Microbial Indicator of Iron Cycling in Riverwater-Groundwater Interaction Zone - FMN Reductase Gene
-
摘要: 黄素类还原酶(FMN还原酶)是微生物分泌电子穿梭体引导铁氧化还原的重要酶.为探讨FMN还原酶基因作为铁循环微生物指示物的可行性,以汉江下游河水-地下水交互带为研究区,研究了3个不同特点的河水-地下水交互带剖面沉积物中不同价态Fe浓度、代表性铁循环微生物和FMN还原酶基因相对丰度的分布相关性.结果表明:(1)在离河较近的地下水位以下区域聚积Fe(Ⅱ),而Fe(Ⅲ)主要聚集在地下水位线上或离河较远的区域;(2)铁循环微生物和FMN还原酶主要分布在近河岸地下水位线下的区域或水位线的周围,不同的铁循环微生物聚集的区域不同;(3)铁循环微生物总丰度ICB与FMN还原酶基因呈现出极显著的正相关.该研究结果表明FMN还原酶基因可以作为交互带铁循环的微生物指示物.Abstract: Flavin mononucleotide (FMN) reductases are important enzymes secreted by microorganisms to facilitate iron oxidation and reduction through electron transfer. In order to explore the feasibility of using FMN reductase genes as indicators of iron cycling microbes, in this study it focused on the interaction zone at the lower reaches of Han River as the research area. In the study it investigated the distributional correlations of different forms Fe, representative iron-cycling microorganisms, and the relative abundance of FMN reductase genes in sediments from three differently characterized riverwater-groundwater interaction zone profiles. The results indicate that (1) Fe(Ⅱ) accumulates in the area below the water table closer to the river, while Fe(Ⅲ) mainly accumulates in the area at the water table line or farther away from the river; (2) iron cycling microbes and FMN reductases were mainly distributed in the areas below the groundwater level close to the river bank or around the water level, with different areas of aggregation for different iron cycling bacteria; (3) there was a significant positive correlation between the total abundance of iron cycling microbes and FMN reductase genes. These findings validate the feasibility of using FMN reductase genes as indicators of iron cycling microbes.
-
Key words:
- interactive zone /
- different forms of iron /
- iron cycling microorganism /
- FMN reductase /
- hydrogeology /
- geochemistry
-
表 1 相关功能基因引物条件
Table 1. Primers of related functional genes
基因 (英文名) 引物 碱基组成(5’-3’) 退火温度(℃) 引物浓度
(nmol/L)16S rRNA F CCTACGGGAGGCAGCAG 59 250 R TTACCGCGGCTGCTGGCAC 红育菌属 Rhodoferax spp. F CGATTGGAGCGGCCGATAT 57 750 R CCAGTTGACATCGTTTAGGG 地杆菌科 Geobacteraceae spp. F AAGCGTTGTTCGGAWTTAT
GGCACTGCAGGGGTCAATA57 750 R GGTATGGCTGGATCAGGC 厌氧粘细菌 Anaeromyxobacter spp. F GCAACGCCGCGTGTGT 57 750 R TCCCTCGCGACAGTGCTT 披毛菌属 Gallionella spp. F ATATCGGAACATATCCGGAAGT 57 750 R GGTATGGCTGGATCAGGC FMN还原酶 FMN Reductase F CGCACGACATCACGAACA 57 500 R GCATGCAGGTAGGCGAACA -
Brutinel, E. D., Gralnick, J. A., 2012. Shuttling Happens: Soluble Flavin Mediators of Extracellular Electron Transfer in Shewanella. Applied Microbiology and Biotechnology, 93(1): 41-48. https://doi.org/10.1007/s00253-011-3653-0 Cao, Y. R., Li, M. J., Mao, S. J., et al., 2021. Distribution of Nitrogen and Water Chemistry in River-Groundwater Interaction Zone in the Lower Reaches of Han River. Earth and Environment, 49(5): 463-471(in Chinese with English abstract). Eggerichs, T., Opel, O., Otte, T., et al., 2014. Interdependencies between Biotic and Abiotic Ferrous Iron Oxidation and Influence of pH, Oxygen and Ferric Iron Deposits. Geomicrobiology Journal, 31(6): 461-472. https://doi.org/10.1080/01490451.2013.870620 Engelhardt, I., Barth, J. A. C., Bol, R., et al., 2014. Quantification of Long-Term Wastewater Fluxes at the Surface Water/Groundwater-Interface: An Integrative Model Perspective Using Stable Isotopes and Acesulfame. Science of the Total Environment, 466: 16-25. https://doi.org/10.1016/j.scitotenv.2013.06.092 Gandy, C. J., Smith, J. W. N., Jarvis, A. P., 2007. Attenuation of Mining-Derived Pollutants in the Hyporheic Zone: A Review. Science of the Total Environment, 373(2/3): 435-446. https://doi.org/10.1016/j.scitotenv.2006.11.004 Guo, W. Q., Song, J. X., Liu, Q., et al., 2018. Influence of Hyporheic Water Exchange on Quality of Sediment Pore Water for the Juehe River in Winter. Acta Scientiae Circumstantiae, 38(5): 1957-1967(in Chinese with English abstract). Harvey, J. W., Fuller, C. C., 1998. Effect of Enhanced Manganese Oxidation in the Hyporheic Zone on Basin-Scale Geochemical Mass Balance. Water Resources Research, 34(4): 623-636. https://doi.org/10.1029/97wr03606 Hlavica, P., 2015. Mechanistic Basis of Electron Transfer to Cytochromes P450 by Natural Redox Partners and Artificial Donor Constructs. Advances in Experimental Medicine and Biology, 851: 247-297. https://doi.org/10.1007/978-3-319-16009-2_10 Hou, Q. X., Zhang, Q., Huang, G. X., et al., 2020. Elevated Manganese Concentrations in Shallow Groundwater of Various Aquifers in a Rapidly Urbanized Delta, South China. Science of the Total Environment, 701: 134777. https://doi.org/10.1016/j.scitotenv.2019.134777 Kasahara, T., Hill, A. R., 2007. Lateral Hyporheic Zone Chemistry in an Artificially Constructed Gravel Bar and a Re-Meandered Stream Channel, Southern Ontario, Canada. JAWRA Journal of the American Water Resources Association, 43(5): 1257-1269. https://doi.org/10.1111/j.1752-1688.2007.00108.x Kato, S., Ohkuma, M., 2021. A Single Bacterium Capable of Oxidation and Reduction of Iron at Circumneutral pH. Microbiology Spectrum, 9(1): e0016121. https://doi.org/10.1128/Spectrum.00161-21 Krause, S., Hannah, D. M., Fleckenstein, J. H., et al., 2011. Inter-Disciplinary Perspectives on Processes in the Hyporheic Zone. Ecohydrology, 4(4): 481-499. https://doi.org/10.1002/eco.176 Lan, K., Liang, X., Li, J., 2020. Hydrochemical Characteristics of Groundwater of the Hanjiang Zone in the Jianghan Plain. Safety and Environmental Engineering, 27(5): 1-9, 16(in Chinese with English abstract). Lee, J. H., Fredrickson, J. K., Kukkadapu, R. K., et al., 2012. Microbial Reductive Transformation of Phyllosilicate Fe(Ⅲ) and U(Ⅵ) in Fluvial Subsurface Sediments. Environmental Science & Technology, 46(7): 3721-3730. https://doi.org/10.1021/es204528m Li, Y. C., Yu, S., Strong, J., et al., 2012. Are the Biogeochemical Cycles of Carbon, Nitrogen, Sulfur, and Phosphorus Driven by the "FeⅢ-FeⅡ Redox Wheel" in Dynamic Redox Environments? Journal of Soils and Sediments, 12(5): 683-693. https://doi.org/10.1007/s11368-012-0507-z Li, Y. M., Wen, Z., Schneidewind, U., et al., 2023. Effects of a Large-Scale Dam Structure on Upstream and Downstream Lateral Hyporheic Exchange and Residence Time Distributions: The Xinglong Water Conservancy Dam, China. Journal of Hydrology, 625: 130073. https://doi.org/10.1016/j.jhydrol.2023.130073 Liu, S. N., Chui, T. F. M., 2019. Numerical Modelling to Evaluate the Nitrogen Removal Rate in Hyporheic Zone and Its Implications for Stream Management. Hydrological Processes, 33(24): 3084-3097. https://doi.org/10.1002/hyp.13548 Lu, Y. X., Zhang, P., Liu, H., et al., 2022. Effect of Dam on Iron Species Distribution and Transformation in Riparian Zones. Journal of Hydrology, 610: 127869. https://doi.org/10.1016/j.jhydrol.2022.127869 Lueder, U., Maisch, M., Laufer, K., et al., 2020. Influence of Physical Perturbation on Fe(Ⅱ) Supply in Coastal Marine Sediments. Environmental Science & Technology, 54(6): 3209-3218. https://doi.org/10.1021/acs.est.9b06278 Ma, A. L., Huang, Y., Mao, S. J., et al., 2023. "Mn(Ⅱ) Curtain" in the Riparian Sediment at the Lower Reaches of the Hanjiang River, China. Journal of Hydrology, 