• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    新元古代氧化事件促发“雪球地球”冰期气候?

    崔一鑫 李东东 沈冰 高晓鹏

    崔一鑫, 李东东, 沈冰, 高晓鹏, 2025. 新元古代氧化事件促发“雪球地球”冰期气候?. 地球科学, 50(7): 2791-2810. doi: 10.3799/dqkx.2024.048
    引用本文: 崔一鑫, 李东东, 沈冰, 高晓鹏, 2025. 新元古代氧化事件促发“雪球地球”冰期气候?. 地球科学, 50(7): 2791-2810. doi: 10.3799/dqkx.2024.048
    Cui Yixin, Li Dongdong, Shen Bing, Gao Xiaopeng, 2025. Did the Neoproterozoic Oxygenation Event Trigger the Snowball Earth?. Earth Science, 50(7): 2791-2810. doi: 10.3799/dqkx.2024.048
    Citation: Cui Yixin, Li Dongdong, Shen Bing, Gao Xiaopeng, 2025. Did the Neoproterozoic Oxygenation Event Trigger the Snowball Earth?. Earth Science, 50(7): 2791-2810. doi: 10.3799/dqkx.2024.048

    新元古代氧化事件促发“雪球地球”冰期气候?

    doi: 10.3799/dqkx.2024.048
    基金项目: 

    国家自然科学基金项目 42293291

    国家自然科学基金项目 92255302

    详细信息
      作者简介:

      崔一鑫(1992-),男,博士,助理研究员,主要从事沉积地球化学和油气勘探研究. ORCID:0009-0005-8448-523X. E-mail:cuiyixin.syky@sinopec.com

    • 中图分类号: P532

    Did the Neoproterozoic Oxygenation Event Trigger the Snowball Earth?

    • 摘要: 新元古代氧化事件的启动时间、持续时长及氧气含量的上升幅度存在争议,其与“雪球地球”发生的先后序列和因果联系也有待厘清.系统梳理和分析了拉伸纪古生物化石演化、地球化学数据和模型,对上述问题提出假说:新元古代氧化事件可能早于“雪球地球”,“雪球地球”结束进一步促进了氧气含量的增加.具体而言,真核藻类在拉伸纪已广泛存在,具备较高生产力的物质基础;罗迪尼亚超大陆裂解引发了强烈的大陆风化,导致磷等营养元素大量输入海水,增强了有机质的生成与埋藏并促进氧气大量释放.O2含量上升和强烈大陆风化限制了CH4、CO2等温室气体,使气温降低并引发“雪球地球”.“雪球地球”间冰期或冰后期,冰川消融引起强烈的物理风化,增强营养元素的供应,提高有机碳埋藏效率和O2水平,进一步加强新元古代氧化.然而,拉伸纪地层划分与对比存在较大争议,许多化石的生物学属性尚不明确,多种地球化学数据难以耦合.因此,为厘清新元古代氧化事件与“雪球地球”的相互作用机制,需要加强年代学、古生物学和地球化学等方面的综合研究.

       

    • 图  1  (a)地球大气氧气含量演化模式(修改自Lyons et al., 2014);(b)新元古代地球环境‒生命协同演化(修改自刘伟和张兴亮, 2021

      Fig.  1.  (a) Evolution of atmospheric O2 content on the Earth (modified from Lyons et al., 2014); (b) co-evolution of environment and life in the Neoproterozoic (modified from Liu and Zhang, 2021)

      图  2  新元古代“雪球地球”之前的早期真核生物化石

      a.Valeria lophostriata,~1 650 Ma,北大尖组化石,最早的真核生物化石之一(Pang et al.,2015);b. Shuiyousphaeridim macroreticulatum,~1 650 Ma,北大尖组化石,最早的真核生物化石之一(Javaux and Lepot,2018);c. Dictyosphaera macroreticulata,北大尖组化石,最早的真核生物化石之一(Agić et al.,2017);d. Tappania plana,~1 450 Ma,澳大利亚Roper群,最早的真核生物化石之一(Javaux et al.,2001);e. Trachyhystrichosphaera aimika,中元古代晚期‒新元古代早期代表性化石(Tang et al.,2017a);f. Unnamed taxon,1 150~900 Ma(Loron et al.,2018);g. Ourasphaera giraldae,~950 Ma,最早的真菌化石(Loron et al.,2019);h. Arctacellularia tetragonala,~1 000 Ma,多细胞真核生物,具有产氧光合能力(Sforna et al.,2022);i. Qingshania magnifica,~1 635 Ma,串岭沟组多细胞真核生物化石,最早的多细胞化石之一(Miao et al.,2024b);j. Tuanshanzia sp.,~1 635 Ma,串岭沟组宏体碳质化石(Liu et al.,2023);k. ~1 560 Ma,高于庄组,早期多细胞真核生物化石(Zhou et al.,2017);l. Bangiomorpha pubescens,~1 050 Ma,最早的红藻化石之一(Butterfield,2000);m. Proterocladus antiquus,~1.0 Ga华北南芬组,最早的绿藻化石之一(Tang et al.,2020);n. Chuaria,~900 Ma,刘老碑组化石,多细胞产氧光合藻类之一(Tang et al.,2017b);o. Tawuia,~900 Ma,石旺庄组化石,多细胞产氧光合藻类之一(Li et al.,2020);p. Tawuia,~900 Ma,刘老碑组化石(Tang et al.,2021);q. Longfenghsania stipitata,长龙山组化石,生物属性未知的藻类(刘傲然等,2018);r. Sinosabellidites huainanensis,石旺庄组化石,生物属性未知的藻类(Li et al.,2020);s. Pararenicola gejiazhuangensis,石旺庄组化石,生物属性未知的藻类(Li et al.,2020);t. Protoarenicola shijiacunensis,石旺庄组化石,生物属性未知的藻类(Li et al.,2020);u. Cerebrosphaera buicki,820~ 720 Ma,一种真核生物化石(Butterfield,2015b);v. Tappania sp. ~800 Ma,可能的真菌(Butterfield,2005);w. Characodictyon skolopium,~750 Ma,磷酸盐化微体化石(Butterfield,2015a);x. Cycliocyrillium torquata,780~740 Ma,VSM(Porter,2016

