• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    全球海平面年际波动与陆地水储量异常的时空关联

    宋哲 张子占 郑硕 闫昊明 高春春

    宋哲, 张子占, 郑硕, 闫昊明, 高春春, 2025. 全球海平面年际波动与陆地水储量异常的时空关联. 地球科学, 50(4): 1663-1672. doi: 10.3799/dqkx.2024.046
    引用本文: 宋哲, 张子占, 郑硕, 闫昊明, 高春春, 2025. 全球海平面年际波动与陆地水储量异常的时空关联. 地球科学, 50(4): 1663-1672. doi: 10.3799/dqkx.2024.046
    Song Zhe, Zhang Zizhan, Zheng Shuo, Yan Haoming, Gao Chunchun, 2025. Spatial and Temporal Association between Interannual Fluctuations of Global Sea Level and Anomalies in Terrestrial Water Storage. Earth Science, 50(4): 1663-1672. doi: 10.3799/dqkx.2024.046
    Citation: Song Zhe, Zhang Zizhan, Zheng Shuo, Yan Haoming, Gao Chunchun, 2025. Spatial and Temporal Association between Interannual Fluctuations of Global Sea Level and Anomalies in Terrestrial Water Storage. Earth Science, 50(4): 1663-1672. doi: 10.3799/dqkx.2024.046

    全球海平面年际波动与陆地水储量异常的时空关联

    doi: 10.3799/dqkx.2024.046
    基金项目: 

    国家自然科学基金项目 42174042

    国家自然科学基金项目 42174100

    国家自然科学基金项目 42074094

    湖北珞珈实验室开放基金项目 220100044

    泰山学者工程专项经费资助项目 tsqnz20230617

    详细信息
      作者简介:

      宋哲(1998-),男,硕士研究生,主要从事海平面变化与时变重力场应用研究. ORCID:0009-0009-2677-7727. E-mail:songzhe21@mails.ucas.ac.cn

      通讯作者:

      张子占,男,研究员,博士生导师,ORCID:0000-0002-6815-2006. E-mail: zzhang@asch.whigg.ac.cn

    • 中图分类号: P228

    Spatial and Temporal Association between Interannual Fluctuations of Global Sea Level and Anomalies in Terrestrial Water Storage

    • 摘要: 研究全球平均海平面(GMSL)上升过程中的年际波动有助于深入了解GMSL变化特征.主要分析GMSL在2005—2016年期间经历的两次显著年际波动及其成因,定量分析全球各大洲陆地水储量(TWS)异常的空间分布及其对GMSL年际波动的贡献,并探讨各大洲TWS变化与厄尔尼诺-南方涛动(ENSO)之间的相关性.结果表明在GMSL年际波动中与海水质量变化相关的重力海平面(BSL)变化贡献占80%,与海水温盐度变化相关的比容海平面变化的贡献约为20%,格陵兰岛和南极洲冰盖消融主要影响BSL的长期变化趋势,各大洲TWS异常变化则主导了BSL的年际变化,其中南美洲贡献最大,其次是北美洲、亚洲和大洋洲,欧洲TWS贡献最小.南美洲TWS异常变化与ENSO关联性最强,相关系数为-0.76,并存在超前7个月相位差,北美洲关联性最弱,超前5个月时相位差时达到最大值-0.25.

       

    • 图  1  海平面变化(a)及其年际波动(b)

      GMSL.全球平均海平面,红色实线;BSL. 重力海平面,黑色实线;GMSSL. 比容海平面,蓝色实线;BSL+GMSSL.重力海平面与比容海平面变化之和,橘色虚线.图b为图a中各时间序列扣除长期趋势后的年际波动

      Fig.  1.  Sea level changes (a) and interannual changes (b)

      图  2  两次BSL年际波动期间全球TWS异常变化的空间分布

      已扣除周期性和长期趋势变化

      Fig.  2.  Spatial distribution in global TWS anomaly during two BSL interannual fluctuations

      图  3  不同区域TWS异常变化对BSL变化的影响

      图a为BSL变化和全球TWS变化之和(未扣除(黑线)和扣除(蓝线)格陵兰岛和南极洲冰盖消融贡献);图b为图a去除趋势项,图c为各大洲TWS变化,图d为图c去除趋势项(以等效海平面表示)

      Fig.  3.  Influence of TWS anomaly variation on BSL variation in different regions

