• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    河水-地下水交互带铁循环的微生物指示物-FMN还原酶基因

    黄莹芸 沈俊豪 朱子超 毛胜军 刘慧

    黄莹芸, 沈俊豪, 朱子超, 毛胜军, 刘慧, 2025. 河水-地下水交互带铁循环的微生物指示物-FMN还原酶基因. 地球科学, 50(4): 1575-1584. doi: 10.3799/dqkx.2024.033
    引用本文: 黄莹芸, 沈俊豪, 朱子超, 毛胜军, 刘慧, 2025. 河水-地下水交互带铁循环的微生物指示物-FMN还原酶基因. 地球科学, 50(4): 1575-1584. doi: 10.3799/dqkx.2024.033
    Huang Yingyun, Sheng Junhao, Zhu Zichao, Mao Shengjun, Liu Hui, 2025. Microbial Indicator of Iron Cycling in Riverwater-Groundwater Interaction Zone - FMN Reductase Gene. Earth Science, 50(4): 1575-1584. doi: 10.3799/dqkx.2024.033
    Citation: Huang Yingyun, Sheng Junhao, Zhu Zichao, Mao Shengjun, Liu Hui, 2025. Microbial Indicator of Iron Cycling in Riverwater-Groundwater Interaction Zone - FMN Reductase Gene. Earth Science, 50(4): 1575-1584. doi: 10.3799/dqkx.2024.033

    河水-地下水交互带铁循环的微生物指示物-FMN还原酶基因

    doi: 10.3799/dqkx.2024.033
    基金项目: 

    国家自然科学基金重点项目 41830862

    详细信息
      作者简介:

      黄莹芸(1999-),女,硕士研究生,主要研究方向为河水-地下水交互带中铁的生物转化. ORCID:0009-0004-1386-004X. E-mail:1968761667@qq.com

      通讯作者:

      刘慧,ORCID: 0000-0002-1080-0883,E-mail: hliu2009@cug.edu.cn

    • 中图分类号: P593

    Microbial Indicator of Iron Cycling in Riverwater-Groundwater Interaction Zone - FMN Reductase Gene

    • 摘要: 黄素类还原酶(FMN还原酶)是微生物分泌电子穿梭体引导铁氧化还原的重要酶.为探讨FMN还原酶基因作为铁循环微生物指示物的可行性,以汉江下游河水-地下水交互带为研究区,研究了3个不同特点的河水-地下水交互带剖面沉积物中不同价态Fe浓度、代表性铁循环微生物和FMN还原酶基因相对丰度的分布相关性.结果表明:(1)在离河较近的地下水位以下区域聚积Fe(Ⅱ),而Fe(Ⅲ)主要聚集在地下水位线上或离河较远的区域;(2)铁循环微生物和FMN还原酶主要分布在近河岸地下水位线下的区域或水位线的周围,不同的铁循环微生物聚集的区域不同;(3)铁循环微生物总丰度ICB与FMN还原酶基因呈现出极显著的正相关.该研究结果表明FMN还原酶基因可以作为交互带铁循环的微生物指示物.

       

    • 图  1  研究区及采样点分布

      右图蓝色分别代表河水和地下水水位,红色为点位,线段标号为取样点的位置

      Fig.  1.  Distribution of study area and sampling points

      图  2  交互带中FeTotal、Fe(Ⅱ)及Fe(Ⅲ)的空间分布特征

      黑色线为地下水位线,空心圆为采样位置

      Fig.  2.  Spatial distribution characteristics of FeTotal, Fe(Ⅱ) and Fe(Ⅲ) in the interaction zone

      图  3  交互带中四株代表性铁循环微生物功能基因的空间分布特征

      ICB为4种铁循环微生物的总丰度;黑色线为地下水位线,空心圆为采样位置

      Fig.  3.  Spatial distribution characteristics of functional genes of four representative iron-circulating microorganisms in the interaction zone

      图  4  交互带中FMN还原酶基因空间分布特征

      黑色线为地下水位线,空心圆为采样位置

      Fig.  4.  Spatial distribution of FMN reductase gene in the interaction zone

      图  5  交互带中Fe浓度、各铁循环微生物丰度及FMN还原酶基因丰度之间的相关系数

      **表示在0.01级别(双尾),相关性显著;*表示在0.05级别(双尾),相关性显著

      Fig.  5.  Correlation coefficients between Fe concentrations, the abundance of iron cycle microorganisms, and the abundance of FMN reductase genes in the interaction zone

