• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于人工地震的河西务断裂活动性及其设定地震模拟研究

    高武平 俞言祥 彭远黔 张文朋 张安东 闫成国

    高武平, 俞言祥, 彭远黔, 张文朋, 张安东, 闫成国, 2025. 基于人工地震的河西务断裂活动性及其设定地震模拟研究. 地球科学, 50(4): 1499-1513. doi: 10.3799/dqkx.2024.018
    引用本文: 高武平, 俞言祥, 彭远黔, 张文朋, 张安东, 闫成国, 2025. 基于人工地震的河西务断裂活动性及其设定地震模拟研究. 地球科学, 50(4): 1499-1513. doi: 10.3799/dqkx.2024.018
    Gao Wuping, Yu Yanxiang, Peng Yuanqian, Zhang Wenpeng, Zhang Andong, Yan Chengguo, 2025. Activity Analysis of Hexiwu Fault Based on Artificial Earthquake and Its Set Earthquake Simulation Research. Earth Science, 50(4): 1499-1513. doi: 10.3799/dqkx.2024.018
    Citation: Gao Wuping, Yu Yanxiang, Peng Yuanqian, Zhang Wenpeng, Zhang Andong, Yan Chengguo, 2025. Activity Analysis of Hexiwu Fault Based on Artificial Earthquake and Its Set Earthquake Simulation Research. Earth Science, 50(4): 1499-1513. doi: 10.3799/dqkx.2024.018

    基于人工地震的河西务断裂活动性及其设定地震模拟研究

    doi: 10.3799/dqkx.2024.018
    基金项目: 

    中国地震局地震科技星火计划项目 H23004YA

    河北省地震科技星火计划项目 DZ2023120500004

    详细信息
      作者简介:

      高武平(1981-),男,高级工程师,在读博士,主要从事城市活动断层探测、城市地震灾害风险评估、地震动数值模拟等研究.E-mail:gwpp123@126.com

      通讯作者:

      彭远黔(1965-),男,高级工程师,E-mail: 744707073@qq.com

    • 中图分类号: P315.2

    Activity Analysis of Hexiwu Fault Based on Artificial Earthquake and Its Set Earthquake Simulation Research

    • 摘要: 河西务断裂是一条处于京津冀城市群腹地规模较大的第四纪断裂,围绕该断裂开展的一系列浅层人工地震及钻孔联合剖面勘探进一步揭示,该断裂为一条晚更新世早期活动断裂.近期天津市地震局跨该断裂完成的4条28T可控震源人工地震勘探测线,为研究该断裂的断裂特征及活动性提供了新证据.人工地震剖面显示:(1)该断裂倾向南东,视倾角55°~75°,向北延伸止于高王公路与京塘公路之间,在北端剖面上呈上陡下缓的单一断层,向南则呈雁列式或“Y”字型构造,总长度约50余千米;(2)不同剖面上显示的断层最浅上断点埋深存在差异,但普遍达到150 m以上,表明河西务断裂展布存在差异性,但断裂断错中更新统底界,并向上延伸至上更新统,活动时代为晚更新世早期断裂.区域资料显示,该断裂向南延伸与牛东断裂相接,二者共同组成了一条规模超100 km的断裂带,存在发生7级以上地震可能.从京津冀城市群防范大震风险需求出发,对该断裂设定地震Mw7.3进行了数值模拟,潜在的长周期地震动可能对京津冀地区具有重要影响.

       

    • 图  1  廊坊凹陷大地构造位置(杨德相等,2021)

      Fig.  1.  Tectonic location of Langfang Depression (After Yang et al., 2021)

      图  2  河西务断层平面展布及探测资料分布

      Fig.  2.  Distribution of Hexiwu fault and relevant sounding data

      图  3  hxw3人工地震测线反射时间剖面与深度解释剖面

      Fig.  3.  Reflection time profile and depth interpretation profile of the line hxw3

      图  4  hxw1人工地震测线反射时间剖面与深度解释剖面

      Fig.  4.  Reflection time profile and depth interpretation profile of the line hxw1

      图  5  hxw2人工地震测线反射时间剖面与深度解释剖面

      Fig.  5.  Reflection time profile and depth interpretation profile of the line hxw2

