• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    阿尔卑斯古近纪火山活动的沉积记录及其地质意义

    芦刚 高亮 王长城 陈兴聪 卢喜和 WinklerWilfried

    芦刚, 高亮, 王长城, 陈兴聪, 卢喜和, WinklerWilfried, 2025. 阿尔卑斯古近纪火山活动的沉积记录及其地质意义. 地球科学, 50(1): 77-87. doi: 10.3799/dqkx.2024.021
    引用本文: 芦刚, 高亮, 王长城, 陈兴聪, 卢喜和, WinklerWilfried, 2025. 阿尔卑斯古近纪火山活动的沉积记录及其地质意义. 地球科学, 50(1): 77-87. doi: 10.3799/dqkx.2024.021
    Lu Gang, Gao Liang, Wang Changcheng, Chen Xingcong, Lu Xihe, Winkler Wilfried, 2025. Sedimentary Records of Volcanic Activity in Paleogene of Alps and Geological Significance. Earth Science, 50(1): 77-87. doi: 10.3799/dqkx.2024.021
    Citation: Lu Gang, Gao Liang, Wang Changcheng, Chen Xingcong, Lu Xihe, Winkler Wilfried, 2025. Sedimentary Records of Volcanic Activity in Paleogene of Alps and Geological Significance. Earth Science, 50(1): 77-87. doi: 10.3799/dqkx.2024.021

    阿尔卑斯古近纪火山活动的沉积记录及其地质意义

    doi: 10.3799/dqkx.2024.021
    基金项目: 

    山东省自然科学基金项目 ZR2022MD117

    留学基金委项目 201406400047

    详细信息
      作者简介:

      芦刚(1986-), 男, 副教授, 博士, 主要从事含油气盆地研究. ORCID:0000-0002-6272-4181.E-mail:lugang19@cdut.edu.cn

      通讯作者:

      高亮, E-mail:000168@sdipct.edu.cn

    • 中图分类号: P58

    Sedimentary Records of Volcanic Activity in Paleogene of Alps and Geological Significance

    • 摘要: 在始新世中期至渐新世早期, 欧洲板块和亚得里亚板块发生碰撞, 导致了阿尔卑斯造山带的大规模岩浆活动, 由于后期隆升剥蚀无法保存, 而弧后盆地中同时期的沉积火山碎屑岩记录了这一构造事件.针对该套沉积火山碎屑岩, 开展了地质年代学与地球化学等方面的研究, 揭示了阿尔卑斯造山带的火山活动和构造演化特征.研究表明火山碎屑岩中的锆石年龄峰值主要集中在~47 Ma、40 Ma和37 Ma, 并且锆石的Hf同位素呈现负值, 说明其主要形成于板块俯冲过程中部分地壳熔融的岩浆中.此外, 通过对岩浆锆石同位素计算地壳厚度的变化, 说明了阿尔卑斯造山带不仅存在由于板块俯冲碰撞引起的地壳垂直挤压增厚, 还存在俯冲板片拉伸引起的地壳伸展变薄.

       

    • 图  1  阿尔卑斯造山带构造概图(红星为采样位置)

      Fig.  1.  Simplified tectonic map of the Alps with sample locations

      图  2  阿尔卑斯山(南弧后盆地)古近系典型剖面地层综合柱状图

      Fig.  2.  Composite stratigraphy of the Paleogene sections studied in the Alps (southern arc back basin)

      图  3  南弧后盆地中火山碎屑岩镜下照片

      Chl.绿泥石;Pl.斜长石;Cal.方解石

      Fig.  3.  Photographs showing samples of the plagioclase arenites in the southern arc back basin

      图  4  南弧后盆地中火山碎屑岩样品重矿物含量

      Fig.  4.  Contents of heavy minerals in the samples of southern arc back basin

      图  5  岩浆锆石颗粒阴极发光图像

      红色为206Pb/238U年龄(Ma), 黄色为εHft)值

      Fig.  5.  Cathodoluminescence images of volcanic zircon grains in the samples

      图  6  南弧后盆地岩浆锆石U-Pb协和年龄曲线(部分数据来源Lu et al., 2018

      Fig.  6.  Probability U-Pb age curves of zircon ages from southern arc back basin