625: 130047. https://doi.org/10.1016/j.jhydrol.2023.130047 Ma, A. L., Liu, H., Mao, S. J., et al., 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741(in Chinese with English abstract). Ma, T., Shen, S., Deng, Y. M., et al., 2020. Theoretical Approaches of Survey on Earth's Critical Zone in Basin: An Example from Jianghan Plain, Central Yangtze River. Earth Science, 45(12): 4498-4511(in Chinese with English abstract). Ma, Y. J., Ren, G. P., Qiu, Y. R., et al., 2022. Electricity Generation from Geobacter Sulfurreducens Biofilm and Its Sensing Application. Scientia Sinica (Technologica), 52(11): 1669-1678(in Chinese). doi: 10.1360/SST-2022-0062 Maazouzi, C., Galassi, D., Claret, C., et al., 2017. Do Benthic Invertebrates Use Hyporheic Refuges during Streambed Drying? A Manipulative Field Experiment in Nested Hyporheic Flowpaths. Ecohydrology, 10(6): e1865. https://doi.org/10.1002/eco.1865 Marsili, E., Baron, D. B., Shikhare, I. D., et al., 2008. Shewanella Secretes Flavins That Mediate Extracellular Electron Transfer. Proceedings of the National Academy of Sciences of the United States of America, 105(10): 3968-3973. https://doi.org/10.1073/pnas.0710525105 Melton, E. D., Swanner, E. D., Behrens, S., et al., 2014. The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle. Nature Reviews Microbiology, 12(12): 797-808. https://doi.org/10.1038/nrmicro3347 Mendoza-Sanchez, I., Phanikumar, M. S., Niu, J., et al., 2013. Quantifying Wetland-Aquifer Interactions in a Humid Subtropical Climate Region: An Integrated Approach. Journal of Hydrology, 498: 237-253. https://doi.org/10.1016/j.jhydrol.2013.06.022 Sackett, J. D., Shope, C. L., Bruckner, J. C., et al., 2019. Microbial Community Structure and Metabolic Potential of the Hyporheic Zone of a Large Mid-Stream Channel Bar. Geomicrobiology Journal, 36(9): 765-776. https://doi.org/10.1080/01490451.2019.1621964 Stegen, J. C., Johnson, T., Fredrickson, J. K., et al., 2018. Influences of Organic Carbon Speciation on Hyporheic Corridor Biogeochemistry and Microbial Ecology. Nature Communications, 9(1): 585. https://doi.org/10.1038/s41467-018-02922-9 Su, X. S., Shi, Y. K., Dong, W. H., et al., 2019. Review on Biogeochemical Characteristics of Hyporheic Zone. Journal of Earth Sciences and Environment, 41(3): 337-351(in Chinese with English abstract). Wang, K., Jia, R., Li, L. N., et al., 2020. Community Structure of Anaeromyxobacter in Fe(Ⅲ) Reducing Enriched Cultures of Paddy Soils. Journal of Soils and Sediments, 20(3): 1621-1631. https://doi.org/10.1007/s11368-019-02529-7 Wu, X. C., 2022. Iron-Phosphorus Interaction Mechanism in Groundwater-Lake Interaction Zone of East Dongting Lake (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). Zhu, Z. C., Liu, H., Mao, S. J., et al., 2023. Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors. Earth Science, 48(10): 3832-3843(in Chinese with English abstract). 曹意茹, 李民敬, 毛胜军, 等, 2021. 汉江下游河水-地下水交互带中地下水水化学和氮分布特征. 地球与环境, 49(5): 463-471. 郭伟强, 宋进喜, 刘琪, 等, 2018. 潏河冬季潜流带水交换对沉积物间隙水水质的影响. 环境科学学报, 38(5): 1957-1967. 蓝坤, 梁杏, 李静, 2020. 江汉平原汉江带地下水水化学特征分析. 安全与环境工程, 27(5): 1-9, 16. 马奥兰, 刘慧, 毛胜军, 等, 2022. 汉江下游河水-地下水侧向交互带中溶解态锰的分布特征. 地球科学, 47(2): 729-741. doi: 10.3799/dqkx.2021.038 马腾, 沈帅, 邓娅敏, 等, 2020. 流域地球关键带调查理论方法: 以长江中游江汉平原为例. 地球科学, 45(12): 4498-4511. doi: 10.3799/dqkx.2020.274 马雍基, 任国平, 仇英儒, 等, 2022. 地杆菌生物膜表面拖曳生电效应及其传感应用. 中国科学: 技术科学, 52(11): 1669-1678. 苏小四, 师亚坤, 董维红, 等, 2019. 潜流带生物地球化学特征研究进展. 地球科学与环境学报, 41(3): 337-351. 武显仓, 2022. 东洞庭湖地下水—湖水交互带中铁-磷相互作用机制(博士学位论文). 武汉: 中国地质大学. 朱子超, 刘慧, 毛胜军, 等, 2023. 河水-地下水侧向交互带微生物群落分布特征及其主控因子. 地球科学, 48(10): 3832-3843. doi: 10.3799/dqkx.2021.217 -