• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    现代北太平洋中层水研究进展综述

    刘辉 宫勋

    刘辉, 宫勋, 2024. 现代北太平洋中层水研究进展综述. 地球科学, 49(8): 2914-2924. doi: 10.3799/dqkx.2024.036
    引用本文: 刘辉, 宫勋, 2024. 现代北太平洋中层水研究进展综述. 地球科学, 49(8): 2914-2924. doi: 10.3799/dqkx.2024.036
    Liu Hui, Gong Xun, 2024. Revisiting North Pacific Intermediate Water in the Modern Ocean. Earth Science, 49(8): 2914-2924. doi: 10.3799/dqkx.2024.036
    Citation: Liu Hui, Gong Xun, 2024. Revisiting North Pacific Intermediate Water in the Modern Ocean. Earth Science, 49(8): 2914-2924. doi: 10.3799/dqkx.2024.036

    现代北太平洋中层水研究进展综述

    doi: 10.3799/dqkx.2024.036
    基金项目: 

    国家重点研发计划 2019YFE0125000

    国家自然科学基金 42376032

    生物地质与环境地质国家重点实验室基金 GKZ22Y656

    济南市“新高校20条”资助项目-引进创新团队基金 202228034

    详细信息
      作者简介:

      刘辉(1996-),男,博士研究生,从事统计算法工作. ORCID:0009-0006-7522-2734. E-mail:l1uhui@cug.edu.cn

      通讯作者:

      宫勋,ORCID: 0000-0001-9308-4431. E-mail: gongxun@cug.edu.cn

    • 中图分类号: P731

    Revisiting North Pacific Intermediate Water in the Modern Ocean

    • 摘要: 北太平洋中层水是北太平洋最大的原生水体,是目前发现的北太平洋表层与底层水发生交换的唯一通道,因此认识北太平洋中层水生成和传输过程是理解北太平洋垂向水交换及其环流结构的必要一环. 同时,北太平洋中层水的水体特征和环流结构在“海-气-冰”耦合系统内显著影响全球碳循环系统和海洋生态系统,进而可能改变全球气候变暖进程. 围绕北太平洋中层水的物理海洋学研究主要从20世纪70年代开始,已有研究多依赖走航断面和站点数据,少部分结合数值模拟方法. 本文对已有的北太平洋中层水研究工作进行了综述,进而提出继续深化对北太平洋中层水的研究包括如下几个方面:北太平洋中层环流系统趋势和“季节性-年际-年代际”振荡的特征识别;北太平洋中层环流系统对大气环流和上层海洋过程的响应机制研究;北太平洋中层环流系统稳定性及对气候变暖的反馈机制研究.

       

    • 图  1  NPIW的核心密度(虚线)和核心盐度(实线)的范围(基于ARGO气候态数据)

      a. 160ºE盐度断面;b. 30ºN盐度断面;c. 160ºE位势温度断面;d. 30ºN位势温度断面;e. 160ºE位势密度断面;f. 30ºN位势密度断面. 其中实线为NPIW的核心盐度,虚线为NPIW的核心密度;据Roemmich and Gilson(2009)

      Fig.  1.  The core ranges of density(solid) and salinity(dashed) for NPIW (based on ARGO climatic mean data)

      图  2  已有研究对NPIW的密度和盐度的定义范围

      其中灰色粗线为本文定义的NPIW核心密度范围和盐度范围

      Fig.  2.  The ranges of density and salinity for NPIW defined by previous studies

      图  3  已有对NPIW的研究主要选取的航次断面或研究区域

      a. 已有对NPIW的研究主要选取的航次断面(实线)或研究区域(虚线)的所在位置;b. 已有NPIW的研究主要使用数据的季节(气候态平均:黑色;春季:绿色;夏季:红色;秋季:橙色;冬季:蓝色)

      Fig.  3.  Cruise sections or survey regions (dashed) for NPIW used in previous studies