      Fig.  2.  Early eukaryotic fossils before the Neoproterozoic Snowball Earth

      图  3  新元古代地球化学演化特征

      δ13Ccarb数据参考Lyons et al.2021),δ53Cr数据参考Cole et al.2016),Zn/Fe参考Liu et al.2016),δ66Zn数据参考Isson et al.2018),δ82/76Se数据参考Pogge von Strandmann et al.2015),I/(Ca+Mg)数据参考Hardisty et al.2017

      Fig.  3.  Various geochemical patterns in the Neoproterozoic

      图  4  新元古代氧化事件与“雪球地球”启动时期的大气与海洋环境变化

      Fig.  4.  Atmospheric and oceanic changes in the Neoproterozoic Oxygenation Event and onset of Snowball Earth

    • Agić, H., Moczydłowska, M., Yin, L. M., 2017. Diversity of Organic-Walled Microfossils from the Early Mesoproterozoic Ruyang Group, North China Craton -A Window into the Early Eukaryote Evolution. Precambrian Research, 297: 101-130. https://doi.org/10.1016/j.precamres.2017.04.042
      Bao, H. M., Lyons, J. R., Zhou, C. M., 2008. Triple Oxygen Isotope Evidence for Elevated CO2 Levels after a Neoproterozoic Glaciation. Nature, 453: 504-506. https://doi.org/10.1038/nature06959
      Behr, H. J., Ahrendt, H., Martin, H., et al., 1983. Sedimentology and Mineralogy of Upper Proterozoic Playa-Lake Deposits in the Damara Orogen. In: Martin, H., Eder, F. W., eds., Intracontinental Fold Belts. Springer, Heidelberg, 577-610. https://doi.org/10.1007/978-3-642-69124-9_24
      Berkner, L. V., Marshall, L. C., 1965. On the Origin and Rise of Oxygen Concentration in the Earth's Atmosphere. Journal of the Atmospheric Sciences, 22(3): 225-261. https://doi.org/10.1175/1520-0469(1965)0220225: otoaro>2.0.co;2 doi: 10.1175/1520-0469(1965)0220225:otoaro>2.0.co;2
      Blamey, N. J. F., Brand, U., Parnell, J., et al., 2016. Paradigm Shift in Determining Neoproterozoic Atmospheric Oxygen. Geology, 44(8): 651-654. https://doi.org/10.1130/g37937.1
      Blättler, C. L., Claire, M. W., Prave, A. R., et al., 2018. Two-Billion-Year-Old Evaporites Capture Earth's Great Oxidation. Science, 360(6386): 320-323. https://doi.org/10.1126/science.aar2687
      Brasier, M. D., Lindsay, J. F., 1998. A Billion Years of Environmental Stability and the Emergence of Eukaryotes: New Data from Northern Australia. Geology, 26(6): 555-558. https://doi.org/10.1130/0091-7613(1998)026<0555: ABYOES>2.3.CO;2 doi: 10.1130/0091-7613(1998)026<0555:ABYOES>2.3.CO;2
      Brocks, J. J., Jarrett, A. J. M., Sirantoine, E., et al., 2017. The Rise of Algae in Cryogenian Oceans and the Emergence of Animals. Nature, 548: 578-581. https://doi.org/10.1038/nature23457
      Brocks, J. J., Jarrett, A. J., Sirantoine, E., et al., 2016. Early Sponges and Toxic Protists: Possible Sources of Cryostane, an Age Diagnostic Biomarker Antedating Sturtian Snowball Earth. Geobiology, 14(2): 129-149. https://doi.org/10.1111/gbi.12165
      Brocks, J. J., Nettersheim, B. J., Adam, P., et al., 2023. Lost World of Complex Life and the Late Rise of the Eukaryotic Crown. Nature, 618: 767-773. https://doi.org/10.1038/s41586-023-06170-w
      Buick, R., Des Marais, D. J., Knoll, A. H., 1995. Stable Isotopic Compositions of Carbonates from the Mesoproterozoic Bangemall Group, Northwestern Australia. Chemical Geology, 123(1-4): 153-171. https://doi.org/10.1016/0009-2541(95)00049-R
      Butterfield, N. J., 2005. Probable Proterozoic Fungi. Paleobiology, 31(1): 165-182. https://doi.org/10.1666/0094-8373(2005)0310165: ppf>2.0.co;2 doi: 10.1666/0094-8373(2005)0310165:ppf>2.0.co;2
      Butterfield, N. J., 2009. Oxygen, Animals and Oceanic Ventilation: An Alternative View. Geobiology, 7(1): 1-7. https://doi.org/10.1111/j.1472-4669.2009.00188.x
      Butterfield, N. J., 2015a. Early Evolution of the Eukaryota. Palaeontology, 58(1): 5-17. https://doi.org/10.1111/pala.12139
      Butterfield, N. J., 2015b. The Neoproterozoic. Curr. Biol. , 25: R859-863.
      Butterfield, N. J., Knoll, A. H., Swett, K., 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata. Scandinavian University Press, Oslo, 1-84. https://doi.org/10.18261/8200376494-1994-01
      Butterfield, N. J., 2000. Bangiomorpha Pubescens N. Gen., N. sp. : Implications for the Evolution of Sex, Multicellularity, and the Mesoproterozoic/Neoproterozoic Radiation of Eukaryotes. Paleobiology, 26: 386-404.
      Canfield, D. E., Poulton, S. W., Knoll, A. H., et al., 2008. Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry. Science, 321(5891): 949-952. https://doi.org/10.1126/science.1154499
      Canfield, D. E., Poulton, S. W., Narbonne, G. M., 2007. Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life. Science, 315(5808): 92-95. https://doi.org/10.1126/science.1135013