      表  1  相关功能基因引物条件

      Table  1.   Primers of related functional genes

      基因 (英文名) 引物 碱基组成(5’-3’) 退火温度(℃) 引物浓度
      (nmol/L)
      16S rRNA F CCTACGGGAGGCAGCAG 59 250
      R TTACCGCGGCTGCTGGCAC
      红育菌属 Rhodoferax spp. F CGATTGGAGCGGCCGATAT 57 750
      R CCAGTTGACATCGTTTAGGG
      地杆菌科 Geobacteraceae spp. F AAGCGTTGTTCGGAWTTAT
      GGCACTGCAGGGGTCAATA
      57 750
      R GGTATGGCTGGATCAGGC
      厌氧粘细菌 Anaeromyxobacter spp. F GCAACGCCGCGTGTGT 57 750
      R TCCCTCGCGACAGTGCTT
      披毛菌属 Gallionella spp. F ATATCGGAACATATCCGGAAGT 57 750
      R GGTATGGCTGGATCAGGC
      FMN还原酶 FMN Reductase F CGCACGACATCACGAACA 57 500
      R GCATGCAGGTAGGCGAACA
      下载: 导出CSV
    • Brutinel, E. D., Gralnick, J. A., 2012. Shuttling Happens: Soluble Flavin Mediators of Extracellular Electron Transfer in Shewanella. Applied Microbiology and Biotechnology, 93(1): 41-48. https://doi.org/10.1007/s00253-011-3653-0
      Cao, Y. R., Li, M. J., Mao, S. J., et al., 2021. Distribution of Nitrogen and Water Chemistry in River-Groundwater Interaction Zone in the Lower Reaches of Han River. Earth and Environment, 49(5): 463-471(in Chinese with English abstract).
      Eggerichs, T., Opel, O., Otte, T., et al., 2014. Interdependencies between Biotic and Abiotic Ferrous Iron Oxidation and Influence of pH, Oxygen and Ferric Iron Deposits. Geomicrobiology Journal, 31(6): 461-472. https://doi.org/10.1080/01490451.2013.870620
      Engelhardt, I., Barth, J. A. C., Bol, R., et al., 2014. Quantification of Long-Term Wastewater Fluxes at the Surface Water/Groundwater-Interface: An Integrative Model Perspective Using Stable Isotopes and Acesulfame. Science of the Total Environment, 466: 16-25. https://doi.org/10.1016/j.scitotenv.2013.06.092
      Gandy, C. J., Smith, J. W. N., Jarvis, A. P., 2007. Attenuation of Mining-Derived Pollutants in the Hyporheic Zone: A Review. Science of the Total Environment, 373(2/3): 435-446. https://doi.org/10.1016/j.scitotenv.2006.11.004
      Guo, W. Q., Song, J. X., Liu, Q., et al., 2018. Influence of Hyporheic Water Exchange on Quality of Sediment Pore Water for the Juehe River in Winter. Acta Scientiae Circumstantiae, 38(5): 1957-1967(in Chinese with English abstract).
      Harvey, J. W., Fuller, C. C., 1998. Effect of Enhanced Manganese Oxidation in the Hyporheic Zone on Basin-Scale Geochemical Mass Balance. Water Resources Research, 34(4): 623-636. https://doi.org/10.1029/97wr03606
      Hlavica, P., 2015. Mechanistic Basis of Electron Transfer to Cytochromes P450 by Natural Redox Partners and Artificial Donor Constructs. Advances in Experimental Medicine and Biology, 851: 247-297. https://doi.org/10.1007/978-3-319-16009-2_10
      Hou, Q. X., Zhang, Q., Huang, G. X., et al., 2020. Elevated Manganese Concentrations in Shallow Groundwater of Various Aquifers in a Rapidly Urbanized Delta, South China. Science of the Total Environment, 701: 134777. https://doi.org/10.1016/j.scitotenv.2019.134777
      Kasahara, T., Hill, A. R., 2007. Lateral Hyporheic Zone Chemistry in an Artificially Constructed Gravel Bar and a Re-Meandered Stream Channel, Southern Ontario, Canada. JAWRA Journal of the American Water Resources Association, 43(5): 1257-1269. https://doi.org/10.1111/j.1752-1688.2007.00108.x
