://doi.org/10.5382/econgeo.5038
      Shu, Q., Al, E., 2015. Fluid Compositions Reveal Fluid Nature, Metal Deposition Mechanisms, and Mineralization Potential: an Example at the Haobugao Zn-Pb Skarn, China. Geology, 49: 473-477. https://doi.org/10.1130/G48348.1
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Sun, X., Hollings, P., Lu, Y. J., 2021. Geology and Origin of the Zhunuo Porphyry Copper Deposit, Gangdese Belt, Southern Tibet. Mineralium Deposita, 56(3): 457-480. https://doi.org/10.1007/s00126-020-00970-0
      Tang, J. X., Chen, Y. C., Duo, J., et al., 2009. Main Deposit Types, Metallogenic Regularities and Prospecting Evaluation in the Eastern Segment of the Gangdise Metallogenic Belt, Tibet. Acta Mineralogica Sinica, 29(S1): 476-478(in Chinese with English abstract).
      Turner, S., Arnaud, N., Liu, J., et al., 1996. Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 37(1): 45-71. https://doi.org/10.1093/petrology/37.1.45
      Vermeesch, P., 2018. IsoplotR: a Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
      Wang, L. Q., Tang, J. X., Deng, J., et al., 2015. The Longmala and Mengya'a Skarn Pb-Zn Deposits, Gangdese Region, Tibet: Evidence from U-Pb and Re-Os Geochronology for Formation during Early India-Asia Collision. International Geology Review, 57(14): 1825-1842. https://doi.org/10.1080/00206814.2015.1029540
      Wang, Y. F., Merino, E., 1992. Dynamic Model of Oscillatory Zoning of Trace Elements in Calcite: Double Layer, Inhibition, and Self-Organization. Geochimica et Cosmochimica Acta, 56(2): 587-596. https://doi.org/10.1016/0016-7037(92)90083-U
      Wang, Y. C., Duan, D. F., 2021. REE Distribution Character in Skarn Garnet and Its Geological Implication. Acta Scientiarum Naturalium Universitatis Pekinensis, 57(3): 446-458(in Chinese with English abstract).
      Wen, G., Li, J. W., Hofstra, A. H., et al., 2020. Textures and Compositions of Clinopyroxene in an Fe Skarn with Implications for Ore-Fluid Evolution and Mineral-Fluid REE Partitioning. Geochimica et Cosmochimica Acta, 290: 104-123. https://doi.org/10.1016/j.gca.2020.08.020
      Wu, S., 2016. The Zhunuo Super-Large Porphyry Copper Deposit in the Gangdise Region, Tibet: Magmatism and Mineralization(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Xie, F. W., Lang, X. H., Tang, J. X., et al., 2022. Metallogenic regularity of Gangdese Metallogenic Belt, Tibet. Mineral Deposits, 41(5): 952-974(in Chinese with English abstract).
      Xie, G. Q., Chen, X. L., Ma, L. J., et al., 2021. Chengba Copper Polymetallic Skarn Deposit in Linzhou County, Gangdese Metallogenic Belt: Implications for Mineral Exploration of Regional Paleocene Cu Deposits in Southern Tibet. Mineral Deposits, 40(3): 625-630(in Chinese with English abstract).
      Xu, J., Zheng, Y. Y., Sun, X., et al., 2014. Mineralogical Characteristics of Zhibula Skarn-Type Cu Deposit in Tibet and Their Geological Significance. Earth Science, 39(6): 654-670, 768(in Chinese with English abstract).
      Yang, Z. M., Hou, Z. Q., Xia, D. X., et al., 2008. Relationship between Western Porphyry and Mineralization in Qulong Copper Deposit of Tibet and Its Enlightenment to Further Exploration. Mineral Deposits, 27(1): 28-36(in Chinese with English abstract).
      Yin, A., Harrison, T., 2006. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/ANNUREV.EARTH.28.1.211.