      Canfield, D. E., Zhang, S. C., Frank, A. B., et al., 2018. Highly Fractionated Chromium Isotopes in Mesoproterozoic-Aged Shales and Atmospheric Oxygen. Nature Communications, 9: 2871. https://doi.org/10.1038/s41467-018-05263-9
      Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118-126. https://doi.org/10.1016/j.epsl.2016.05.049
      Chen, X., Zhou, Y., Shields, G. A., 2022. Progress towards an Improved Precambrian Seawater 87Sr/86Sr Curve. Earth-Science Reviews, 224: 103869. https://doi.org/10.1016/j.earscirev.2021.103869
      Chu, X. L., 2004. "Snowball Earth" during the Neoproterozoic. Bulletin of Mineralogy, Petrology and Geochemistry, 23(3): 233-238 (in Chinese with English abstract).
      Chu, X. L., Zhang, T. G., Zhang, Q. R., et al., 2007. Sulfur and Carbon Isotope Records from 1 700 to 800 Ma Carbonates of the Jixian Section, Northern China: Implications for Secular Isotope Variations in Proterozoic Seawater and Relationships to Global Supercontinental Events. Geochimica et Cosmochimica Acta, 71(19): 4668-4692. https://doi.org/10.1016/j.gca.2007.07.017
      Cloud, P., 1976. Beginnings of Biospheric Evolution and Their Biogeochemical Consequences. Paleobiology, 2(4): 351-387. https://doi.org/10.1017/s009483730000498x
      Cohen, P. A., Irvine, S. W., Strauss, J. V., 2017. Vase-Shaped Microfossils from the Tonian Callison Lake Formation of Yukon, Canada: Taxonomy, Taphonomy and Stratigraphic Palaeobiology. Palaeontology, 60(5): 683-701. https://doi.org/10.1111/pala.12315
      Cole, D. B., Reinhard, C. T., Wang, X. L., et al., 2016. A Shale-Hosted Cr Isotope Record of Low Atmospheric Oxygen during the Proterozoic. Geology, 44(7): 555-558. https://doi.org/10.1130/G37787.1
      Cornet, Y., François, C., Compère, P., et al., 2019. New Insights on the Paleobiology, Biostratigraphy and Paleogeography of the Pre-Sturtian Microfossil Index Taxon Cerebrosphaera. Precambrian Research, 332: 105410. https://doi.org/10.1016/j.precamres.2019.105410
      Cox, G. M., Halverson, G. P., Stevenson, R. K., et al., 2016. Continental Flood Basalt Weathering as a Trigger for Neoproterozoic Snowball Earth. Earth and Planetary Science Letters, 446: 89-99. https://doi.org/10.1016/j.epsl.2016.04.016
      Cui, H., Kaufman, A. J., Xiao, S. H., et al., 2017. Was the Ediacaran Shuram Excursion a Globally Synchronized Early Diagenetic Event? Insights from Methane-Derived Authigenic Carbonates in the Uppermost Doushantuo Formation, South China. Chemical Geology, 450: 59-80. https://doi.org/10.1016/j.chemgeo.2016.12.010
      Cui, Y. X., Shen, B., Sun, Y. L., et al., 2021. A Pulse of Seafloor Oxygenation at the Late Devonian Frasnian-Famennian Boundary in South China. Earth-Science Reviews, 218: 103651. https://doi.org/10.1016/j.earscirev.2021.103651
      Dahl, T. W., Canfield, D. E., Rosing, M. T., et al., 2011. Molybdenum Evidence for Expansive Sulfidic Water Masses in ~750 Ma Oceans. Earth and Planetary Science Letters, 311(3-4): 264-274. https://doi.org/10.1016/j.epsl.2011.09.016
      Demoulin, C. F., Lara, Y. J., Lambion, A., et al., 2024. Oldest Thylakoids in Fossil Cells Directly Evidence Oxygenic Photosynthesis. Nature, 625: 529-534. https://doi.org/10.1038/s41586-023-06896-7
      Derry, L. A., 2010. A Burial Diagenesis Origin for the Ediacaran Shuram-Wonoka Carbon Isotope Anomaly. Earth and Planetary Science Letters, 294(1-2): 152-162. https://doi.org/10.1016/j.epsl.2010.03.022
      Ding, W. M., Nie, T., Peng, Y. B., etal., 2021. Validating the Deep Time Carbonate Carbon Isotope Records: Effect of Benthic Flux on Seafloor Carbonate. Acta Geochimica, 40(3): 271-286. https://doi.org/10.1007/s11631-021-00467-1
      dos Reis, M., Thawornwattana, Y., Angelis, K., et al., 2015. Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales. CurrentBiology, 25(22): 2939-2950. https://doi.org/10.1016/j.cub.2015.09.066
      Ernst, R. E., Bond, D. P. G., Zhang, S. H., et al., 2021. Large Igneous Province Record through Time and Implications for Secular Environmental Changes and Geological Time-Scale Boundaries. In: Ernst, R. E., Dickson, A. J., Bekker, A., eds., Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes. American Geophysical Union, 1-26.
      Erwin, D. H., Laflamme, M., Tweedt, S. M., et al., 2011. The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 334(6059): 1091-1097. https://doi.org/10.1126/science.1206375