      图  4  北太平洋中层环流系统及NPIW生成区域示意图

      Fig.  4.  Schematic diagram of the mesopelagic oceanic circulation in the North Pacific and the source formation regions of NPIW

    • Alexander, M. A., Bladé, I., Newman, M., et al., 2002. The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air-Sea Interaction over the Global Oceans. Journal of Climate, 15(16): 2205-2231. https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2 doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
      Andreev, A. G., Kusakabe, M., 2001. Interdecadal Variability in Dissolved Oxygen in the Intermediate Water Layer of the Western Subarctic Gyre and Kuril Basin (Okhotsk Sea). Geophysical Research Letters, 28(12): 2453-2456. https://doi.org/10.1029/2000GL012688
      Auad, G., Kennett, J. P., Miller, A. J., 2003. North Pacific Intermediate Water Response to a Modern Climate Warming Shift. Journal of Geophysical Research: Oceans, 108(C11): 3349-3362. https://doi.org/10.1029/2003JC001987
      Bingham, F. M., Lukas, R., 1994. The Southward Intrusion of North Pacific Intermediate Water along the Mindanao Coast. Journal of Physical Oceanography, 24(1): 141-154. https://doi.org/10.1175/1520-0485(1994)024<0141:TSIONP>2.0.CO;2 doi: 10.1175/1520-0485(1994)024<0141:TSIONP>2.0.CO;2
      Bostock, H. C., Opdyke, B. N., Williams, M. J. M., 2010. Characterising the Intermediate Depth Waters of the Pacific Ocean Using δ13C and Other Geochemical Tracers. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 57(7): 847-859. https://doi.org/10.1016/j.dsr.2010.04.005
      Busecke, J. J. M., Resplandy, L., Ditkovsky, S. J., et al., 2022. Diverging Fates of the Pacific Ocean Oxygen Minimum Zone and Its Core in a Warming World. AGU Advances, 3(6): e2021AV000470. https://doi.org/10.1029/2021AV000470
      Caesar, L., Rahmstorf, S., Robinson, A., et al., 2018. Observed Fingerprint of a Weakening Atlantic Ocean Overturning Circulation. Nature, 556(7700): 191-196. https://doi.org/10.1038/s41586-018-0006-5
      Davis, C. V., Sibert, E. C., Jacobs, P. H., et al., 2023. Intermediate Water Circulation Drives Distribution of Pliocene Oxygen Minimum Zones. Nature Communications, 14(1): 40-50. https://doi.org/10.1038/s41467-022-35083-x
      de Boyer Montégut, C., Madec, G., Fischer, A. S., et al., 2004. Mixed Layer Depth over the Global Ocean: An Examination of Profile Data and a Profile-Based Climatology. Journal of Geophysical Research: Oceans, 109(C12): C12003. https://doi.org/10.1029/2004JC002378
      Di Lorenzo, E., Xu, T., Zhao, Y., et al., 2023. Modes and Mechanisms of Pacific Decadal-Scale Variability. Annual Review of Marine Science, 15(1): 249-275. https://doi.org/10.1146/annurev-marine-040422-084555
      Ditlevsen, P., Ditlevsen, S., 2023. Warning of a Forthcoming Collapse of the Atlantic Meridional Overturning Circulation. Nature Communications, 14(1): 4254-4266. https://doi.org/10.1038/s41467-023-39810-w
      Dugdale, R. C., Wilkerson, F. P., Minas, H. J., 1995. The Role of a Silicate Pump in Driving New Production. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 42(5): 697-719. https://doi.org/10.1016/0967-0637(95)00015-X
      Dugdale, R. C., Wischmeyer, A. G., Wilkerson, F. P., et al., 2002. Meridional Asymmetry of Source Nutrients to the Equatorial Pacific Upwelling Ecosystem and Its Potential Impact on Ocean-Atmosphere CO2Flux; a Data and Modeling Approach. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 49(13): 2513-2531. https://doi.org/10.1016/S0967-0645(02)00046-2