      图  6  天津大港-河北廊坊大地电磁剖面部分段落(徐新学等,2007

      Fig.  6.  Partial section of the Tianjin Dagang-Hebei Langfang magnetotelluric profile (After Xu et al., 2007)

      图  7  设定地震震源破裂平均滑动量分布及破裂过程

      红色五角星表示破裂起始点,白色等值线虚线表示破裂传播时间,单位为s

      Fig.  7.  Average sliding quantity distribution and fracture process of the source rupture

      图  8  华北盆地北部沉积层内各地层界面埋深

      Fig.  8.  Buried depth of stratigraphic interface in the northern part of North China Basin

      图  9  河西务断裂设定地震(Mw7.3)PGV分布

      Fig.  9.  PGV distribution of the scenario earthquake for the Hexiwu fault (Mw7.3)

      图  10  河西务-牛东断裂带周边区域的放大系数分布(Mw7.3)

      Fig.  10.  Amplification coefficient distribution of the Hexiwu-Niudong fault zone and adjacent area

      表  1  设定地震的震源模型参数

      Table  1.   Source model parameters of scenario earthquake

      参数 震级(Mw) 破裂面走向、倾角、滑动角 断层性质 破裂尺寸(km) 震源深度(km)
      数值 7.3 NNE15°、80°、-45° 正走滑 80×29 14
      参数 平均滑动量(m) 地震矩(N·m) 凹凸体的平均滑动量(m) 凹凸体面积百分比占比(%) 凹凸体位置(沿断层走向km×沿断层倾向km)
      数值 1.41 1.095 1 e20 3.545 5 10.95 9×11,9×5,5×6
      下载: 导出CSV