      Zhang, A. P., Zheng, Y. C., Xu, B., et al., 2019. Metallogeny of the Lietinggang-Leqingla Fe-Cu-(Mo)-Pb-Zn Polymetallic Deposit, Evidence from Geochronology, Petrogenesis, and Magmatic Oxidation State, Lhasa Terrane. Ore Geology Reviews, 106: 318-339. https://doi.org/10.1016/j.oregeorev.2019.02.004
      Zhao, Y. M., Lin, W. W., Bi, C. S., 2012. Skarn Ore Deposits in China. Geological Publishing House, Beijing, 1-115(in Chinese with English abstract).
      Zhao, Y. Y., Liu, X. F., Yang, C. S., et al., 2022. Recongnition of A-Type Granite and Its Implication for Magmatism and Mineralization in Tangge Skarn-Type Cu-Polymetallic Deposit, Tibet. Geology in China, 49(2): 496-517(in Chinese with English abstract).
      Zheng, Y. Y., Zhang, G. Y., Xu, R. K., et al., 2007. Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Zhunuo Porphyry Copper Deposit in Gangdese, Tibet. Chinese Science Bulletin, 52(22): 3139-3147. https://doi.org/10.1007/s11434-007-0406-7
      Zheng, Y. Y., Duoji, Wang, R. J., et al., 2007. New Advances in the Study of the Gigantic Gangdise Porphyry Copper Metallogenic Zone, Tibet. Geology in China, 34(2): 324-334(in Chinese with English abstract).
      Zheng, Y. Y., Gao, S. B., Zhang, D. Q., et al., 2006. The Discovery of the Zhunuo Porphyry Copper Deposit in Tibet and Its Significance. Earth Science Frontiers, 13(4): 233-239(in Chinese with English abstract).
      Zheng, Y. Y., Wu, S., Ci, Q., et al., 2021. Cu-Mo-Au Metallogenesis and Minerogenetic Series during Superimposed. Earth Science, 46(6): 1909-1940(in Chinese with English abstract).
      Zhou, S., Mo, X. X., Dong, G. C., et al., 2004. The 40Ar/39Ar Chronological Framework of the Linzizong Volcanic Rocks in the Linzhou Basin, Tibet. Chinese Science Bulletin, 49(20): 2095-2103(in Chinese).
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002.
      Zhu, D. C,. Wang, Q., Zhao, Z. D., et al., 2015. Magmatic Record of India-Asia Collision. Sci Rep. 2015 Sep 23;5: 14289. https://doi.org/10.1038/srep14289.
      Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2009. Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution: New Perspective. Earth Science Frontiers, 16(2): 1-20(in Chinese with English abstract).
      陈浩, 郑有业, 余泽章, 等, 2022. 西藏打加错银(多金属)矿床含矿岩石成因及其找矿意义. 地球科学, 47(6): 2199-2218. doi: 10.3799/dqkx.2021.230
      费光春, 温春齐, 周雄, 等, 2010. 西藏洞中拉铅锌矿床石英激光探针40Ar-39Ar定年及地质意义. 矿物岩石, 30(3): 38-43.
      付文春, 康志强, 潘会彬, 2014. 西藏冈底斯带西段狮泉河地区林子宗群火山岩地球化学特征、锆石U-Pb年龄及地质意义. 地质通报, 33(6): 850-859.
      高雪, 邓军, 孟健寅, 等, 2014. 滇西红牛矽卡岩型铜矿床石榴子石特征. 岩石学报, 30(9): 2695-2708.
      侯增谦, 王二七, 2008. 印度-亚洲大陆碰撞成矿作用主要研究进展. 地球学报, 29(3): 275-292.
      侯增谦, 高永丰, 孟祥金, 等, 2004. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制. 岩石学报, 20(2): 239-248.
      姜军胜, 2018. 冈底斯西段林子宗群火山岩区多金属矿床成因及找矿潜力(博士毕业论文). 武汉: 中国地质大学.