      图  7  南弧后盆地岩浆锆石εHft)与δEu值(蓝色区域为Adamello侵入体)

      Fig.  7.  εHft) and δEu values of magmatic zircons in the southern arc back basin (blue area represents Adamello intrusion)

      图  8  阿尔卑斯造山带地壳厚度演化示意图

      a.由(La/Yb)N计算的地壳厚度演化曲线;b.由Eu/Eu*计算的地壳演化曲线

      Fig.  8.  Schematic diagrams of crustal thickness evolution of the Alps

      图  9  阿尔卑斯造山带古近纪构造演化示意图

      Fig.  9.  Simplified tectonic reconstruction of the Alps in the paleogene

    • Beltrando, M., Lister, G. S., Rosenbaum, G., et al., 2010. Recognizing Episodic Lithospheric Thinning along a Convergent Plate Margin: The Example of the Early Oligocene Alps. Earth-Science Reviews, 103(3-4): 81-98. https://doi.org/10.1016/j.earscirev.2010.09.001
      Bergomi, M. A., Zanchetta, S., Tunesi, A., 2015. The Tertiary Dike Magmatism in the Southern Alps: Geochronological Data and Geodynamic Significance. International Journal of Earth Sciences, 104(2): 449-473. https://doi.org/10.1007/s00531-014-1087-5
      Bütler, E., Winkler, W., Guillong, M., 2011. Laser Ablation U/Pb Age Patterns of Detrital Zircons in the Schlieren Flysch (Central Switzerland): New Evidence on the Detrital Sources. Swiss Journal of Geosciences, 104(2): 225-236. https://doi.org/10.1007/s00015-011-0065-1
      Chen, D. Q., Chen G., 1990. Practical Rare Earth Element Geochemistry. Metallurgical Industry Press, Beijing (in Chinese).
      Ford, M., Lickorish, W. H., 2004. Foreland Basin Evolution around the Western Alpine Arc. Geological Society, London, Special Publications, 221(1): 39-63. https://doi.org/10.1144/gsl.sp.2004.221.01.04
      Guillong, M., von Quadt, A., Sakata, S., et al., 2014. LA-ICP-MS Pb-U Dating of Young Zircons from the Kos-Nisyros Volcanic Centre, SE Aegean Arc. Journal of Analytical Atomic Spectrometry, 29(6): 963-970. https://doi.org/10.1039/c4ja00009a
      Handy, M. R., Schmid, S. M., Bousquet, R., et al., 2010. Reconciling Plate-Tectonic Reconstructions of Alpine Tethys with the Geological-Geophysical Record of Spreading and Subduction in the Alps. Earth-Science Reviews, 102(3-4): 121-158. https://doi.org/10.1016/j.earscirev.2010.06.002
      Hawkesworth, C. J., Kemp, A. I. S., 2006. Using Hafnium and Oxygen Isotopes in Zircons to Unravel the Record of Crustal Evolution. Chemical Geology, 226(3-4): 144-162. https://doi.org/10.1016/j.chemgeo.2005.09.018
      Lei, H., Zhang, G. B., Xu, B., 2021. The Late Paleozoic Extending and Thinning Processes of the Xing'an-Mongolia Orogenic Belt: Geochemical Evidence from the Plutons in Linxi Area, Inner Mongolia. Acta Petrologica Sinica, 37(7): 2029-2050 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.07.05
      Li, J. H., Yang, J. Y., Cheng, Y. L., et al., 2013. Global Sedimentary Basin Structure and Tectonic Evolution Background—Comparison of Intercontinental Meridional Ultra-Long Structural Profiles. Geological Journal of China Universities, 19(4): 561-573 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2013.04.001