      表  2  介质模型物理参数

      Table  2.   Physical parameters of the medium model

      速度层 S~IQ底 IQ底~IN IN~G G~C C~Moho Moho~
      密度(g·cm-3) 2.05~2.45 2.45~2.73 2.73~2.73 2.73~2.89 3~3 3.34~
      Vp(km·s-1) 1.5~2.2 2.2~2.7 2.7~4.15 4.15~6.2 6.2~6.9 7.9~
      Vs(km·s-1) 0.5~1.02 1.02~1.4 1.4~2.4 2.4~3.6 3.6~3.73 4.6~
      Q0 100~150 150~200 200~500 500~800 1 000~1 000 1 000
      下载: 导出CSV
    • Cerjan, C., Kosloff, D., Kosloff, R., et al., 1985. A Nonreflecting Boundary Condition for Discrete Acoustic and Elastic Wave Equations. Geophysics, 50(4): 705-708. https://doi.org/10.1190/1.1441945
      Chen, G. G., Xu, J., Gao, Z. W., 2003. Seismotectonic Features of the Bohai Bay Basin in North China. North China Earthquake Sciences, 21(2): 7-15(in Chinese with English abstract). doi: 10.3969/j.issn.1003-1375.2003.02.002
      Chen, X. Z., Xu, X. T., Zhai, W. J., 2005. Variation of Stress during the Rupture Process of the 1995 ML=4.1 Shacheng, Hebei, China, Earthquake Sequence. Acta Seismologica Sinica, 27(3): 276-281(in Chinese with English abstract). doi: 10.3321/j.issn:0253-3782.2005.03.005
      Ding, Z. K., Xia, Z. F., 2013. Research on Definition of Hard Rock Shear Wave Velocity of Site for Nuclear Power Plant. Nuclear Techniques, 36(4): 300-303(in Chinese with English abstract).
      Du, C. X., Xie, F. R., Zhang, Y., et al., 2010.3D Modeling of Dynamic Fault Rupture and Strong Ground Motion of the 1976 Ms 7.8 Tangshan Earthquake. Chinese Journal of Geophysics, 53(2): 290-304(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2010.02.007
      Duan, Y. H., Wang, F. Y., Zhang, X. K., et al., 2016. Three Dimensional Crustal Velocity Structure Model of the Middle-Eastern North China Craton (HBCrust1.0). Scientia Sinica (Terrae), 46(6): 845-856(in Chinese). doi: 10.1360/N072015-00447
      Fu, C. H., Gao, M. T., Chen, K., 2012. A Study on Long-Period Response Spectrum of Ground Motion Affected by Basin Structure of Beijing. Acta Seismologica Sinica, 34(3): 374-382, 425(in Chinese with English abstract). doi: 10.3969/j.issn.0253-3782.2012.03.009
      Gao, W. X., Ma, J., 1993. Seismo-Geological Background and Earthquake Hazard in Beijing Area. Seismological Press, Beijing (in Chinese).
      He, D. F., Li, D. S., Wang, C. S., et al., 2017. Advances and Challenge of Structural Geology of Deep Sedimentary Basins in China. Earth Science Frontiers, 24(3): 219-233(in Chinese with English abstract).
      Jia, X. H., 2019. Seismic Analysis of Urban Underground Gas Pipeline and Construction of Earthquake Disaster Scenario (Dissertation). Institute of Geophysics China Earthquake Administration, Beijing (in Chinese with English abstract).
      Jiang, W. L., Zhang, J. F., 2012. Fine Crustal Structure beneath Capital Area of China Derived from Gravity. Chinese Journal of Geophysics, 55(5): 1646-1661(in Chinese with English abstract).
      Lao, H. G., Wu, K. Y., 2010. Accommodation Tectonic Analtsis in the Hexiwu Structuree Belt. Inner Mongolia Petrochemical Industry, 36(14): 30-32(in Chinese). doi: 10.3969/j.issn.1006-7981.2010.14.011
      Liu, C. L., Zheng, Y., Xiong, X., et al., 2014. Rupture Process of Ms6.5 Ludian Earthquake Constrained by Regional Broadband Seismograms. Chinese Journal of Geophysics, 57(9): 3028-3037(in Chinese with English abstract).
