Revisiting North Pacific Intermediate Water in the Modern Ocean
-
摘要: 北太平洋中层水是北太平洋最大的原生水体,是目前发现的北太平洋表层与底层水发生交换的唯一通道,因此认识北太平洋中层水生成和传输过程是理解北太平洋垂向水交换及其环流结构的必要一环. 同时,北太平洋中层水的水体特征和环流结构在“海-气-冰”耦合系统内显著影响全球碳循环系统和海洋生态系统,进而可能改变全球气候变暖进程. 围绕北太平洋中层水的物理海洋学研究主要从20世纪70年代开始,已有研究多依赖走航断面和站点数据,少部分结合数值模拟方法. 本文对已有的北太平洋中层水研究工作进行了综述,进而提出继续深化对北太平洋中层水的研究包括如下几个方面:北太平洋中层环流系统趋势和“季节性-年际-年代际”振荡的特征识别;北太平洋中层环流系统对大气环流和上层海洋过程的响应机制研究;北太平洋中层环流系统稳定性及对气候变暖的反馈机制研究.Abstract: North Pacific Intermediate Water (NPIW) is the largest water mass that originates in the North Pacific Ocean, and the process of NPIW formation acts as the only channel that links surface and the deep water in the North Pacific. Within the atmosphere-ocean coupled system, vertical mixture and ventilation process associated with NPIW circulation plays critical roles in changing marine carbon cycle and marine ecosystem, thus important to understand the global warming and its future projection. Physical oceanographic studies of NPIW have been performed mainly since the 1970s. Most of existing studies about NPIW rely on cruise section and CTD data, in combination of numerical simulation. In this work, we provide a review about the studies about the modern NPIW to constrain the problems and prospects: To characterize a tendency and variability across Seasonal, interannual and decadal time scales in the modern NPIW; To explore physics of NPIW in response to atmosphere and upper ocean processes; To explore stability of NPIW and its feedback to the global warming.
-
图 1 NPIW的核心密度(虚线)和核心盐度(实线)的范围(基于ARGO气候态数据)
a. 160ºE盐度断面;b. 30ºN盐度断面;c. 160ºE位势温度断面;d. 30ºN位势温度断面;e. 160ºE位势密度断面;f. 30ºN位势密度断面. 其中实线为NPIW的核心盐度,虚线为NPIW的核心密度;据Roemmich and Gilson(2009)
Fig. 1. The core ranges of density(solid) and salinity(dashed) for NPIW (based on ARGO climatic mean data)
-
Alexander, M. A., Bladé, I., Newman, M., et al., 2002. The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air-Sea Interaction over the Global Oceans. Journal of Climate, 15(16): 2205-2231. https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2 doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2 Andreev, A. G., Kusakabe, M., 2001. Interdecadal Variability in Dissolved Oxygen in the Intermediate Water Layer of the Western Subarctic Gyre and Kuril Basin (Okhotsk Sea). Geophysical Research Letters, 28(12): 2453-2456. https://doi.org/10.1029/2000GL012688 Auad, G., Kennett, J. P., Miller, A. J., 2003. North Pacific Intermediate Water Response to a Modern Climate Warming Shift. Journal of Geophysical Research: Oceans, 108(C11): 3349-3362. https://doi.org/10.1029/2003JC001987 Bingham, F. M., Lukas, R., 1994. The Southward Intrusion of North Pacific Intermediate Water along the Mindanao Coast. Journal of Physical Oceanography, 24(1): 141-154. https://doi.org/10.1175/1520-0485(1994)024<0141:TSIONP>2.0.CO;2 doi: 10.1175/1520-0485(1994)024<0141:TSIONP>2.0.CO;2 Bostock, H. C., Opdyke, B. N., Williams, M. J. M., 2010. Characterising the Intermediate Depth Waters of the Pacific Ocean Using δ13C and Other Geochemical Tracers. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 57(7): 847-859. https://doi.org/10.1016/j.dsr.2010.04.005 Busecke, J. J. M., Resplandy, L., Ditkovsky, S. J., et al., 2022. Diverging Fates of the Pacific Ocean Oxygen Minimum Zone and Its Core in a Warming World. AGU Advances, 3(6): e2021AV000470. https://doi.org/10.1029/2021AV000470 Caesar, L., Rahmstorf, S., Robinson, A., et al., 2018. Observed Fingerprint of a Weakening Atlantic Ocean Overturning Circulation. Nature, 556(7700): 191-196. https://doi.org/10.1038/s41586-018-0006-5 Davis, C. V., Sibert, E. C., Jacobs, P. H., et al., 2023. Intermediate Water Circulation Drives Distribution of Pliocene Oxygen Minimum Zones. Nature Communications, 14(1): 40-50. https://doi.org/10.1038/s41467-022-35083-x de Boyer Montégut, C., Madec, G., Fischer, A. S., et al., 2004. Mixed Layer Depth over the Global Ocean: An Examination of Profile Data and a Profile-Based Climatology. Journal of Geophysical Research: Oceans, 109(C12): C12003. https://doi.org/10.1029/2004JC002378 Di Lorenzo, E., Xu, T., Zhao, Y., et al., 2023. Modes and Mechanisms of Pacific Decadal-Scale Variability. Annual Review of Marine Science, 15(1): 249-275. https://doi.org/10.1146/annurev-marine-040422-084555 Ditlevsen, P., Ditlevsen, S., 2023. Warning of a Forthcoming Collapse of the Atlantic Meridional Overturning Circulation. Nature Communications, 14(1): 4254-4266. https://doi.org/10.1038/s41467-023-39810-w Dugdale, R. C., Wilkerson, F. P., Minas, H. J., 1995. The Role of a Silicate Pump in Driving New Production. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 42(5): 697-719. https://doi.org/10.1016/0967-0637(95)00015-X Dugdale, R. C., Wischmeyer, A. G., Wilkerson, F. P., et al., 2002. Meridional Asymmetry of Source Nutrients to the Equatorial Pacific Upwelling Ecosystem and Its Potential Impact on Ocean-Atmosphere CO2Flux; a Data and Modeling Approach. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 49(13): 2513-2531. https://doi.org/10.1016/S0967-0645(02)00046-2 Emerson, S., Watanabe, Y. W., Ono, T., et al., 2004. Temporal Trends in Apparent Oxygen Utilization in the Upper Pycnocline of the North Pacific: 1980-2000. Journal of Oceanography, 60(1): 139-147. https://doi.org/10.1023/B:JOCE.0000038323.62130.a0 Fujii, Y., Nakano, T., Usui, N., et al., 2013. Pathways of the North Pacific Intermediate Water Identified Through the Tangent Linear and Adjoint Models of an Ocean General Circulation Model. Journal of Geophysical Research: Oceans, 118(4): 2035-2051. https://doi.org/10.1002/jgrc.20094 Galbraith, E. D., Jaccard, S. L., Pedersen, T. F., et al., 2007. Carbon Dioxide Release from the North Pacific Abyss during the Last Deglaciation. Nature, 449(7164): 890-893. https://doi.org/10.1038/nature06227 Gladyshev, S., Talley, L., Kantakov, G., et al., 2003. Distribution, Formation, and Seasonal Variability of Okhotsk Sea Mode Water. Journal of Geophysical Research: Oceans, 108(C6): 3186-3203. https://doi.org/10.1029/2001JC000877 Gong, X., Lembke-Jene, L., Lohmann, G., et al., 2019. Enhanced North Pacific Deep-Ocean Stratification by Stronger Intermediate Water Formation during Heinrich Stadial 1. Nature Communications, 10(1): 656-664. https://doi.org/10.1038/s41467-019-08606-2 Hill, K. L., Weaver, A. J., Freeland, H. J., et al., 2003. Evidence of Change in the Sea of Okhotsk: Implications for the North Pacific. Atmosphere-Ocean, 41(1): 49-63. https://doi.org/10.3137/ao.410104 Holte, J., Talley, L. D., Gilson, J., et al., 2017. An Argo Mixed Layer Climatology and Database. Geophysical Research Letters, 44(11): 5618-5626. https://doi.org/10.1002/2017GL073426 Itoh, M., Ohshima, K. I., Wakatsuchi, M., 2003. Distribution and Formation of Okhotsk Sea Intermediate Water: An Analysis of Isopycnal Climatological Data. Journal of Geophysical Research: Oceans, 108(C8): 3258-3272. https://doi.org/10.1029/2002JC001590 Joh, Y., Delworth, T. L., Wittenberg, A. T., et al., 2023. The