      Lin, X. W., Zhang, Y. F., Chen, G. C., et al., 2023. Magmatic Mixing at the Southern Edge of the Altai Orogenic Belt: Evidence from the Petrology, Geochemistry, and Chronology of the Akbulak Pluton. Earth Science, 48(10): 3597-3612 (in Chinese with English abstract).
      Liu, P. W., Zhang, J. B., Ding, X. Z., et al., 2023. Geochronology and Tectonic Significance of Neoproterozoic Volcanic Rocks from Yanbian Group in Western Yangtze Block. Earth Science, 48(12): 4508-4526 (in Chinese with English abstract).
      Lu, G., Winkler, W., Rahn, M., et al., 2018. Evaluating Igneous Sources of the Taveyannaz Formation in the Central Alps by Detrital Zircon U-Pb Age Dating and Geochemistry. Swiss Journal of Geosciences, 111(3): 399-416. https://doi.org/10.1007/s00015-018-0302-y
      Martin, S., Macera, P., 2014. Tertiary Volcanism in the Italian Alps (Giudicarie Fault Zone, NE Italy): Insight for Double Alpine Magmatic Arc. Italian Journal of Geosciences, 133(1): 63-84. https://doi.org/10.3301/ijg.2013.14
      Mi, J. H., Liu, M. Q., 1996. Identification of Unconformity in the Early Development of Foreland Basins: An Example of the North Alpine Foreland Basin. Sichuan Petroleum Census, (1): 111-128 (in Chinese).
      Neubauer, F., Von Raumer, J. F., Wang, Y. Q., 1993. The Base of the Alps is a Chain of the Hualixi Tectonic Belt and the Alps Mediterranean Mountain Range. Global Geology, 12(1): 92 (in Chinese).
      Peng, X. L., Liang, D. G., Wang, C. G., et al., 2006. Discussion on the Theory of Foreland Basin and Its Application in China. Acta Petrolei Sinica, 27(1): 132-144 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2006.01.029
      Pfeifer, H. R., Biino, G., Ménot, R. P., et al., 1993. Ultramafic Rocks in the Pre-Mesozoic Basement of the Central and External Western Alps. In: Raumer, J. F., Neubauer. F., eds., Pre-Mesozoic Geology in the Alps. Springer, Heidelberg, 119-143. https://doi.org/10.1007/978-3-642-84640-3_8
      Pfiffner, O. A., 2014. Geology of the Alps. John Wiley & Sons, Chichester, 392.
      Profeta, L., Ducea, M. N., Chapman, J. B., et al., 2015. Quantifying Crustal Thickness over Time in Magmatic Arcs. Scientific Reports, 5: 17786. https://doi.org/10.1038/srep17786
      Rubatto, D., Gebauer, D., 2000. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. In: Pagel, M., Barbin, V., Blanc, P., et al., eds., Cathodoluminescence in Geosciences. Springer, Heidelberg, 373-400. https://doi.org/10.1007/978-3-662-04086-7_15
      Schaltegger, U., 1993. The Evolution of the Polymetamorphic Basement in the Central Alps Unravelled by Precise U-Pb Zircon Dating. Contributions to Mineralogy and Petrology, 113(4): 466-478. https://doi.org/10.1007/BF00698316
      Schaltegger, U., Nowak, A., Ulianov, A., et al., 2019. Zircon Petrochronology and 40Ar/39Ar Thermochronology of the Adamello Intrusive Suite, N. Italy: Monitoring the Growth and Decay of an Incrementally Assembled Magmatic System. Journal of Petrology, 60(4): 701-722. https://doi.org/10.1093/petrology/egz010