      李光明, 刘波, 屈文俊, 等, 2005. 西藏冈底斯成矿带的斑岩-矽卡岩成矿系统: 来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据. 大地构造与成矿学, 29(4): 482-490.
      李家桢, 吴松, 林毅斌, 等, 2022. 西藏次玛班硕斑岩铜矿蚀变-矿化样式及找矿潜力. 地球科学, 47(6): 2219-2244. doi: 10.3799/dqkx.2021.229
      莫宣学, 赵志丹, Don J DEPAOLO, 等, 2006. 青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示: Sr-Nd同位素证据. 岩石学报, 22(4): 795-803.
      欧阳永棚, 周显荣, 尧在雨, 等, 2020. 赣东北朱溪钨(铜)矿床两期石榴石研究及其对成矿作用的指示. 地学前缘, 27(4): 219-231.
      潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533.
      秦克章, 夏代祥, 李光明, 等, 2014. 西藏驱龙斑岩-夕卡岩铜钼矿床. 北京: 科学出版社.
      唐菊兴, 陈毓川, 多吉, 等, 2009. 西藏冈底斯成矿带东段主要矿床类型、成矿规律和找矿评价. 矿物学报, 29(S1): 476-478.
      王一川, 段登飞, 2021. 矽卡岩中石榴子石的稀土配分特征及其成因指示. 北京大学学报(自然科学版), 57(3): 446-458.
      吴松, 2016. 西藏冈底斯朱诺超大型斑岩铜矿床: 岩浆与成矿(博士毕业论文). 北京: 中国地质大学(北京).
      谢富伟, 郎兴海, 唐菊兴, 等, 2022. 西藏冈底斯成矿带成矿规律. 矿床地质, 41(5): 952-974.
      谢桂青, 陈小龙, 马龙敬, 等, 2021. 冈底斯成矿带林周县程巴矽卡岩铜多金属矿床特征: 对藏南区域古新世铜矿床的找矿启示. 矿床地质, 40(3): 625-630.
      徐净, 郑有业, 孙祥, 等, 2014. 西藏知不拉矽卡岩型铜矿床矿物学特征及地质意义. 地球科学, 39(6): 654-670, 768. doi: 10.3799/dqkx.2014.062
      杨志明, 侯增谦, 夏代详, 等, 2008. 西藏驱龙铜矿西部斑岩与成矿关系的厘定: 对矿床未来勘探方向的重要启示. 矿床地质, 27(1): 28-36.
      赵亚云, 刘晓峰, 杨春四, 等, 2022. 西藏唐格矽卡岩型铜多金属矿床A型花岗岩的识别及其对成岩成矿的指示. 中国地质, 49(2): 496-517.
      郑有业, 多吉, 王瑞江, 等, 2007. 西藏冈底斯巨型斑岩铜矿带勘查研究最新进展. 中国地质, 34(2): 324-334.
      郑有业, 高顺宝, 张大全, 等, 2006. 西藏朱诺斑岩铜矿床发现的重大意义及启示. 地学前缘, 13(4): 233-239.
      郑有业, 吴松, 次琼, 等, 2021. 冈底斯复合造山带铜钼金多金属成矿作用与成矿系列. 地球科学, 46(6): 1909-1940. doi: 10.3799/dqkx.2020.392
      周肃, 莫宣学, 董国臣, 等, 2004. 西藏林周盆地林子宗火山岩40Ar/39Ar年代格架. 科学通报, 49(20): 2095-2103.
      朱弟成, 莫宣学, 赵志丹, 等, 2009. 西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化: 新观点. 地学前缘, 16(2): 1-20.
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  261
    • HTML全文浏览量:  99
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-01-22
    • 网络出版日期:  2025-02-26
    • 刊出日期:  2025-02-25

    目录

      /

      返回文章
      返回