      Liu, G. S., He, D. F., Lu, R. Q., et al., 2023. Geological Structure and Tectonic Evolution of Yangshuiwu BuriedHill Belt in Langgu Sag, Bohai Bay Basin. Chinese Journal of Geology (Scientia Geologica Sinica), 58(1): 226-239(in Chinese with English abstract).
      Long, F., Wen, X. Z., Xu, X. W., 2006. Empirical Relationships between Magnitude and Rupture Length, and Rupture Area, for Seismogenic Active Faults in North China. Seismology and Geology, 28(4): 511-535(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2006.04.001
      Mao, L. G., Tian, J. Z., Zhang, H. W., et al., 2019. Structures and Evolution of Hexiwu Fault, Northern Jizhong Depression since the Neogene. Geological Journal of China Universities, 25(4): 578-582(in Chinese with English abstract).
      Miao, Q. Y., Qi, J. F., Ma, B. S., et al., 2019. Differential Deformation and Control Mechanism of Paleogene Structures in Northern Jizhong Depression. Geotectonica et Metallogenia, 43(1): 46-57(in Chinese with English abstract).
      Michael, J., O'Rourke. 1999. Response of Buried Pipelines Subject to Earthquake Effects. The Multidisciplinary Center for Earthquake Engineering Research.
      Peng, Y. Q., Sun, X. Y., Zhan, Y., et al., 2022.3D Deep Electrical Structure and Seismogenic Environment in Zhangbei Earthquake Region. Chinese Journal of Geophysics, 65(9): 3464-3480(in Chinese with English abstract).
      Pitarka, A., Irikura, K., Iwata, T., et al., 1998. Three-Dimensional Simulation of the Near-Fault Ground Motion for the 1995 Hyogo-Ken Nanbu (Kobe), Japan, Earthquake. Bulletin of the Seismological Society of America, 88(2): 428-440. https://doi.org/10.1785/bssa0880020428
      Somerville, P., Irikura, K., Graves, R., et al., 1999. Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion. Seismological Research Letters, 70(1): 59-80. https://doi.org/10.1785/gssrl.70.1.59
      Sun, X. Y., Zhan, Y., Unsworth, M., et al., 2020.3-D Magnetotelluric Imaging of the Easternmost Kunlun Fault: Insights into Strain Partitioning and the Seismotectonics of the Jiuzhaigou Ms7.0 Earthquake. Journal of Geophysical Research (Solid Earth), 125(5): e2020JB019731. https://doi.org/10.1029/2020JB019731
      Sun, X. Y., Zhan, Y., Zhao, L. Q., et al., 2019. Electrical Structure of the Kunlun-Qinling Fault System, Northeastern Tibetan Plateau, Inferred from 3-D Inversion of Magnetotelluric Data. Journal of Asian Earth Sciences, 181: 103910. https://doi.org/10.1016/j.jseaes.2019.103910
      Wang, H. Y., 2011. Amplification Effects of Soil Sites on Ground Motion in the Weihe Basin. Chinese Journal of Geophysics, 54(1): 137-150(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.01.015
      Wang, J., Liu, Q. Y., Chen, J. H., et al., 2009. Three-Dimensional S-Wave Velocity Structure of the Crust and Upper Mantle beneath the Capital Circle Region from Receiver Function Inversion. Chinese Journal of Geophysics, 52(10): 2472-2482(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2009.10.006
      Wang, S. C., Men, X. Y., Qian, Z., et al., 2011. Compound Characteristics of Oil and Gas Systems and Favorable Plays in the Wuqing Depression, Bohai Bay Basin. Natural Gas Industry, 31(11): 59-62, 124(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2011.11.014