      Kato, S., Ohkuma, M., 2021. A Single Bacterium Capable of Oxidation and Reduction of Iron at Circumneutral pH. Microbiology Spectrum, 9(1): e0016121. https://doi.org/10.1128/Spectrum.00161-21
      Krause, S., Hannah, D. M., Fleckenstein, J. H., et al., 2011. Inter-Disciplinary Perspectives on Processes in the Hyporheic Zone. Ecohydrology, 4(4): 481-499. https://doi.org/10.1002/eco.176
      Lan, K., Liang, X., Li, J., 2020. Hydrochemical Characteristics of Groundwater of the Hanjiang Zone in the Jianghan Plain. Safety and Environmental Engineering, 27(5): 1-9, 16(in Chinese with English abstract).
      Lee, J. H., Fredrickson, J. K., Kukkadapu, R. K., et al., 2012. Microbial Reductive Transformation of Phyllosilicate Fe(Ⅲ) and U(Ⅵ) in Fluvial Subsurface Sediments. Environmental Science & Technology, 46(7): 3721-3730. https://doi.org/10.1021/es204528m
      Li, Y. C., Yu, S., Strong, J., et al., 2012. Are the Biogeochemical Cycles of Carbon, Nitrogen, Sulfur, and Phosphorus Driven by the "FeⅢ-FeⅡ Redox Wheel" in Dynamic Redox Environments? Journal of Soils and Sediments, 12(5): 683-693. https://doi.org/10.1007/s11368-012-0507-z
      Li, Y. M., Wen, Z., Schneidewind, U., et al., 2023. Effects of a Large-Scale Dam Structure on Upstream and Downstream Lateral Hyporheic Exchange and Residence Time Distributions: The Xinglong Water Conservancy Dam, China. Journal of Hydrology, 625: 130073. https://doi.org/10.1016/j.jhydrol.2023.130073
      Liu, S. N., Chui, T. F. M., 2019. Numerical Modelling to Evaluate the Nitrogen Removal Rate in Hyporheic Zone and Its Implications for Stream Management. Hydrological Processes, 33(24): 3084-3097. https://doi.org/10.1002/hyp.13548
      Lu, Y. X., Zhang, P., Liu, H., et al., 2022. Effect of Dam on Iron Species Distribution and Transformation in Riparian Zones. Journal of Hydrology, 610: 127869. https://doi.org/10.1016/j.jhydrol.2022.127869
      Lueder, U., Maisch, M., Laufer, K., et al., 2020. Influence of Physical Perturbation on Fe(Ⅱ) Supply in Coastal Marine Sediments. Environmental Science & Technology, 54(6): 3209-3218. https://doi.org/10.1021/acs.est.9b06278
      Ma, A. L., Huang, Y., Mao, S. J., et al., 2023. "Mn(Ⅱ) Curtain" in the Riparian Sediment at the Lower Reaches of the Hanjiang River, China. Journal of Hydrology, 625: 130047. https://doi.org/10.1016/j.jhydrol.2023.130047
      Ma, A. L., Liu, H., Mao, S. J., et al., 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741(in Chinese with English abstract).
      Ma, T., Shen, S., Deng, Y. M., et al., 2020. Theoretical Approaches of Survey on Earth's Critical Zone in Basin: An Example from Jianghan Plain, Central Yangtze River. Earth Science, 45(12): 4498-4511(in Chinese with English abstract).
      Ma, Y. J., Ren, G. P., Qiu, Y. R., et al., 2022. Electricity Generation from Geobacter Sulfurreducens Biofilm and Its Sensing Application. Scientia Sinica (Technologica), 52(11): 1669-1678(in Chinese). doi: 10.1360/SST-2022-0062