      Fike, D. A., Grotzinger, J. P., Pratt, L. M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444: 744-747. https://doi.org/10.1038/nature05345
      Gao, L. Z., Wang, Z. Q., Zhang, C. H., 2010. Geochemical Character of C/O Isotope of the Upper Proterozoic from Southern Margin of North China Block and Implication for Its Depositional Environment. Journal of Palaeogeography, 12(6): 639-654 (in Chinese with English abstract).
      Gao, L. Z., Zhang, C. H., Shi, X. Y., et al., 2007. A New SHRIMP Age of the Xiamaling Formation in the North China Plate and Its Geological Significance. Acta Geologica Sinica (English Edition), 81(6): 1103-1109. https://doi.org/10.1111/j.1755-6724.2007.tb01032.x
      Gao, L. Z., Zhang, C. H., Shi, X. Y., et al., 2008a. Mesoproterozoic Age for Xiamaling Formation in North China Plate Indicated by Zircon SHRIMP Dating. Chinese Science Bulletin, 53(17): 2665-2671. https://doi.org/10.1007/s11434-008-0340-3
      Gao, L., Zhang, C., Yin, C., et al., 2008b. SHRIMP Zircon Ages: Basis for Refining the Chronostratigraphic Classification of the Meso-and Neoproterozoic Strata in North China Old Land. Acta Geologica Sinica (English Edition), 29: 366-376.
      Gao, L. Z., Zhang, C. H., Shi, X. Y., et al., 2007. Zircon SHRIMP U-Pb Dating of the Tuff Bed in the Xiamaling Formation of the Qingbaikouan System in North China. Geological Bulletin of China, 26(3): 249-255 (in Chinese with English abstract).
      Gibson, T. M., Shih, P. M., Cumming, V. M., et al., 2018. Precise Age of Bangiomorpha Pubescens Dates the Origin of Eukaryotic Photosynthesis. Geology, 46(2): 135-138. https://doi.org/10.1130/G39829.1
      Gingras, M., Hagadorn, J. W., Seilacher, A., et al., 2011. Possible Evolution of Mobile Animals in Association with Microbial Mats. Nature Geoscience, 4(6): 372-375. https://doi.org/10.1038/ngeo1142
      Gnaiger, E., Kuznetsov, A. V., 2002. Mitochondrial Respiration at Low Levels of Oxygen and Cytochrome C. Biochemical Society Transactions, 30(2): 252-258. https://doi.org/10.1042/bst0300252
      Gong, Z., Li, M. S., 2020. Astrochronology of the Ediacaran Shuram Carbon Isotope Excursion, Oman. Earth and Planetary Science Letters, 547: 116462. https://doi.org/10.1016/j.epsl.2020.116462
      Grotzinger, J. P., Fike, D. A., Fischer, W. W., 2011. Enigmatic Origin of the Largest-Known Carbon Isotope Excursion in Earth's History. Nature Geoscience, 4: 285-292. https://doi.org/10.1038/ngeo1138
      Halverson, G. P., Hoffman, P. F., Schrag, D. P., et al., 2005. Toward a Neoproterozoic Composite Carbon-Isotope Record. Geological Society of America Bulletin, 117(9): 1181-1207. https://doi.org/10.1130/B25630.1
      Halverson, G. P., Maloof, A. C., Schrag, D. P., et al., 2007. Stratigraphy and Geochemistry of a ca 800 Ma Negative Carbon Isotope Interval in Northeastern Svalbard. Chemical Geology, 237(1-2): 5-27. https://doi.org/10.1016/j.chemgeo.2006.06.013
      Halverson, G. P., Wade, B. P., Hurtgen, M. T., et al., 2010. Neoproterozoic Chemostratigraphy. Precambrian Research, 182(4): 337-350. https://doi.org/10.1016/j.precamres.2010.04.007
      Hardisty, D. S., Lu, Z. L., Bekker, A., et al., 2017. Perspectives on Proterozoic Surface Ocean Redox from Iodine Contents in Ancient and Recent Carbonate. Earth and Planetary Science Letters, 463: 159-170. https://doi.org/10.1016/j.epsl.2017.01.032
      Heckman, D. S., Geiser, D. M., Eidell, B. R., et al., 2001. Molecular Evidence for the Early Colonization of Land by Fungi and Plants. Science, 293(5532): 1129-1133. https://doi.org/10.1126/science.1061457
      Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., et al., 2017. Snowball Earth Climate Dynamics and Cryogenian Geology-Geobiology. Science Advances, 3(11): e1600983. https://doi.org/10.1126/sciadv.1600983
      Hoffman, P. F., Kaufman, A. J., Halverson, G. P., et al., 1998. A Neoproterozoic Snowball Earth. Science, 281(5381): 1342-1346. https://doi.org/10.1126/science.281.5381.1342
      Horita, J., Zimmermann, H., Holland, H. D., 2002. Chemical Evolution of Seawater during the Phanerozoic Implications from the Record of Marine Evaporites. Geochimica et Cosmochimica Acta, 66(21): 3733-3756. https://doi.org/10.1016/S0016-7037(01)00884-5
      Huang, K. J., Teng, F. Z., Shen, B., et al., 2016. Episode of Intense Chemical Weathering during the Termination of the 635 Ma Marinoan Glaciation. Proceedings of the National Academy of Sciences, 113(52): 14904-14909. https://doi.org/10.1073/pnas.1607712113