      图  4  各大洲TWS异常变化与ENSO指数(SOI)的相关性(标准化的时间序列)

      Fig.  4.  Correlation between TWS anomaly and ENSO (SOI) in different continents (standardized time series)

      表  1  BSL年际波动期间全球不同区域TWS异常变化

      Table  1.   TWS anomaly in different regions during the BSL interannual fluctuations

      时间段区域 2010.03~2011.04 2011.04~2013.02 2013.02~2014.02 2014.02~2016.01
      重力海平面(mm) -4.63 6.42 -4.38 8.48
      大洲陆地水储量(mm) -4.82 5.08 -4.06 8.95
      北美洲 -0.37 2.00 -1.15 -0.66
      南美洲 -1.78 1.64 -1.80 4.14
      大洋洲 -2.13 1.83 0.23 0.53
      亚洲 -0.56 -0.03 -1.89 2.27
      非洲 -0.07 -0.26 0.30 2.22
      欧洲 0.09 -0.11 0.25 0.46
      下载: 导出CSV

      表  2  各大洲陆地水储量异常与ENSO指数(SOI)的相关系数和相位差

      Table  2.   Correlation coefficients and phase difference be- tween TWS anomaly in different continents and ENSO (SOI)

      地区(洲) 相关系数 相位延迟(月)
      北美洲 -0.25 -5
      南美洲 -0.76 -7
      大洋洲 -0.62 -5
      亚洲 0.57 -16
      非洲 -0.43 -1
      欧洲 -0.42 2
      下载: 导出CSV
    • Allan, R. J., Nicholls, N., Jones, P. D., et al., 1991. A Further Extension of the Tahiti-Darwin SOI, Early ENSO Events and Darwin Pressure. Journal of Climate, 4(7): 743-749. https://doi.org/10.1175/1520-0442(1991)0040743: afeott>2.0.co;2 doi: 10.1175/1520-0442(1991)0040743:afeott>2.0.co;2
      Barnoud, A., Pfeffer, J., Cazenave, A., et al., 2023. Revisiting the Global Mean Ocean Mass Budget over 2005—2020. Ocean Science, 19(2): 321-334. https://doi.org/10.5194/os-19-321-2023
      Barnoud, A., Pfeffer, J., Guérou, A., et al., 2021. Contributions of Altimetry and Argo to Non-Closure of the Global Mean Sea Level Budget since 2016. Geophysical Research Letters, 48(14): e2021GL092824. https://doi.org/10.1029/2021GL092824
      Bettadpur, S., 2018. Level-2 Gravity Field Product User Handbook. Grace Project, 4: 21.
      Boening, C., Willis, J. K., Landerer, F. W., et al., 2012. The 2011 La Niña: So Strong, the Oceans Fell. Geophysical Research Letters, 39(19): L19602. https://doi.org/10.1029/2012GL053055
      Cazenave, A., Moreira, L., 2022. Contemporary Sea-Level Changes from Global to Local Scales: A Review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 478(2261): 20220049. https://doi.org/10.1098/rspa.2022.0049
      Chao, B. F., Wu, Y. H., Li, Y. S., 2008. Impact of Artificial Reservoir Water Impoundment on Global Sea Level. Science, 320(5873): 212-214. https://doi.org/10.1126/science.1154580
      Chen, J. L., Tapley, B., Wilson, C., et al., 2020. Global Ocean Mass Change from GRACE and GRACE Follow-on and Altimeter and Argo Measurements. Geophysical Research Letters, 47(22): e2020GL090656. https://doi.org/10.1029/2020GL090656
      Chen, J. L., Wilson, C. R., Li, J., et al., 2015. Reducing Leakage Error in GRACE-Observed Long-Term Ice Mass Change: A Case Study in West Antarctica. Journal of Geodesy, 89(9): 925-940. https://doi.org/10.1007/s00190-015-0824-2
      Dahle, C., Flechtner, F., Murböck, M., et al., 2018. GRACE 327-743 (Gravity Recovery and Climate Experiment): GFZ Level-2 Processing Standards Document for Level-2 Product Release 06 (Rev. 1.0, October 26, 2018)[R/PDF]//Scientific Technical Report-Data; 18/04; ISSN 1610-0956. GFZ German Research Centre for Geosciences: 513 kB[2021-11-10]. https://gfzpublic.gfz-potsdam.de/pubman/item/item_3489896. https://doi.org/10.2312/GFZ.B103-18048
      Dahle, C., Murböck, M., Flechtner, F., et al., 2019. The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment. Remote Sensing, 11(18): 2116. https://doi.org/10.3390/rs11182116