      Maazouzi, C., Galassi, D., Claret, C., et al., 2017. Do Benthic Invertebrates Use Hyporheic Refuges during Streambed Drying? A Manipulative Field Experiment in Nested Hyporheic Flowpaths. Ecohydrology, 10(6): e1865. https://doi.org/10.1002/eco.1865
      Marsili, E., Baron, D. B., Shikhare, I. D., et al., 2008. Shewanella Secretes Flavins That Mediate Extracellular Electron Transfer. Proceedings of the National Academy of Sciences of the United States of America, 105(10): 3968-3973. https://doi.org/10.1073/pnas.0710525105
      Melton, E. D., Swanner, E. D., Behrens, S., et al., 2014. The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle. Nature Reviews Microbiology, 12(12): 797-808. https://doi.org/10.1038/nrmicro3347
      Mendoza-Sanchez, I., Phanikumar, M. S., Niu, J., et al., 2013. Quantifying Wetland-Aquifer Interactions in a Humid Subtropical Climate Region: An Integrated Approach. Journal of Hydrology, 498: 237-253. https://doi.org/10.1016/j.jhydrol.2013.06.022
      Sackett, J. D., Shope, C. L., Bruckner, J. C., et al., 2019. Microbial Community Structure and Metabolic Potential of the Hyporheic Zone of a Large Mid-Stream Channel Bar. Geomicrobiology Journal, 36(9): 765-776. https://doi.org/10.1080/01490451.2019.1621964
      Stegen, J. C., Johnson, T., Fredrickson, J. K., et al., 2018. Influences of Organic Carbon Speciation on Hyporheic Corridor Biogeochemistry and Microbial Ecology. Nature Communications, 9(1): 585. https://doi.org/10.1038/s41467-018-02922-9
      Su, X. S., Shi, Y. K., Dong, W. H., et al., 2019. Review on Biogeochemical Characteristics of Hyporheic Zone. Journal of Earth Sciences and Environment, 41(3): 337-351(in Chinese with English abstract).
      Wang, K., Jia, R., Li, L. N., et al., 2020. Community Structure of Anaeromyxobacter in Fe(Ⅲ) Reducing Enriched Cultures of Paddy Soils. Journal of Soils and Sediments, 20(3): 1621-1631. https://doi.org/10.1007/s11368-019-02529-7
      Wu, X. C., 2022. Iron-Phosphorus Interaction Mechanism in Groundwater-Lake Interaction Zone of East Dongting Lake (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zhu, Z. C., Liu, H., Mao, S. J., et al., 2023. Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors. Earth Science, 48(10): 3832-3843(in Chinese with English abstract).
      曹意茹, 李民敬, 毛胜军, 等, 2021. 汉江下游河水-地下水交互带中地下水水化学和氮分布特征. 地球与环境, 49(5): 463-471.
      郭伟强, 宋进喜, 刘琪, 等, 2018. 潏河冬季潜流带水交换对沉积物间隙水水质的影响. 环境科学学报, 38(5): 1957-1967.
      蓝坤, 梁杏, 李静, 2020. 江汉平原汉江带地下水水化学特征分析. 安全与环境工程, 27(5): 1-9, 16.
      马奥兰, 刘慧, 毛胜军, 等, 2022. 汉江下游河水-地下水侧向交互带中溶解态锰的分布特征. 地球科学, 47(2): 729-741. doi: 10.3799/dqkx.2021.038
      马腾, 沈帅, 邓娅敏, 等, 2020. 流域地球关键带调查理论方法: 以长江中游江汉平原为例. 地球科学, 45(12): 4498-4511. doi: 10.3799/dqkx.2020.274
      马雍基, 任国平, 仇英儒, 等, 2022. 地杆菌生物膜表面拖曳生电效应及其传感应用. 中国科学: 技术科学, 52(11): 1669-1678.
      苏小四, 师亚坤, 董维红, 等, 2019. 潜流带生物地球化学特征研究进展. 地球科学与环境学报, 41(3): 337-351.
      武显仓, 2022. 东洞庭湖地下水—湖水交互带中铁-磷相互作用机制(博士学位论文). 武汉: 中国地质大学.
      朱子超, 刘慧, 毛胜军, 等, 2023. 河水-地下水侧向交互带微生物群落分布特征及其主控因子. 地球科学, 48(10): 3832-3843. doi: 10.3799/dqkx.2021.217
    • 加载中
    图(5) / 表(1)
    计量
    • 文章访问数:  86
    • HTML全文浏览量:  62
    • PDF下载量:  13
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-01-02
    • 网络出版日期:  2025-05-10
    • 刊出日期:  2025-04-25

    目录

      /

      返回文章
      返回