Role of Upper-Ocean Variations of the Kuroshio-Oyashio Extension in Seasonal-to-Decadal Air-Sea Heat Flux Variability. npj Climate and Atmospheric Science, 6(1): 1-11. https://doi.org/10.1038/s41612-023-00453-9 Katsumata, K., Ohshima, K., Kono, T., et al., 2004. Water Exchange and Tidal Currents through the Bussol' Strait Revealed by Direct Current Measurements. Journal of Geophysical Research: Oceans, 109(C9): C09S06. https://doi.org/10.1029/2003JC001864 Kawabe, M., Fujio, S., 2010. Pacific Ocean Circulation Based on Observation. Journal of Oceanography, 66(3): 389-403. https://doi.org/10.1007/s10872-010-0034-8 Kobayashi, T., 1999. Study of the Formation of North Pacific Intermediate Water by a General Circulation Model and the Particle-Tracking Method: 1. A Pitfall of General Circulation Model Studies. Journal of Geophysical Research: Oceans, 104(C3): 5423-5439. https://doi.org/10.1029/1998JC900084 Kobayashi, T., 2000. Study of the Formation of North Pacific Intermediate Water by a General Circulation Model and the Particle-Tracking Method: 2. Formation Mechanism of Salinity Minimum from the View of the "Critical Gradient" of the Oyashio Mixing Ratio. Journal of Geophysical Research: Oceans, 105(C1): 1055-1069. https://doi.org/10.1029/1999JC900261 Kouketsu, S., Fukasawa, M., Sasano, D., et al., 2010. Changes in Water Properties around North Pacific Intermediate Water between the 1980s, 1990s and 2000s. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 57(13): 1177-1187. https://doi.org/10.1016/j.dsr2.2009.12.007 Kouketsu, S., Kaneko, I., Kawano, T., et al., 2007. Changes of North Pacific Intermediate Water Properties in the Subtropical Gyre. Geophysical Research Letters, 34(2): L02605. https://doi.org/10.1029/2006GL028499 Kwon, E. Y., Deutsch, C., Xie, S. P., et al., 2016. The North Pacific Oxygen Uptake Rates over the Past Half Century. Journal of Climate, 29(1): 61-76. https://doi.org/10.1175/JCLI-D-14-00157.1 Lan, J., Zhang, N., Wang, C., 2012. The Destiny of the North Pacific Intermediate Water in the South China Sea. Acta Oceanologica Sinica, 31(5): 41-45. https://doi.org/10.1007/s13131-012-0234-8 Lembke-Jene, L., Tiedemann, R., Nürnberg, D., et al., 2018. Rapid Shift and Millennial-Scale Variations in Holocene North Pacific Intermediate Water Ventilation. Proceedings of the National Academy of Sciences, 115(21): 5365-5370. https://doi.org/10.1073/pnas.1714754115 Levin, L. A., Bris, N. L., 2015. The Deep Ocean Under Climate Change. Science, 350(6262): 766-768. https://doi.org/10.1126/science.aad0126 Li, C., Zhang, Z., Zhao, W., et al., 2017. A Statistical Study on the Subthermocline Submesoscale Eddies in the Northwestern Pacific Ocean Based on Argo Data. Journal of Geophysical Research: Oceans, 122(5): 3586-3598. https://doi.org/10.1002/2016JC012561 Li, X., Yang, Y., Li, R., et al., 2020. Structure and Dynamics of the Pacific North Equatorial Subsurface Current. Scientific Reports, 10(1): 11758-11767. https://doi.org/10.1038/s41598-020-68605-y Li, Z., England, M. H., Groeskamp, S., 2023. Recent Acceleration in Global Ocean Heat Accumulation by Mode and Intermediate Waters. Nature Communications, 14(1): 6888-6901. https://doi.org/10.1038/s41467-023-42468-z Liao, F., Hoteit, I., 2022. A Comparative Study of the Argo-Era Ocean Heat Content Among Four Different Types of Data Sets. Earths Future, 10(9): e2021EF002532. https://doi.org/10.1029/2021EF002532 Masujima, M., Yasuda, I., 2009. Distribution and Modification of North