      Good, S. A., Martin, M. J., Rayner, N. A., 2013. EN4: Quality Controlled Ocean Temperature and Salinity Profiles and Monthly Objective Analyses with Uncertainty Estimates. Journal of Geophysical Research (Oceans), 118(12): 6704-6716. https://doi.org/10.1002/2013JC009067
      Gregory, J. M., Griffies, S. M., Hughes, C. W., et al., 2019. Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global. Surveys in Geophysics, 40(6): 1251-1289. https://doi.org/10.1007/s10712-019-09525-z
      Hamlington, B. D., Gardner, A. S., Ivins, E., et al., 2020. Understanding of Contemporary Regional Sea-Level Change and the Implications for the Future. Reviews of Geophysics, 58(3): e2019RG000672. https://doi.org/10.1029/2019RG000672
      Hosoda, S., 2007. Grid Point Value of the Monthly Objective Analysis Using the Argo Data. JAMSTEC[2023-01-11]. https://www.jamstec.go.jp/datadoi/doi/10.17596/0000102.html. https://doi.org/10.17596/0000102
      Jayne, S. R., Wahr, J. M., Bryan, F. O., 2003. Observing Ocean Heat Content Using Satellite Gravity and Altimetry. Journal of Geophysical Research: Oceans, 108(C2): 3031. https://doi.org/10.1029/2002JC001619
      Kuo, Y. N., Lo, M. H., Liang, Y. C., et al., 2021. Terrestrial Water Storage Anomalies Emphasize Interannual Variations in Global Mean Sea Level during 1997—1998 and 2015—2016 El Niño Events. Geophysical Research Letters, 48(18): e2021GL094104. https://doi.org/10.1029/2021GL094104
      Leuliette, E., Willis, J., 2011. Balancing the Sea Level Budget. Oceanography, 24(2): 122-129. https://doi.org/10.5670/oceanog.2011.32
      Llovel, W., Balem, K., Tajouri, S., et al., 2023. Cause of Substantial Global Mean Sea Level Rise over 2014—2016. Geophysical Research Letters, 50(19): e2023GL104709. https://doi.org/10.1029/2023GL104709
      Llovel, W., Becker, M., Cazenave, A., et al., 2011. Terrestrial Waters and Sea Level Variations on Interannual Time Scale. Global and Planetary Change, 75(1-2): 76-82. https://doi.org/10.1016/j.gloplacha.2010.10.008
      Loomis, B. D., Rachlin, K. E., Luthcke, S. B., 2019. Improved Earth Oblateness Rate Reveals Increased Ice Sheet Losses and Mass-Driven Sea Level Rise. Geophysical Research Letters, 46(12): 6910-6917. https://doi.org/10.1029/2019GL082929
      Loomis, B. D., Rachlin, K. E., Wiese, D. N., et al., 2020. Replacing GRACE/GRACE-FO with Satellite Laser Ranging: Impacts on Antarctic Ice Sheet Mass Change. Geophysical Research Letters, 47(3): e2019GL085488. https://doi.org/10.1029/2019GL085488
      Mu, D. P., Yan, H. M., 2018. The Instantaneous Rate of Global Mean Sea Level Rise. Chinese Journal of Geophysics, 61(12): 4758-4766(in Chinese with English abstract).
      Peltier, W. R., 2009. Closure of the Budget of Global Sea Level Rise over the GRACE Era: The Importance and Magnitudes of the Required Corrections for Global Glacial Isostatic Adjustment. Quaternary Science Reviews, 28(17-18): 1658-1674. https://doi.org/10.1016/j.quascirev.2009.04.004
      Peltier, W. R., Argus, D. F., Drummond, R., 2015. Space Geodesy Constrains Ice Age Terminal Deglaciation: The Global ICE-6G_C (VM5a) Model. Journal of Geophysical Research: Solid Earth, 120(1): 450-487. https://doi.org/10.1002/2014JB011176
      Roemmich, D., Gilson, J., 2009. The 2004–2008 Mean and Annual Cycle of Temperature, Salinity, and Steric Height in the Global Ocean from the Argo Program. Progress in Oceanography, 82(2): 81-100. https://doi.org/10.1016/j.pocean.2009.03.004