      Huntley, J. W., Xiao, S. H., Kowalewski, M., 2006. 1.3 Billion Years of Acritarch History: An Empirical Morphospace Approach. Precambrian Research, 144(1-2): 52-68. https://doi.org/10.1016/j.precamres.2005.11.003
      Isson, T. T., Love, G. D., Dupont, C. L., et al., 2018. Tracking the Rise of Eukaryotes to Ecological Dominance with Zinc Isotopes. Geobiology, 16(4): 341-352. https://doi.org/10.1111/gbi.12289
      Jackson, M. P. A., Warin, O. N., Woad, G. M., et al., 2003. Neoproterozoic Allochthonous Salt Tectonics during the Lufilian Orogeny in the Katangan Copperbelt, Central Africa. Geological Society of America Bulletin, 115: 314-330. https://doi.org/10.1130/0016-7606(2003)1150314: nastdt>2.0.co;2 doi: 10.1130/0016-7606(2003)1150314:nastdt>2.0.co;2
      Javaux, E. J., Knoll, A. H., 2017. Micropaleontology of the Lower Mesoproterozoic Roper Group, Australia, and Implications for Early Eukaryotic Evolution. Journal of Paleontology, 91(2): 199-229. https://doi.org/10.1017/jpa.2016.124
      Javaux, E. J., Knoll, A. H., Walter, M. R., 2001. Morphological and Ecological Complexity in Early Eukaryotic Ecosystems. Nature, 412: 66-69. https://doi.org/10.1038/35083562
      Javaux, E. J., Knoll, A. H., Walter, M. R., 2004. TEM Evidence for Eukaryotic Diversity in Mid-Proterozoic Oceans. Geobiology, 2(3): 121-132. https://doi.org/10.1111/j.1472-4677.2004.00027.x
      Javaux, E. J., Lepot, K., 2018. The Paleoproterozoic Fossil Record: Implications for the Evolution of the Biosphere during Earth's Middle-Age. Earth-Science Reviews, 176: 68-86. https://doi.org/10.1016/j.earscirev.2017.10.001
      Kah, L. C., Bartley, J. K., Teal, D. A., 2012. Chemostratigraphy of the Late Mesoproterozoic Atar Group, Taoudeni Basin, Mauritania: Muted Isotopic Variability, Facies Correlation, and Global Isotopic Trends. Precambrian Research, 200: 82-103. https://doi.org/10.1016/j.precamres.2012.01.011
      Kah, L. C., Lyons, T. W., Chesley, J. T., 2001. Geochemistry of a 1.2 Ga Carbonate-Evaporite Succession, Northern Baffin and Bylot Islands: Implications for Mesoproterozoic Marine Evolution. Precambrian Research, 111(1-4): 203-234. https://doi.org/10.1016/S0301-9268(01)00161-9
      Kah, L. C., Sherman, A. G., Narbonne, G. M., et al., 1999. δ13C Stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: Implications for Regional Lithostratigraphic Correlations. Canadian Journal of Earth Sciences, 36(3): 313-332. https://doi.org/10.1139/e98-100
      Knoll, A. H., 2014. Paleobiological Perspectives on Early Eukaryotic Evolution. Cold Spring Harbor Perspectives in Biology, 6(1): a016121. https://doi.org/10.1101/cshperspect.a016121
      Knoll, A. H., Javaux, E. J., Hewitt, D., et al., 2006. Eukaryotic Organisms in Proterozoic Oceans. Philosophical Transactions of the Royal Society B, 361(1470): 1023-1038. https://doi.org/10.1098/rstb.2006.1843
      Kuang, H., Peng, N., Liu, Y. Q., et al., 2023. Is There a Great Unconformity between Xiamaling and Longshan Formations in the North China Craton? Scientia SinicaTerrae, 53(5): 948-972 (in Chinese).
      Kuang, H. W., Liu, Y. Q., Geng, Y. S., et al., 2019. Important Sedimentary Geological Events of the Meso-Neoproterozoic and Their Significance. Journal of Palaeogeography (Chinese Edition), 21(1): 1-30 (in Chinese with English abstract).
      Kuang, H. W., Liu, Y. Q., Peng, N., et al., 2011. Geochemistry of the Neoproterozoic Molar-Tooth Carbonates in Dalian, Eastern Liaoning, China, and Its Geological Implications. Earth Science Frontiers, 18(4): 25-40 (in Chinese with English abstract).
      Kump, L. R., 1991. Interpreting Carbon-Isotope Excursions: Strangelove Oceans. Geology, 19(4): 299-302. https://doi.org/10.1130/0091-7613(1991)0190299: icieso>2.3.co;2 doi: 10.1130/0091-7613(1991)0190299:icieso>2.3.co;2
      Kump, L. R., 2014. Hypothesized Link between Neoproterozoic Greening of the Land Surface and the Establishment of an Oxygen-Rich Atmosphere. Proceedings of the National Academy of Sciences, 111(39): 14062-14065. https://doi.org/10.1073/pnas.1321496111
      Kump, L. R., Arthur, M. A., 1999. Interpreting Carbon-Isotope Excursions: Carbonates and Organic Matter. Chemical Geology, 161(1-3): 181-198. https://doi.org/10.1016/S0009-2541(99)00086-8
      Lamb, D. M., Awramik, S. M., Chapman, D. J., et al., 2009. Evidence for Eukaryotic Diversification in the ∼1 800 Million-Year-Old Changzhougou Formation, North China. Precambrian Research, 173(1-4): 93-104. https://doi.org/10.1016/j.precamres.2009.05.005