      Emerson, S., Watanabe, Y. W., Ono, T., et al., 2004. Temporal Trends in Apparent Oxygen Utilization in the Upper Pycnocline of the North Pacific: 1980-2000. Journal of Oceanography, 60(1): 139-147. https://doi.org/10.1023/B:JOCE.0000038323.62130.a0
      Fujii, Y., Nakano, T., Usui, N., et al., 2013. Pathways of the North Pacific Intermediate Water Identified Through the Tangent Linear and Adjoint Models of an Ocean General Circulation Model. Journal of Geophysical Research: Oceans, 118(4): 2035-2051. https://doi.org/10.1002/jgrc.20094
      Galbraith, E. D., Jaccard, S. L., Pedersen, T. F., et al., 2007. Carbon Dioxide Release from the North Pacific Abyss during the Last Deglaciation. Nature, 449(7164): 890-893. https://doi.org/10.1038/nature06227
      Gladyshev, S., Talley, L., Kantakov, G., et al., 2003. Distribution, Formation, and Seasonal Variability of Okhotsk Sea Mode Water. Journal of Geophysical Research: Oceans, 108(C6): 3186-3203. https://doi.org/10.1029/2001JC000877
      Gong, X., Lembke-Jene, L., Lohmann, G., et al., 2019. Enhanced North Pacific Deep-Ocean Stratification by Stronger Intermediate Water Formation during Heinrich Stadial 1. Nature Communications, 10(1): 656-664. https://doi.org/10.1038/s41467-019-08606-2
      Hill, K. L., Weaver, A. J., Freeland, H. J., et al., 2003. Evidence of Change in the Sea of Okhotsk: Implications for the North Pacific. Atmosphere-Ocean, 41(1): 49-63. https://doi.org/10.3137/ao.410104
      Holte, J., Talley, L. D., Gilson, J., et al., 2017. An Argo Mixed Layer Climatology and Database. Geophysical Research Letters, 44(11): 5618-5626. https://doi.org/10.1002/2017GL073426
      Itoh, M., Ohshima, K. I., Wakatsuchi, M., 2003. Distribution and Formation of Okhotsk Sea Intermediate Water: An Analysis of Isopycnal Climatological Data. Journal of Geophysical Research: Oceans, 108(C8): 3258-3272. https://doi.org/10.1029/2002JC001590
      Joh, Y., Delworth, T. L., Wittenberg, A. T., et al., 2023. The Role of Upper-Ocean Variations of the Kuroshio-Oyashio Extension in Seasonal-to-Decadal Air-Sea Heat Flux Variability. npj Climate and Atmospheric Science, 6(1): 1-11. https://doi.org/10.1038/s41612-023-00453-9
      Katsumata, K., Ohshima, K., Kono, T., et al., 2004. Water Exchange and Tidal Currents through the Bussol' Strait Revealed by Direct Current Measurements. Journal of Geophysical Research: Oceans, 109(C9): C09S06. https://doi.org/10.1029/2003JC001864
      Kawabe, M., Fujio, S., 2010. Pacific Ocean Circulation Based on Observation. Journal of Oceanography, 66(3): 389-403. https://doi.org/10.1007/s10872-010-0034-8
      Kobayashi, T., 1999. Study of the Formation of North Pacific Intermediate Water by a General Circulation Model and the Particle-Tracking Method: 1. A Pitfall of General Circulation Model Studies. Journal of Geophysical Research: Oceans, 104(C3): 5423-5439. https://doi.org/10.1029/1998JC900084
      Kobayashi, T., 2000. Study of the Formation of North Pacific Intermediate Water by a General Circulation Model and the Particle-Tracking Method: 2. Formation Mechanism of Salinity Minimum from the View of the "Critical Gradient" of the Oyashio Mixing Ratio. Journal of Geophysical Research: Oceans, 105(C1): 1055-1069. https://doi.org/10.1029/1999JC900261