      Save, H., Bettadpur, S., Tapley, B. D., 2016. High-Resolution CSR GRACE RL05 Mascons. Journal of Geophysical Research: Solid Earth, 121(10): 7547-7569. https://doi.org/10.1002/2016jb013007
      Sun, Y., Riva, R., Ditmar, P., 2016. Optimizing Estimates of Annual Variations and Trends in Geocenter Motion and J2 from a Combination of GRACE Data and Geophysical Models. Journal of Geophysical Research: Solid Earth, 121(11): 8352-8370. https://doi.org/10.1002/2016JB013073
      Swenson, S., Chambers, D., Wahr, J., 2008. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output. Journal of Geophysical Research: Solid Earth, 113(B8): B08410. https://doi.org/10.1029/2007JB005338
      Swenson, S., Wahr, J., 2006. Post-Processing Removal of Correlated Errors in GRACE Data. Geophysical Research Letters, 33(8): L08402. https://doi.org/10.1029/2005GL025285
      Tang, L., Li, J., Chen, J. L., et al., 2020. Seismic Impact of Large Earthquakes on Estimating Global Mean Ocean Mass Change from GRACE. Remote Sensing, 12(6): 935. https://doi.org/10.3390/rs12060935
      van der Ent, R. J., Tuinenburg, O. A., 2017. The Residence Time of Water in the Atmosphere Revisited. Hydrology and Earth System Sciences, 21(2): 779-790. https://doi.org/10.5194/hess-21-779-2017
      Wahr, J., Molenaar, M., Bryan, F., 1998. Time Variability of the Earth's Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE. Journal of Geophysical Research: Solid Earth, 103(B12): 30205-30229. https://doi.org/10.1029/98JB02844
      Wang, L. S., Chen, C., Du, J. S., et al., 2014. Impact of Water Impoundment of Large Reservoirs on Spatial Variation of Coastal Relative Sea Level in China. Earth Science, 39(11): 1707-1716(in Chinese with English abstract).
      Watkins, M. M., Wiese, D. N., Yuan, D. N., et al., 2015. Improved Methods for Observing Earth's Time Variable Mass Distribution with GRACE Using Spherical Cap Mascons. Journal of Geophysical Research: Solid Earth, 120(4): 2648-2671. https://doi.org/10.1002/2014JB011547
      WCRP, 2018. Global Sea-Level Budget 1993-Present. Earth System Science Data, 10(3): 1551-1590. https://doi.org/10.5194/essd-10-1551-2018
      Wong, A., Keeley, R., Carval, T., et al., 2021. Argo Quality Control Manual for CTD and Trajectory Data. Ifremer[2021-11-17]. https://archimer.ifremer.fr/doc/00228/33951/. https://doi.org/10.13155/33951
      Xu, C. Y., Li, J., 2022. Seismic Contributions to Secular Changes in Global Geodynamic Parameters. Journal of Geophysical Research: Solid Earth, 127(8): e2022JB024590. https://doi.org/10.1029/2022JB024590
      Yang, Y. Y., Feng, W., Zhong, M., et al., 2022. Basin-Scale Sea Level Budget from Satellite Altimetry, Satellite Gravimetry, and Argo Data over 2005 to 2019. Remote Sensing, 14(18): 4637. https://doi.org/10.3390/rs14184637
      Zhang, Z. Z., Chao, B. F., Chen, J. L., et al., 2015. Terrestrial Water Storage Anomalies of Yangtze River Basin Droughts Observed by GRACE and Connections with ENSO. Global and Planetary Change, 126: 35-45. https://doi.org/10.1016/j.gloplacha.2015.01.002
      穆大鹏, 闫昊明, 2018. 全球平均海平面上升的瞬时速率. 地球物理学报, 61(12): 4758-4766.
      王林松, 陈超, 杜劲松, 等, 2014. 中国大型水库蓄水对近海相对海平面空间变化的影响. 地球科学, 39(11): 1707-1716.
    • 加载中
    图(4) / 表(2)
    计量
    • 文章访问数:  348
    • HTML全文浏览量:  239
    • PDF下载量:  31
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-03-17
    • 网络出版日期:  2025-05-10
    • 刊出日期:  2025-04-25

    目录

      /

      返回文章
      返回