      Lang, X. G., Chen, J. L., 2023. Research Progress on Environmental Effects of the Cryogenian Global Glaciation. Sedimentary Geology and Tethyan Geology, 43(3): 651-660 (in Chinese with English abstract).
      Lang, X. G., Chen, J. T., Cui, H., et al., 2018a. Cyclic Cold Climate during the Nantuo Glaciation: Evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China. Precambrian Research, 310: 243-255. https://doi.org/10.1016/j.precamres.2018.03.004
      Lang, X. G., Shen, B., Peng, Y. B., et al., 2018b. Transient Marine Euxinia at the End of the Terminal Cryogenian Glaciation. Nature Communications, 9: 3019. https://doi.org/10.1038/s41467-018-05423-x
      Lee, C. T. A., Yeung, L. Y., McKenzie, N. R., et al., 2016. Two-Step Rise of Atmospheric Oxygen Linked to the Growth of Continents. Nature Geoscience, 9: 417-424. https://doi.org/10.1038/ngeo2707
      Lenton, T. M., Boyle, R. A., Poulton, S. W., et al., 2014. Co-Evolution of Eukaryotes and Ocean Oxygenation in the Neoproterozoic Era. Nature Geoscience, 7: 257-265. https://doi.org/10.1038/ngeo2108
      Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80-83. https://doi.org/10.1126/science.1182369
      Li, D. D., Luo, G. M., Yang, H., et al., 2022. Characteristics of the Carbon Cycle in Late Mesoproterozoic: Evidence from Carbon Isotope Composition of Paired Carbonate and Organic Matter of the Shennongjia Group in South China. Precambrian Research, 377: 106726. https://doi.org/10.1016/j.precamres.2022.106726
      Li, G. J., Chen, L., Pang, K., et al., 2020. An Assemblage of Macroscopic and Diversified Carbonaceous Compression Fossils from the Tonian Shiwangzhuang Formation in Western Shandong, North China. Precambrian Research, 346: 105801. https://doi.org/10.1016/j.precamres.2020.105801
      Li, G. J., Chen, L., Pang, K., et al., 2023. Tonian Carbonaceous Compressions Indicate That Horodyskia is One of the Oldest Multicellular and Coenocytic Macro-Organisms. Communications Biology, 6: 399. https://doi.org/10.1038/s42003-023-04740-2
      Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-Up History of Rodinia: A Synthesis. Precambrian Research, 160(1-2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021
      Li, Z. X., Evans, D. A. D., Halverson, G. P., 2013. Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland. Sedimentary Geology, 294: 219-232. https://doi.org/10.1016/j.sedgeo.2013.05.016
      Lindsay, J. F., 1987. Upper Proterozoic Evaporites in the Amadeus Basin, Central Australia, and Their Role in Basin Tectonics. Geological Society of America Bulletin, 99(6): 852-865. https://doi.org/10.1130/0016-7606(1987)99852:upeita>2.0.co;2 doi: 10.1130/0016-7606(1987)99852:upeita>2.0.co;2
      Liu, A. R., Feng, Q. L., Tian, L. F., 2018. The Qingbaikou Macroalgae Biota and Their Implications for Rodinia Reconstruction. Earth Science, 43(2): 475-490 (in Chinese with English abstract).
      Liu, J. Q., Zhang, Y., Shi, X. Y., et al., 2023. Macroscopic Fossils from the Chuanlinggou Formation of North China: Evidence for an Earlier Origin of Multicellular Algae in the Late Palaeoproterozoic. Palaeontology, 66(6): 1-23. https://doi.org/10.1111/pala.12685
      Liu, W., Zhang, X. L., 2021. Research Progress and Tendency on Neoproterozoic Environments and Lives. Journal of Northwest University (Natural Science Edition), 51(6): 1057-1064 (in Chinese with English abstract).
      Liu, X. M., Kah, L. C., Knoll, A. H., et al., 2016. Tracing Earth's O2 Evolution Using Zn/Fe Ratios in Marine Carbonates. Geochemical Perspectives Letters, 2(1): 24-34. https://doi.org/10.7185/geochemlet.1603
      Loron, C. C., François, C., Rainbird, R. H., et al., 2019. Early Fungi from the Proterozoic Era in Arctic Canada. Nature, 570: 232-235. https://doi.org/10.1038/s41586-019-1217-0
      Loron, C. C., Rainbird, R. H., Turner, E. C., et al., 2018. Implications of Selective Predation on the Macroevolution of Eukaryotes: Evidence from Arctic Canada. Emerging Topics in Life Sciences, 2(2): 247-255. https://doi.org/10.1042/etls20170153
      Lu, K., Mitchell, R. N., Yang, C., et al., 2022. Widespread Magmatic Provinces at the Onset of the Sturtian Snowball Earth. Earth and Planetary Science Letters, 594: 117736. https://doi.org/10.1016/j.epsl.2022.117736
      Lu, W., Ridgwell, A., Thomas, E., et al., 2018. Late Inception of a Resiliently Oxygenated Upper Ocean. Science, 361(6398): 174-177. https://doi.org/10.1126/science.aar5372