      Kouketsu, S., Fukasawa, M., Sasano, D., et al., 2010. Changes in Water Properties around North Pacific Intermediate Water between the 1980s, 1990s and 2000s. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 57(13): 1177-1187. https://doi.org/10.1016/j.dsr2.2009.12.007
      Kouketsu, S., Kaneko, I., Kawano, T., et al., 2007. Changes of North Pacific Intermediate Water Properties in the Subtropical Gyre. Geophysical Research Letters, 34(2): L02605. https://doi.org/10.1029/2006GL028499
      Kwon, E. Y., Deutsch, C., Xie, S. P., et al., 2016. The North Pacific Oxygen Uptake Rates over the Past Half Century. Journal of Climate, 29(1): 61-76. https://doi.org/10.1175/JCLI-D-14-00157.1
      Lan, J., Zhang, N., Wang, C., 2012. The Destiny of the North Pacific Intermediate Water in the South China Sea. Acta Oceanologica Sinica, 31(5): 41-45. https://doi.org/10.1007/s13131-012-0234-8
      Lembke-Jene, L., Tiedemann, R., Nürnberg, D., et al., 2018. Rapid Shift and Millennial-Scale Variations in Holocene North Pacific Intermediate Water Ventilation. Proceedings of the National Academy of Sciences, 115(21): 5365-5370. https://doi.org/10.1073/pnas.1714754115
      Levin, L. A., Bris, N. L., 2015. The Deep Ocean Under Climate Change. Science, 350(6262): 766-768. https://doi.org/10.1126/science.aad0126
      Li, C., Zhang, Z., Zhao, W., et al., 2017. A Statistical Study on the Subthermocline Submesoscale Eddies in the Northwestern Pacific Ocean Based on Argo Data. Journal of Geophysical Research: Oceans, 122(5): 3586-3598. https://doi.org/10.1002/2016JC012561
      Li, X., Yang, Y., Li, R., et al., 2020. Structure and Dynamics of the Pacific North Equatorial Subsurface Current. Scientific Reports, 10(1): 11758-11767. https://doi.org/10.1038/s41598-020-68605-y
      Li, Z., England, M. H., Groeskamp, S., 2023. Recent Acceleration in Global Ocean Heat Accumulation by Mode and Intermediate Waters. Nature Communications, 14(1): 6888-6901. https://doi.org/10.1038/s41467-023-42468-z
      Liao, F., Hoteit, I., 2022. A Comparative Study of the Argo-Era Ocean Heat Content Among Four Different Types of Data Sets. Earths Future, 10(9): e2021EF002532. https://doi.org/10.1029/2021EF002532
      Masujima, M., Yasuda, I., 2009. Distribution and Modification of North Pacific Intermediate Water around the Subarctic Frontal Zone East of 150°E. Journal of Physical Oceanography, 39(6): 1462-1474. https://doi.org/10.1175/2008JPO3919.1
      Nakamura, T., Awaji, T., 2004. Tidally Induced Diapycnal Mixing in the Kuril Straits and Its Role in Water Transformation and Transport: A Three-Dimensional Nonhydrostatic Model Experiment. Journal of Geophysical Research: Oceans, 109(C9): C09S07. https://doi.org/10.1029/2003JC001850
      Nakano, T., Kaneko, I., Endoh, M., et al., 2005. Interannual and Decadal Variabilities of NPIW Salinity Minimum Core Observed along JMA's Hydrographic Repeat Sections. Journal of Oceanography, 61(4): 681-697. https://doi.org/10.1007/s10872-005-0076-5
      Nakanowatari, T., Mitsudera, H., Motoi, T., et al., 2015a. Multidecadal-Scale Freshening at the Salinity Minimum in the Western Part of North Pacific: Importance of Wind-Driven Cross-Gyre Transport of Subarctic Water to the Subtropical Gyre. Journal of Physical Oceanography, 45(4): 988-1008. https://doi.org/10.1175/JPO-D-13-0274.1