      Wang, X. W., Guo, S. Y., Gao, N. A., et al., 2023. Detection of Carbonate Geothermal Reservoir in Niudong Fault Zone of Xiongan New Area and Its Geothermal Exploration Significance. Geological Bulletin of China, 42(1): 14-26(in Chinese with English abstract).
      Wen, C., Zhu, K. J., Meng, L. P., et al., 2019. Deep and Shallow Structural Characteristics of Hexiwu Fault in Northeastern Jizhong Depression. Seismological and Geomagnetic Observation and Research, 40(5): 29-35(in Chinese with English abstract).
      Wesnousky, S. G., 2008. Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture. Bulletin of the Seismological Society of America, 98(4): 1609-1632. https://doi.org/10.1785/0120070111
      Wu, Z. H., 2019. The Definition and Classification of Active Faults: History, Current Status and Progress. Acta Geoscientica Sinica, 40(5): 661-697(in Chinese with English abstract).
      Xie, L. L., Zhou, Y. N., Hu, C. X., et al., 1990. Characteristics of Response Spectra of Long-Period Earthquake Ground Motion. Earthquake Engineering and Engineering Vibration, 10(1): 1-20(in Chinese with English abstract).
      Xie, Z. J., Lü, Y. J., Fang, Y., et al., 2019. Research on the Seismic Activity of the Beijing-Tianjin-Hebei Region. Progress in Geophysics, 34(3): 961-968(in Chinese with English abstract).
      Xu, X. X., Chen, Y. K., Liu, J. C., et al., 2007. The Crust and Upper Mantle Electrical Conductivity Structure along the Profile of Hebei Langfang-Tianjin Dagang. China Earthquake Engineering Journal, 29(4): 364-370(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2007.04.013
      Yan, C. G., Cao, J. Q., Chen, Y. K., et al., 2020. Fine Crustal Structures of Zhangjiakou-Bohai Tectonic Zone in Tianjin Area Revealed by a Deep Seismic Reflection Profile. Chinese Journal of Geophysics, 63(12): 4431-4439(in Chinese with English abstract). doi: 10.6038/cjg2020O0175
      Yang, D. X., Chen, Y., Li, X. D., et al., 2021. Evidence from Fluid Inclusions for Hydrocarbon Accumulation of Yangshuiwu Buried Hill in Langgu Sag, Bohai Bay Basin. Acta Petrolei Sinica, 42(10): 1325-1336(in Chinese with English abstract). doi: 10.7623/syxb202110006
      Ye, T., Chen, X. B., Huang, Q. H., et al., 2021. Three-Dimensional Electrical Resistivity Structure in Focal Area of the 2021 Yangbi MS6.4 Earthquake and Its Implication for the Seismogenic Mechanism. Chinese Journal of Geophysics, 64(7): 2267-2277(in Chinese with English abstract).
      Yu, Y. X., Hu, Y. X., Pan, H., 2005. Study on Impact of Focal Mechanism on Long-Period Ground Motions. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3113-3118(in Chinese with English abstract).
      Zeng, Q. L., 2010. Faults Feature and Hydrocarbon Accumulation in Hexiwu Structural Belt of Langgu Depression. Inner Mongolia Petrochemical Industry, 36(17): 109-111(in Chinese with English abstract).
      Zhan, Y., Liang, M. J., Sun, X. Y., et al., 2021. Deep Structure and Seismogenic Pattern of the 2021.5.22 Madoi (Qinghai) Ms7.4 Earthquake. Chinese Journal of Geophysics, 64(7): 2232-2252(in Chinese with English abstract).
      Zhan, Y., Yang, H., Zhao, G. Z., et al., 2017. Deep Electrical Structure of Crust beneath the Madongshan Step Area at the Haiyuan Fault in the Northeastern Margin of the Tibetan Plateau and Tectonic Implications. Chinese Journal of Geophysics, 60(6): 2371-2384(in Chinese with English abstract).