Pacific Intermediate Water around the Subarctic Frontal Zone East of 150°E. Journal of Physical Oceanography, 39(6): 1462-1474. https://doi.org/10.1175/2008JPO3919.1 Nakamura, T., Awaji, T., 2004. Tidally Induced Diapycnal Mixing in the Kuril Straits and Its Role in Water Transformation and Transport: A Three-Dimensional Nonhydrostatic Model Experiment. Journal of Geophysical Research: Oceans, 109(C9): C09S07. https://doi.org/10.1029/2003JC001850 Nakano, T., Kaneko, I., Endoh, M., et al., 2005. Interannual and Decadal Variabilities of NPIW Salinity Minimum Core Observed along JMA's Hydrographic Repeat Sections. Journal of Oceanography, 61(4): 681-697. https://doi.org/10.1007/s10872-005-0076-5 Nakanowatari, T., Mitsudera, H., Motoi, T., et al., 2015a. Multidecadal-Scale Freshening at the Salinity Minimum in the Western Part of North Pacific: Importance of Wind-Driven Cross-Gyre Transport of Subarctic Water to the Subtropical Gyre. Journal of Physical Oceanography, 45(4): 988-1008. https://doi.org/10.1175/JPO-D-13-0274.1 Nakanowatari, T., Nakamura, T., Uchimoto, K., et al., 2015b. Causes of the Multidecadal-Scale Warming of the Intermediate Water in the Okhotsk Sea and Western Subarctic North Pacific. Journal of Climate, 28(2): 714-736. https://doi.org/10.1175/JCLI-D-14-00172.1 Nakanowatari, T., Ohshima, K. I., Wakatsuchi, M., 2007. Warming and Oxygen Decrease of Intermediate Water in the Northwestern North Pacific, originating from the Sea of Okhotsk, 1955-2004. Geophysical Research Letters, 34(4): L04602. https://doi.org/10.1029/2006GL028243 Nishioka, J., Obata, H., Ogawa, H., et al., 2020. Subpolar Marginal Seas Fuel the North Pacific through the Intermediate Water at the Termination of the Global Ocean Circulation. Proceedings of the National Academy of Sciences, 117(23): 12665-12673. https://doi.org/10.1073/pnas.2000658117 Parekh, P., Follows, M. J., Dutkiewicz, S., et al., 2006. Physical and Biological Regulation of the Soft Tissue Carbon Pump. Paleoceanography, 21(3): PA3001. https://doi.org/10.1029/2005PA001258 Qiu, B., 1995. Why Is the Spreading of the North Pacific Intermediate Water Confined on Density Surfaces around σθ = 26.8? Journal of Physical Oceanography, 25(1): 168-180. https://doi.org/10.1175/1520-0485(1995)025<0168:WITSOT>2.0.CO;2 doi: 10.1175/1520-0485(1995)025<0168:WITSOT>2.0.CO;2 Rae, J. W. B., Sarnthein, M., Foster, G. L., et al., 2014. Deep Water Formation in the North Pacific and Deglacial CO2Rise. Paleoceanography, 29(6): 645-667. https://doi.org/10.1002/2013PA002570 Roemmich, D., Gilson, J., 2009. The 2004-2008 Mean and Annual Cycle of Temperature, Salinity, and Steric Height in the Global Ocean from the Argo Program. Progress in Oceanography, 82(2): 81-100. https://doi.org/10.1016/j.pocean.2009.03.004 Sani, I. Y., Atmadipoera, A. S., Purwandana, A., et al., 2021. Transformation and Mixing of North Pacific Water Mass in Sangihe-Talaud in August 2019. IOP Conference Series: Earth and Environmental Science, 944(1): 012053. https://doi.org/10.1088/1755-1315/944/1/012053 Shcherbina, A. Y., Talley, L. D., Rudnick, D. L., 2003. Direct Observations of North Pacific Ventilation: Brine Rejection in the Okhotsk Sea. Science, 302(5652): 1952-1955. https://doi.org/10.1126/science.1088692 Shcherbina, A. Y., Talley, L. D., Rudnick, D. L., 2004a. Dense Water Formation on the Northwestern Shelf of the Okhotsk Sea: 1. Direct Observations of Brine Rejection. Journal of Geophysical Research: Oceans, 109(C9): C09S08. https://doi.org/10.1029/2003JC002196 