      Nakanowatari, T., Nakamura, T., Uchimoto, K., et al., 2015b. Causes of the Multidecadal-Scale Warming of the Intermediate Water in the Okhotsk Sea and Western Subarctic North Pacific. Journal of Climate, 28(2): 714-736. https://doi.org/10.1175/JCLI-D-14-00172.1
      Nakanowatari, T., Ohshima, K. I., Wakatsuchi, M., 2007. Warming and Oxygen Decrease of Intermediate Water in the Northwestern North Pacific, originating from the Sea of Okhotsk, 1955-2004. Geophysical Research Letters, 34(4): L04602. https://doi.org/10.1029/2006GL028243
      Nishioka, J., Obata, H., Ogawa, H., et al., 2020. Subpolar Marginal Seas Fuel the North Pacific through the Intermediate Water at the Termination of the Global Ocean Circulation. Proceedings of the National Academy of Sciences, 117(23): 12665-12673. https://doi.org/10.1073/pnas.2000658117
      Parekh, P., Follows, M. J., Dutkiewicz, S., et al., 2006. Physical and Biological Regulation of the Soft Tissue Carbon Pump. Paleoceanography, 21(3): PA3001. https://doi.org/10.1029/2005PA001258
      Qiu, B., 1995. Why Is the Spreading of the North Pacific Intermediate Water Confined on Density Surfaces around σθ = 26.8? Journal of Physical Oceanography, 25(1): 168-180. https://doi.org/10.1175/1520-0485(1995)025<0168:WITSOT>2.0.CO;2 doi: 10.1175/1520-0485(1995)025<0168:WITSOT>2.0.CO;2
      Rae, J. W. B., Sarnthein, M., Foster, G. L., et al., 2014. Deep Water Formation in the North Pacific and Deglacial CO2Rise. Paleoceanography, 29(6): 645-667. https://doi.org/10.1002/2013PA002570
      Roemmich, D., Gilson, J., 2009. The 2004-2008 Mean and Annual Cycle of Temperature, Salinity, and Steric Height in the Global Ocean from the Argo Program. Progress in Oceanography, 82(2): 81-100. https://doi.org/10.1016/j.pocean.2009.03.004
      Sani, I. Y., Atmadipoera, A. S., Purwandana, A., et al., 2021. Transformation and Mixing of North Pacific Water Mass in Sangihe-Talaud in August 2019. IOP Conference Series: Earth and Environmental Science, 944(1): 012053. https://doi.org/10.1088/1755-1315/944/1/012053
      Shcherbina, A. Y., Talley, L. D., Rudnick, D. L., 2003. Direct Observations of North Pacific Ventilation: Brine Rejection in the Okhotsk Sea. Science, 302(5652): 1952-1955. https://doi.org/10.1126/science.1088692
      Shcherbina, A. Y., Talley, L. D., Rudnick, D. L., 2004a. Dense Water Formation on the Northwestern Shelf of the Okhotsk Sea: 1. Direct Observations of Brine Rejection. Journal of Geophysical Research: Oceans, 109(C9): C09S08. https://doi.org/10.1029/2003JC002196
      Shcherbina, A. Y., Talley, L. D., Rudnick, D. L., 2004b. Dense Water Formation on the Northwestern Shelf of the Okhotsk Sea: 2. Quantifying the Transports. Journal of Geophysical Research: Oceans, 109(C9): C09S09. https://doi.org/10.1029/2003JC002197
      Shimizu, Y., Yasuda, I., Ito, S., 2001. Distribution and Circulation of the Coastal Oyashio Intrusion. Journal of Physical Oceanography, 31(6): 1561-1578. https://doi.org/10.1175/1520-0485(2001)031<1561:DACOTC>2.0.CO;2 doi: 10.1175/1520-0485(2001)031<1561:DACOTC>2.0.CO;2
      Sugimoto, S., 2022. Decreasing Wintertime Mixed-Layer Depth in the Northwestern North Pacific Subtropical Gyre. Geophysical Research Letters, 49(2): e2021GL095091. https://doi.org/10.1029/2021GL095091