      Zhan, Y., Zhao, G. Z., Martyn, U., et al., 2013. Deep Structure and Seismogenic Environment of Lushan Earthquake Zone with M = 7.0 of 4.20 in Southwest Section of Longmenshan Fault Zone. Chinese Science Bulletin, 58(20): 1917-1924(in Chinese).
      Zhang, B., 2019. Study on the Attenuation Relationship between Horizontal Peak Velocity and Peak Displacement (Dissertation). Institute of Geophysics, China Earthquake Administation, Beijing (in Chinese with English abstract).
      Zhang, S. M., Lu, Y. J., Ren, J. J., 2006. Seismotectonics and Potential Seismic Source Zonation of the North China Plain. Technology for Earthquake Disaster Prevention, 1(3): 234-244(in Chinese with English abstract).
      Zhang, W., 2006. Finite Difference Algorithm for Seismic Wave Propagation in Three-Dimensional Inhomogeneous Media with Undulating Terrain and Its Application in Strong Ground Motion Simulation (Dissertation). Peking University, Beijing (in Chinese with English abstract).
      Zhang, W. P., Zhang, C. L., Gao, W. P., et al., 2022. Quaternary Activity Characteristics of the Jiyunhe Fault Revealed by Shallow Seismic Prospecting Data. China Earthquake Engineering Journal, 44(1): 183-191(in Chinese with English abstract).
      Zhang, Y., 2014. Study on Cenozoic Fault Activity in Three-Dimensional Continuous Area of Jizhong Depression (Dissertation). China University of Petroleum (Huadong), Dongying(in Chinese with English abstract).
      Zhang, Y., Xu, L. S., Chen, Y. T., 2013. Rupture Process of the Lushan 4.20 Earthquake and Preliminary Analysis on the Disaster-Causing Mechanism. Chinese Journal of Geophysics, 56(4): 1408-1411(in Chinese with English abstract).
      Zhao, H. G., Liu, C. Y., 2003. Detachment Gliding Structures of Langgu Sag. Journal of Northwest University (Natural Science Edition), 33(3): 315-319(in Chinese with English abstract).
      Zhao, L. Q., Sun, X. Y., Zhan, Y., et al., 2022. The Seismogenic Model of the Menyuan MS6.9 Earthquake on January 8, 2022, Qinghai Province and Segmented Extensional Characteristics of the Lenglongling Fault. Chinese Journal of Geophysics, 65(4): 1536-1546(in Chinese with English abstract).
      Zhao, L. Q., Zhan, Y., Sun, X. Y., et al., 2019. The Hidden Seismogenic Structure and Dynamic Environment of the 21 January Menyuan, Qinghai, MS6.4 Earthquake Derived from Magnetotelluric Imaging. Chinese Journal of Geophysics, 62(6): 2088-2100(in Chinese with English abstract).
      Zhou, Y. L., Peng, Y. Q., Chen, J. Q., et al., 2018. Comprehensive Survey and Study on the Activity of the Hexiwu Fault in Langfang Area, Hebei Province. Technology for Earthquake Disaster Prevention, 13(3): 610-618(in Chinese with English abstract).
      Zhu, G. S., 2014. Application of Finite Difference Method in Strong Ground Motion Simulation (Dissertation). University of Science and Technology of China, Hefei (in Chinese with English abstract).
      陈国光, 徐杰, 高战武, 2003. 华北渤海湾盆地大震的构造特征. 华北地震科学, 21(2): 7-15.
      陈学忠, 许向彤, 翟文杰, 2005.1995年7月20日河北沙城ML4.1地震序列破裂过程中应力变化的研究. 地震学报, 27(3): 276-281.
      丁振坤, 夏祖讽, 2013. 核电站场地基岩剪切波速定义范围研究. 核技术, 36(4): 300-303.
      杜晨晓, 谢富仁, 张扬, 等, 2010.1976年MS7.8唐山地震断层动态破裂及近断层强地面运动特征. 地球物理学报, 53(2): 290-304.