      Lu, W., Wörndle, S., Halverson, G. P., et al., 2017. Iodine Proxy Evidence for Increased Ocean Oxygenation during the Bitter Springs Anomaly. Geochemical Perspectives Letters, 5: 53-57. https://doi.org/10.7185/geochemlet.1746
      Lu, Z. L., Jenkyns, H. C., Rickaby, R. E. M., 2010. Iodine to Calcium Ratios in Marine Carbonate as a Paleo-Redox Proxy during Oceanic Anoxic Events. Geology, 38(12): 1107-1110. https://doi.org/10.1130/G31145.1
      Luo, G. M., Hallmann, C., Xie, S. C., et al., 2015. Comparative Microbial Diversity and Redox Environments of Black Shale and Stromatolite Facies in the Mesoproterozoic Xiamaling Formation. Geochimica et Cosmochimica Acta, 151: 150-167. https://doi.org/10.1016/j.gca.2014.12.022
      Luo, G. M., Hu, Q. Y., 2022. What Triggered the Paleoproterozoic Great Oxidation Event?. Earth Science, 47(10): 3842-3844 (in Chinese with English abstract).
      Lyons, T. W., Diamond, C. W., Planavsky, N. J., et al., 2021. Oxygenation, Life, and the Planetary System during Earth's Middle History: An Overview. Astrobiology, 21(8): 906-923. https://doi.org/10.1089/ast.2020.2418
      Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506: 307-315. https://doi.org/10.1038/nature13068
      MacDonald, F. A., Schmitz, M. D., Crowley, J. L., et al., 2010. Calibrating the Cryogenian. Science, 327: 1241-1243.
      MacDonald, F. A., Wordsworth, R., 2017. Initiation of Snowball Earth with Volcanic Sulfur Aerosol Emissions. Geophysical Research Letters, 44(4): 1938-1946. https://doi.org/10.1002/2016gl072335
      Maloof, A. C., Halverson, G. P., Kirschvink, J. L., et al., 2006. Combined Paleomagnetic, Isotopic, and Stratigraphic Evidence for True Polar Wander from the Neoproterozoic Akademikerbreen Group, Svalbard, Norway. Geological Society of America Bulletin, 118(9-10): 1099-1124. https://doi.org/10.1130/b25892.1
      Melezhik, V. A., Fallick, A. E., Rychanchik, D. V., et al., 2005. Palaeoproterozoic Evaporites in Fennoscandia: Implications for Seawater Sulphate, the Rise of Atmospheric Oxygen and Local Amplification of the δ13C Excursion. Terra Nova, 17(2): 141-148. https://doi.org/10.1111/j.1365-3121.2005.00600.x
      Miao, L. Y., Moczydłowska, M., Zhu, S. X., et al., 2019. New Record of Organic-Walled, Morphologically Distinct Microfossils from the Late Paleoproterozoic Changcheng Group in the Yanshan Range, North China. Precambrian Research, 321: 172-198. https://doi.org/10.1016/j.precamres.2018.11.019
      Miao, L. Y., Yin, Z. J., Li, G. X., et al., 2024a. First Report of Tappania and Associated Microfossils from the Late Paleoproterozoic Chuanlinggou Formation of the Yanliao Basin, North China. Precambrian Research, 400: 107268. https://doi.org/10.1016/j.precamres.2023.107268
      Miao, L. Y., Yin, Z. J., Knoll, A. H., et al., 2024b. 1.63-Billion-Year-Old Multicellular Eukaryotes from the Chuanlinggou Formation in North China. Science Advances, 10(4): eadk3208. https://doi.org/10.1126/sciadv.adk3208
      Mills, D. B., Simister, R. L., Sehein, T. R., et al., 2024. Constraining the Oxygen Requirements for Modern Microbial Eukaryote Diversity. Proceedings of the National Academy of Sciences, 121(2): e2303754120. https://doi.org/10.1073/pnas.2303754120
      Mills, D. B., Ward, L. M., Jones, C., et al., 2014. Oxygen Requirements of the Earliest Animals. Proceedings of the National Academy of Sciences of the United States of America, 111(11): 4168-4172. https://doi.org/10.1073/pnas.1400547111
      Och, L. M., Shields-Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth-Science Reviews, 110(1-4): 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004
      Pang, K., Tang, Q., Chen, L., et al., 2018. Nitrogen-Fixing Heterocystous Cyanobacteria in the Tonian Period. Current Biology, 28(4): 616-622. https://doi.org/10.1016/j.cub.2018.01.008
      Pang, K., Tang, Q., Wan, B., et al., 2020. New Insights on the Palaeobiology and Biostratigraphy of the Acritarch Trachyhystrichosphaera Aimika: A Potential Late Mesoproterozoic to Tonian Index Fossil. Palaeoworld, 29(3): 476-489. https://doi.org/10.1016/j.palwor.2020.02.003
      Pang, K., Tang, Q., Yuan, X. L., et al., 2015. A Biomechanical Analysis of the Early Eukaryotic Fossil Valeria and New Occurrence of Organic-Walled Microfossils from the Paleo-Mesoproterozoic Ruyang Group. Palaeoworld, 24(3): 251-262. https://doi.org/10.1016/j.palwor.2015.04.002