      Sugimoto, S., Hanawa, K., 2011. Quasi-Decadal Modulations of North Pacific Intermediate Water Area in the Cross Section along the 137°E Meridian: Impact of the Aleutian Low Activity. Journal of Oceanography, 67(4): 519-531. https://doi.org/10.1007/s10872-011-0054-z
      Sun, C., Xu, J., Liu, Z., et al., 2008. Application of Argo Data in the Analysis of Water Masses in the Northwest Pacific Ocean. Marine Science Bulletin, 10(2), 1-13.
      Takano, Y., Ito, T., Deutsch, C., 2018. Projected Centennial Oxygen Trends and Their Attribution to Distinct Ocean Climate Forcings. Global Biogeochemical Cycles, 32(9): 1329-1349. https://doi.org/10.1029/2018GB005939
      Talley, L. D., 1991. An Okhotsk Sea Water Anomaly: Implications for Ventilation in the North Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 38(1): S171-S190. https://doi.org/10.1016/S0198-0149(12)80009-4
      Talley, L. D., 1993. Distribution and Formation of North Pacific Intermediate Water. Journal of Physical Oceanography, 23(3): 517-537.https://doi.org/10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2 doi: 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2
      Talley, L. D., 1997. North Pacific Intermediate Water Transports in the Mixed Water Region. Journal of Physical Oceanography, 27(8): 1795-1803.https://doi.org/10.1175/1520-0485(1997)027<1795:NPIWTI>2.0.CO;2 doi: 10.1175/1520-0485(1997)027<1795:NPIWTI>2.0.CO;2
      Talley, L. D., 1999. Some Aspects of Ocean Heat Transport by the Shallow, Intermediate and Deep Overturning Circulations, In: Mechanisms of Global Climate Change at Millennial Time Scales. American Geophysical Union (AGU), 1-22. https://doi.org/10.1029/GM112p0001
      Talley, L. D., Yun, J. Y., 2001. The Role of Cabbeling and Double Diffusion in Setting the Density of the North Pacific Intermediate Water Salinity Minimum. Journal of Physical Oceanography, 31(6): 1538-1549.https://doi.org/10.1175/1520-0485(2001)031<1538:TROCAD>2.0.CO;2 doi: 10.1175/1520-0485(2001)031<1538:TROCAD>2.0.CO;2
      Tatebe, H., Yasuda, I., 2004. Oyashio Southward Intrusion and Cross-Gyre Transport Related to Diapycnal Upwelling in the Okhotsk Sea. Journal of Physical Oceanography, 34(10): 2327-2341.https://doi.org/10.1175/1520-0485(2004)034<2327:OSIACT>2.0.CO;2 doi: 10.1175/1520-0485(2004)034<2327:OSIACT>2.0.CO;2
      Tsunogai, S., Ono, T., Watanabe, S., 1993. Increase in Total Carbonate in the Western North Pacific Water and a Hypothesis on the Missing Sink of Anthropogenic Carbon. Journal of Oceanography, 49(3): 305-315. https://doi.org/10.1007/BF02269568
      Ueno, H., Yasuda, I., 2003. Intermediate Water Circulation in the North Pacific Subarctic and Northern Subtropical Regions. Journal of Geophysical Research: Oceans, 108(C11): 3348-3359. https://doi.org/10.1029/2002JC001372
      Van Scoy, K. A., Olson, D. B., Fine, R. A., 1991. Ventilation of North Pacific Intermediate Waters: The Role of the Alaskan Gyre. Journal of Geophysical Research: Oceans, 96(C9): 16801-16810. https://doi.org/10.1029/91JC01783
      Whitney, F. A., Freeland, H. J., Robert, M., 2007. Persistently Declining Oxygen Levels in the Interior Waters of the Eastern Subarctic Pacific. Progress in Oceanography, 75(2): 179-199. https://doi.org/10.1016/j.pocean.2007.08.007