      Sinclair, H. D., Hou, G. Q., Zhou, L. J., 1998. Transformation from Flysch to Molasse in Peripheral Foreland Basin: The Role of Passive Continental Margin in Plate Fracture. Journal of Geoscience Translations, (2): 32-34 (in Chinese).
      Tang, M., Chu, X., Hao, J., et al., 2021a. Orogenic Quiescence in Earth's Middle Age. Science, 371(6530): 728-731. https://doi.org/10.1126/science.abf1876
      Tang, M., Ji, W. Q., Chu, X., et al., 2021b. Reconstructing Crustal Thickness Evolution from Europium Anomalies in Detrital Zircons. Geology, 49(1): 76-80. https://doi.org/10.1130/G47745.1
      Von Blanckenburg, F., Wang, Q., 1996. Plate Detachment-Alpine Collisional Magmatism and Tectonic Patterns. Journal of Geoscience Translations, (1): 31-34 (in Chinese).
      Winkler, W., 1993. Control Factors on Turbidite Sedimentation in a Deep-Sea Trench Setting-The Example of the Schlieren Flysch (Upper Maastrichtian-Lower Eocene, Central Switzerland). Geodinamica Acta, 6(2): 81-102. https://doi.org/10.1080/09853111.1993.11105240
      Xu, J. H., He, Q. X., 1980. Structural Model of Thin-Shell Plate and Collision Orogeny. Science in China (Series D), 10(11): 1081-1089 (in Chinese).
      Yong, Z. Q., Deng, B., 2018. Plate Tectonic and Oil and Gas Basins. Geological Publishing House, Beijing, 59 (in Chinese).
      Zhu, Z. Y., Campbell, I. H., Allen, C. M., et al., 2020. S-Type Granites: Their Origin and Distribution through Time as Determined from Detrital Zircons. Earth and Planetary Science Letters, 536: 116140. https://doi.org/10.1016/j.epsl.2020.116140
      陈德潜, 陈刚, 1990. 实用稀土元素地球化学. 北京: 冶金工业出版社.
      雷豪, 张贵宾, 徐备, 2021. 兴蒙造山带晚古生代伸展减薄过程: 来自内蒙林西地区岩体的地球化学证据. 岩石学报, 37(7): 2029-2050.
      李江海, 杨静懿, 程雅琳, 等, 2013. 全球沉积盆地结构与构造演化背景——洲际经向超长构造剖面对比. 高校地质学报, 19(4): 561-573. doi: 10.3969/j.issn.1006-7493.2013.04.001
      蔺新望, 张亚峰, 陈国超, 等, 2023. 阿尔泰造山带南缘岩浆混合作用: 阿克布拉克岩体岩石学、地球化学和年代学证据. 地球科学, 48(10): 3597-3612. doi: 10.3799/dqkx.2021.215
      刘佩雯, 张继彪, 丁孝忠, 等, 2023. 扬子西缘新元古代盐边群火山岩年代学及大地构造背景. 地球科学, 48(12): 4508-4526. doi: 10.3799/dqkx.2022.077
      米建红, 柳梅青, 1996. 前陆盆地发育早期的前隆不整合识别: 北阿尔卑斯前陆盆地实例. 四川石油普查, (1): 111-128.
      Neubauer, F., Von Raumer, J. F., 王义强, 1993. 阿尔卑斯山脉的基底是华力西构造带和阿尔卑斯‒地中海山系的连锁. 世界地质, 12(1): 92.
      彭希龄, 梁狄刚, 王昌桂, 等, 2006. 前陆盆地理论及其在中国的应用. 石油学报, 27(1): 132-144.
      Sinclair, H. D., 侯贵卿, 周立君, 1998. 周缘前陆盆地中复理石向磨拉石的转换——被动大陆边缘对板块破裂的作用. 地质科学译丛, (2): 32-34.
      Von Blanckenburg, F., 王强, 1996. 板片脱落——阿尔卑斯山脉同碰撞岩浆作用和构造模式. 地质科学译丛, (1): 31-34.
      许靖华, 何起祥, 1980. 薄壳板块构造模式与冲撞型造山运动. 中国科学, 10(11): 1081-1089.
      雍自权, 邓宾, 2018. 板块构造与含油气盆地. 北京: 地质出版社, 59.
    • 加载中
    图(9)
    计量
    • 文章访问数:  283
    • HTML全文浏览量:  142
    • PDF下载量:  51
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-10-22
    • 网络出版日期:  2025-02-10
    • 刊出日期:  2025-01-25

    目录

      /

      返回文章
      返回