      段永红, 王夫运, 张先康, 等, 2016. 华北克拉通中东部地壳三维速度结构模型(HBCrust1.0). 中国科学: 地球科学, 46(6): 845-856.
      付长华, 高孟潭, 陈鲲, 2012. 北京盆地结构对长周期地震动反应谱的影响. 地震学报, 34(3): 374-382, 425.
      高文学, 马瑾, 1993. 首都圈地震地质环境与地震灾害. 北京: 地震出版社.
      何登发, 李德生, 王成善, 等, 2017. 中国沉积盆地深层构造地质学的研究进展与展望. 地学前缘, 24(3): 219-233.
      贾晓辉, 2019. 城市地下燃气管道抗震分析及地震灾害情景构建(博士学位论文). 北京: 中国地震局地球物理研究所.
      姜文亮, 张景发, 2012. 首都圈地区精细地壳结构: 基于重力场的反演. 地球物理学报, 55(5): 1646-1661.
      劳海港, 吴孔友, 2010. 河西务构造带调节构造特征分析. 内蒙古石油化工, 36(14): 30-32.
      刘成利, 郑勇, 熊熊, 等, 2014. 利用区域宽频带数据反演鲁甸Ms6.5级地震震源破裂过程. 地球物理学报, 57(9): 3028-3037.
      刘冠伸, 何登发, 鲁人齐, 等, 2023. 渤海湾盆地廊固凹陷杨税务潜山带地质结构与构造演化. 地质科学, 58(1): 226-239.
      龙锋, 闻学泽, 徐锡伟, 2006. 华北地区地震活断层的震级-破裂长度、破裂面积的经验关系. 地震地质, 28(4): 511-535.
      毛黎光, 田建章, 张宏伟, 等, 2019. 冀中坳陷北部河西务断层结构及新近纪以来的活动特征分析. 高校地质学报, 25(4): 578-582.
      苗全芸, 漆家福, 马兵山, 等, 2019. 冀中坳陷北部古近纪构造差异变形及控制因素. 大地构造与成矿学, 43(1): 46-57.
      彭远黔, 孙翔宇, 詹艳, 等, 2022. 张北地震区三维深部电性结构与孕震环境. 地球物理学报, 65(9): 3464-3480.
      王海云, 2011. 渭河盆地中土层场地对地震动的放大作用. 地球物理学报, 54(1): 137-150.
      王峻, 刘启元, 陈九辉, 等, 2009. 根据接收函数反演得到的首都圈地壳上地幔三维S波速度结构. 地球物理学报, 52(10): 2472-2482.
      王少春, 门相勇, 钱铮, 等, 2011. 渤海湾盆地武清凹陷含油气系统的复合性特征与有利勘探区带. 天然气工业, 31(11): 59-62, 124.
      汪新伟, 郭世炎, 高楠安, 等, 2023. 雄安新区牛东断裂带碳酸盐岩热储探测及其对地热勘探的启示. 地质通报, 42(1): 14-26.
      温超, 朱坤静, 孟立朋, 等, 2019. 冀中坳陷东北部河西务断裂深浅构造特征. 地震地磁观测与研究, 40(5): 29-35.
      吴中海, 2019. 活断层的定义与分类: 历史、现状和进展. 地球学报, 40(5): 661-697.
      谢礼立, 周雍年, 胡成祥, 等, 1990. 地震动反应谱的长周期特性. 地震工程与工程振动, 10(1): 1-20.
      谢卓娟, 吕悦军, 方怡, 等, 2019. 京津冀地区的地震活动性研究. 地球物理学进展, 34(3): 961-968.
      徐新学, 陈宇坤, 刘俊昌, 等, 2007. 河北廊坊-天津大港剖面地壳上地幔电性结构特征. 西北地震学报, 29(4): 364-370.
      闫成国, 曹井泉, 陈宇坤, 等, 2020. 深地震反射剖面揭示的天津地区张渤带地壳精细结构. 地球物理学报, 63(12): 4431-4439.
      杨德相, 陈勇, 李小冬, 等, 2021. 渤海湾盆地廊固凹陷杨税务潜山油气成藏的流体包裹体证据. 石油学报, 42(10): 1325-1336.
      叶涛, 陈小斌, 黄清华, 等, 2021.2021年5月21日云南漾濞地震(MS6.4)震源区三维电性结构及发震机制讨论. 地球物理学报, 64(7): 2267-2277.
      俞言祥, 胡聿贤, 潘华, 2005. 地震震源机制对长周期地震动的影响研究. 岩石力学与工程学报, 24(17): 3113-3118.
      曾庆鲁, 2010. 廊固凹陷河西务构造带断裂特征与油气成藏. 内蒙古石油化工, 36(17): 109-111.
      詹艳, 梁明剑, 孙翔宇, 等, 2021.2021年5月22日青海玛多MS7.4地震深部环境及发震构造模式. 地球物理学报, 64(7): 2232-2252.
      詹艳, 杨皓, 赵国泽, 等, 2017. 青藏高原东北缘海原构造带马东山阶区深部电性结构特征及其构造意义. 地球物理学报, 60(6): 2371-2384.
      詹艳, 赵国泽, Martyn, U., 等, 2013. 龙门山断裂带西南段4.20芦山7.0级地震区的深部结构和孕震环境. 科学通报, 58(20): 1917-1924.
      张斌, 2019. 水平向峰值速度、峰值位移衰减关系研究(博士学位论文). 北京: 中国地震局地球物理研究所.
      张世民, 吕悦军, 任俊杰, 2006. 华北平原强震构造带与潜在震源区划分. 震灾防御技术, 1(3): 234-244.
      张伟, 2006. 含起伏地形的三维非均匀介质中地震波传播的有限差分算法及其在强地面震动模拟中的应用(博士学位论文). 北京: 北京大学.
      张文朋, 张春丽, 高武平, 等, 2022. 用浅层地震勘探资料研究蓟运河断裂的第四纪活动特征. 地震工程学报, 44(1): 183-191.
      张艺, 2014. 冀中坳陷三维连片区新生代断裂活动性研究(博士学位论文). 东营: 中国石油大学(华东).
      张勇, 许力生, 陈运泰, 2013. 芦山4.20地震破裂过程及其致灾特征初步分析. 地球物理学报, 56(4): 1408-1411.
      赵红格, 刘池洋, 2003. 廊固凹陷的拆离滑脱构造. 西北大学学报(自然科学版), 33(3): 315-319.
      赵凌强, 孙翔宇, 詹艳, 等, 2022.2022年1月8日青海门源MS6.9地震孕震环境和冷龙岭断裂分段延展特征. 地球物理学报, 65(4): 1536-1546.
      赵凌强, 詹艳, 孙翔宇, 等, 2019. 利用大地电磁技术揭示2016年1月21日青海门源MS6.4地震隐伏地震构造和孕震环境. 地球物理学报, 62(6): 2088-2100.
      周月玲, 彭远黔, 陈建强, 等, 2018. 河西务断裂活动性的综合探测研究. 震灾防御技术, 13(3): 610-618.
      朱耿尚, 2014. 有限差分方法在强地面运动模拟中的应用(硕士学位论文). 合肥: 中国科学技术大学.
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  87
    • HTML全文浏览量:  97
    • PDF下载量:  24
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-10-26
    • 网络出版日期:  2025-05-10
    • 刊出日期:  2025-04-25

    目录

      /

      返回文章
      返回