Shcherbina, A. Y., Talley, L. D., Rudnick, D. L., 2004b. Dense Water Formation on the Northwestern Shelf of the Okhotsk Sea: 2. Quantifying the Transports. Journal of Geophysical Research: Oceans, 109(C9): C09S09. https://doi.org/10.1029/2003JC002197 Shimizu, Y., Yasuda, I., Ito, S., 2001. Distribution and Circulation of the Coastal Oyashio Intrusion. Journal of Physical Oceanography, 31(6): 1561-1578. https://doi.org/10.1175/1520-0485(2001)031<1561:DACOTC>2.0.CO;2 doi: 10.1175/1520-0485(2001)031<1561:DACOTC>2.0.CO;2 Sugimoto, S., 2022. Decreasing Wintertime Mixed-Layer Depth in the Northwestern North Pacific Subtropical Gyre. Geophysical Research Letters, 49(2): e2021GL095091. https://doi.org/10.1029/2021GL095091 Sugimoto, S., Hanawa, K., 2011. Quasi-Decadal Modulations of North Pacific Intermediate Water Area in the Cross Section along the 137°E Meridian: Impact of the Aleutian Low Activity. Journal of Oceanography, 67(4): 519-531. https://doi.org/10.1007/s10872-011-0054-z Sun, C., Xu, J., Liu, Z., et al., 2008. Application of Argo Data in the Analysis of Water Masses in the Northwest Pacific Ocean. Marine Science Bulletin, 10(2), 1-13. Takano, Y., Ito, T., Deutsch, C., 2018. Projected Centennial Oxygen Trends and Their Attribution to Distinct Ocean Climate Forcings. Global Biogeochemical Cycles, 32(9): 1329-1349. https://doi.org/10.1029/2018GB005939 Talley, L. D., 1991. An Okhotsk Sea Water Anomaly: Implications for Ventilation in the North Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 38(1): S171-S190. https://doi.org/10.1016/S0198-0149(12)80009-4 Talley, L. D., 1993. Distribution and Formation of North Pacific Intermediate Water. Journal of Physical Oceanography, 23(3): 517-537.https://doi.org/10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2 doi: 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2 Talley, L. D., 1997. North Pacific Intermediate Water Transports in the Mixed Water Region. Journal of Physical Oceanography, 27(8): 1795-1803.https://doi.org/10.1175/1520-0485(1997)027<1795:NPIWTI>2.0.CO;2 doi: 10.1175/1520-0485(1997)027<1795:NPIWTI>2.0.CO;2 Talley, L. D., 1999. Some Aspects of Ocean Heat Transport by the Shallow, Intermediate and Deep Overturning Circulations, In: Mechanisms of Global Climate Change at Millennial Time Scales. American Geophysical Union (AGU), 1-22. https://doi.org/10.1029/GM112p0001 Talley, L. D., Yun, J. Y., 2001. The Role of Cabbeling and Double Diffusion in Setting the Density of the North Pacific Intermediate Water Salinity Minimum. Journal of Physical Oceanography, 31(6): 1538-1549.https://doi.org/10.1175/1520-0485(2001)031<1538:TROCAD>2.0.CO;2 doi: 10.1175/1520-0485(2001)031<1538:TROCAD>2.0.CO;2 Tatebe, H., Yasuda, I., 2004. Oyashio Southward Intrusion and Cross-Gyre Transport Related to Diapycnal Upwelling in the Okhotsk Sea. Journal of Physical Oceanography, 34(10): 2327-2341.https://doi.org/10.1175/1520-0485(2004)034<2327:OSIACT>2.0.CO;2 doi: 10.1175/1520-0485(2004)034<2327:OSIACT>2.0.CO;2 Tsunogai, S., Ono, T., Watanabe, S., 1993. Increase in Total Carbonate in the Western North Pacific Water and a Hypothesis on the Missing Sink of Anthropogenic Carbon. Journal of Oceanography, 49(3): 305-315. https://doi.org/10.1007/BF02269568 Ueno, H., Yasuda, I., 2003. Intermediate Water Circulation in the North Pacific Subarctic and Northern Subtropical Regions. Journal of Geophysical Research: Oceans, 108(C11): 3348-3359. https://doi.org/10.1029/2002JC001372 Van