      Yang, H., Lohmann, G., Wei, W., et al., 2016. Intensification and Poleward Shift of Subtropical Western Boundary Currents in a Warming Climate. Journal of Geophysical Research: Oceans, 121(7): 4928-4945. https://doi.org/10.1002/2015JC011513
      Yasuda, I., 1997. The Origin of the North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 102(C1): 893-909. https://doi.org/10.1029/96JC02938
      Yasuda, I., 2004. North Pacific Intermediate Water: Progress in SAGE (SubArctic Gyre Experiment) and Related Projects. Journal of Oceanography, 60(2): 385-395. https://doi.org/10.1023/B:JOCE.0000038344.25081.42
      Yasuda, I., Hiroe, Y., Komatsu, K., et al., 2001. Hydrographic Structure and Transport of the Oyashio South of Hokkaido and the Formation of North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 106(C4): 6931-6942. https://doi.org/10.1029/1999JC000154
      Yasuda, I., Kouketsu, S., Katsumata, K., et al., 2002. Influence of Okhotsk Sea Intermediate Water on the Oyashio and North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 107(C12): 3237-3247. https://doi.org/10.1029/2001JC001037
      Yoshinari, H., Yasuda, I., Ito, S., et al., 2001. Meridional Transport of the North Pacific Intermediate Water in the Kuroshio-Oyashio Interfrontal Zone. Geophysical Research Letters, 28(18): 3445-3448. https://doi.org/10.1029/2000GL012690
      You, Y. Z., 2003a. Implications of Cabbeling on the Formation and Transformation Mechanism of North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 108(C5): 3134-3157. https://doi.org/10.1029/2001JC001285
      You, Y. Z., 2003b. The Pathway and Circulation of North Pacific Intermediate Water. Geophysical Research Letters, 30(24): 2291-2294. https://doi.org/10.1029/2003GL018561
      You, Y. Z., 2005. Double-Diffusive Fluxes of Salt and Heat in the Upper Layer of North Pacific Intermediate Water. Journal of Ocean University of China, 4(1): 1-7. https://doi.org/10.1007/s11802-005-0016-4
      You, Y. Z., 2010. Frontal Densification and Displacement: A Scenario of North Pacific Intermediate Water Formation. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 57(13): 1171-1176. https://doi.org/10.1016/j.dsr2.2009.12.006
      You, Y. Z., Suginohara, N., Fukasawa, M., et al., 2000. Roles of the Okhotsk Sea and Gulf of Alaska in Forming the North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 105(C2): 3253-3280. https://doi.org/10.1029/1999JC900304
      Yuan, D. L., Yin, X. L., Li, X., et al., 2022. A Maluku Sea Intermediate Western Boundary Current Connecting Pacific Ocean Circulation to the Indonesian Throughflow. Nature Communications, 13(1): 2093-2100. https://doi.org/10.1038/s41467-022-29617-6
      Zang, N., Wang, F., Sprintall, J., 2020. The Intermediate Water in the Philippine Sea. Journal of Oceanology and Limnology, 38(5): 1343-1353. https://doi.org/10.1007/s00343-020-0035-4
      Zhou, Y. T., Gong, H. J., Zhou, F., 2022. Responses of Horizontally Expanding Oceanic Oxygen Minimum Zones to Climate Change Based on Observations. Geophysical Research Letters, 49(6): e2022GL097724. https://doi.org/10.1029/2022GL097724
    • 加载中
    图(4)
    计量
    • 文章访问数:  1229
    • HTML全文浏览量:  206
    • PDF下载量:  196
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-01-22
    • 刊出日期:  2024-08-25

    目录

      /

      返回文章
      返回