Scoy, K. A., Olson, D. B., Fine, R. A., 1991. Ventilation of North Pacific Intermediate Waters: The Role of the Alaskan Gyre. Journal of Geophysical Research: Oceans, 96(C9): 16801-16810. https://doi.org/10.1029/91JC01783 Whitney, F. A., Freeland, H. J., Robert, M., 2007. Persistently Declining Oxygen Levels in the Interior Waters of the Eastern Subarctic Pacific. Progress in Oceanography, 75(2): 179-199. https://doi.org/10.1016/j.pocean.2007.08.007 Yang, H., Lohmann, G., Wei, W., et al., 2016. Intensification and Poleward Shift of Subtropical Western Boundary Currents in a Warming Climate. Journal of Geophysical Research: Oceans, 121(7): 4928-4945. https://doi.org/10.1002/2015JC011513 Yasuda, I., 1997. The Origin of the North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 102(C1): 893-909. https://doi.org/10.1029/96JC02938 Yasuda, I., 2004. North Pacific Intermediate Water: Progress in SAGE (SubArctic Gyre Experiment) and Related Projects. Journal of Oceanography, 60(2): 385-395. https://doi.org/10.1023/B:JOCE.0000038344.25081.42 Yasuda, I., Hiroe, Y., Komatsu, K., et al., 2001. Hydrographic Structure and Transport of the Oyashio South of Hokkaido and the Formation of North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 106(C4): 6931-6942. https://doi.org/10.1029/1999JC000154 Yasuda, I., Kouketsu, S., Katsumata, K., et al., 2002. Influence of Okhotsk Sea Intermediate Water on the Oyashio and North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 107(C12): 3237-3247. https://doi.org/10.1029/2001JC001037 Yoshinari, H., Yasuda, I., Ito, S., et al., 2001. Meridional Transport of the North Pacific Intermediate Water in the Kuroshio-Oyashio Interfrontal Zone. Geophysical Research Letters, 28(18): 3445-3448. https://doi.org/10.1029/2000GL012690 You, Y. Z., 2003a. Implications of Cabbeling on the Formation and Transformation Mechanism of North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 108(C5): 3134-3157. https://doi.org/10.1029/2001JC001285 You, Y. Z., 2003b. The Pathway and Circulation of North Pacific Intermediate Water. Geophysical Research Letters, 30(24): 2291-2294. https://doi.org/10.1029/2003GL018561 You, Y. Z., 2005. Double-Diffusive Fluxes of Salt and Heat in the Upper Layer of North Pacific Intermediate Water. Journal of Ocean University of China, 4(1): 1-7. https://doi.org/10.1007/s11802-005-0016-4 You, Y. Z., 2010. Frontal Densification and Displacement: A Scenario of North Pacific Intermediate Water Formation. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 57(13): 1171-1176. https://doi.org/10.1016/j.dsr2.2009.12.006 You, Y. Z., Suginohara, N., Fukasawa, M., et al., 2000. Roles of the Okhotsk Sea and Gulf of Alaska in Forming the North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 105(C2): 3253-3280. https://doi.org/10.1029/1999JC900304 Yuan, D. L., Yin, X. L., Li, X., et al., 2022. A Maluku Sea Intermediate Western Boundary Current Connecting Pacific Ocean Circulation to the Indonesian Throughflow. Nature Communications, 13(1): 2093-2100. https://doi.org/10.1038/s41467-022-29617-6 Zang, N., Wang, F., Sprintall, J., 2020. The Intermediate Water in the Philippine Sea. Journal of Oceanology and Limnology, 38(5): 1343-1353. https://doi.org/10.1007/s00343-020-0035-4 Zhou, Y. T., Gong, H. J., Zhou, F., 2022. Responses of Horizontally Expanding Oceanic Oxygen Minimum Zones to Climate Change Based on Observations. Geophysical Research Letters, 49(6): e2022GL097724. https://doi.org/10.1029/2022GL097724 -