      Pavlov, A. A., Hurtgen, M. T., Kasting, J. F., et al., 2003. Methane-Rich Proterozoic Atmosphere? Geology, 31(1): 87. https://doi.org/10.1130/0091-7613(2003)031<0087:MRPA>2.0.CO;2 doi: 10.1130/0091-7613(2003)031<0087:MRPA>2.0.CO;2
      Planavsky, N. J., McGoldrick, P., Scott, C. T., et al., 2011. Widespread Iron-Rich Conditions in the Mid-Proterozoic Ocean. Nature, 477: 448-451. https://doi.org/10.1038/nature10327
      Planavsky, N. J., Reinhard, C. T., Wang, X. L., et al., 2014a. Earth History. Low Mid-Proterozoic Atmospheric Oxygen Levels and the Delayed Rise of Animals. Science, 346(6209): 635-638. https://doi.org/10.1126/science.1258410
      Planavsky, N. J., Reinhard, C. T., Wang, X. L., et al., 2014b. Low Mid-Proterozoic Atmospheric Oxygen Levels and the Delayed Rise of Animals. Science, 346(6209): 635-638. https://doi.org/10.1126/science.1258410
      Planavsky, N. J., Rouxel, O. J., Bekker, A., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088-1090. https://doi.org/10.1038/nature09485
      Podder, J., Lin, J., Sun, W., et al., 2017. Iodate in Calcite and Vaterite: Insights from Synchrotron X-Ray Absorption Spectroscopy and First-Principles Calculations. Geochimica et Cosmochimica Acta, 198: 218-228. https://doi.org/10.1016/j.gca.2016.11.032
      Pogge von Strandmann, P. A., Stüeken, E. E., Elliott, T., et al., 2015. Selenium Isotope Evidence for Progressive Oxidation of the Neoproterozoic Biosphere. Nature Communications, 6: 10157. https://doi.org/10.1038/ncomms10157
      Porter, S. M., 2016. Tiny Vampires in Ancient Seas: Evidence for Predation via Perforation in Fossils from the 780-740 Million-Year-Old Chuar Group, Grand Canyon, USA. Proceedings of the Royal Society B, 283(1831): 20160221. https://doi.org/10.1098/rspb.2016.0221
      Porter, S. M., Meisterfeld, R., Knoll, A. H., 2003. Vase-Shaped Microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A Classification Guided by Modern Testate Amoebae. Journal of Paleontology, 77(3): 409-429. https://doi.org/10.1017/s0022336000044140
      Prince, J. K. G., Rainbird, R. H., Wing, B. A., 2019. Evaporite Deposition in the Mid-Neoproterozoic as a Driver for Changes in Seawater Chemistry and the Biogeochemical Cycle of Sulfur. Geology, 47(4): 375-379. https://doi.org/10.1130/g45464.1
      Reinhard, C. T., Planavsky, N. J., Olson, S. L., et al., 2016. Earth's Oxygen Cycle and the Evolution of Animal Life. Proceedings of the National Academy of Sciences, 113(32): 8933-8938. https://doi.org/10.1073/pnas.1521544113
      Retallack, G. J., 2013. Ediacaran Life on Land. Nature, 493(7430): 89-92. https://doi.org/10.1038/nature11777
      Richmond, K. N., Burnite, S., Lynch, R. M., 1997. Oxygen Sensitivity of Mitochondrial Metabolic State in Isolated Skeletal and Cardiac Myocytes. The American Journal of Physiology, 273(5): C1613-C1622. https://doi.org/10.1152/ajpcell.1997.273.5.c1613
      Riedman, L. A., Porter, S. M., Lechte, M. A., et al., 2023. Early Eukaryotic Microfossils of the Late Palaeoproterozoic Limbunya Group, Birrindudu Basin, Northern Australia. Papers in Palaeontology, 9(6): e1538. https://doi.org/10.1002/spp2.1538
      Riedman, L. A., Sadler, P. M., 2018. Global Species Richness Record and Biostratigraphic Potential of Early to Middle Neoproterozoic Eukaryote Fossils. Precambrian Research, 319: 6-18. https://doi.org/10.1016/j.precamres.2017.10.008
      Rishworth, G. M., Perissinotto, R., Bird, M. S., 2016. Coexisting Living Stromatolites and Infaunal Metazoans. Oecologia, 182(2): 539-545. https://doi.org/10.1007/s00442-016-3683-5
      Robbins, L. J., Lalonde, S. V., Saito, M. A., et al., 2013. Authigenic Iron Oxide Proxies for Marine Zinc over Geological Time and Implications for Eukaryotic Metallome Evolution. Geobiology, 11(4): 295-306. https://doi.org/10.1111/gbi.12036
      Rooney, A. D., Macdonald, F. A., Strauss, J. V., et al., 2014. Re-Os Geochronology and Coupled Os-Sr Isotope Constraints on the Sturtian Snowball Earth. Proceedings of the National Academy of Sciences, 111(1): 51-56. https://doi.org/10.1073/pnas.1317266110
      Runnegar, B., 1991. Precambrian Oxygen Levels Estimated from the Biochemistry and Physiology of Early Eukaryotes. Palaeogeography, Palaeoclimatology, Palaeoecology, 97(1-2): 97-111. https://doi.org/10.1016/0031-0182(91)90186-U
      Sánchez-Baracaldo, P., Raven, J. A., Pisani, D., et al., 2017. Early Photosynthetic Eukaryotes Inhabited Low-Salinity Habitats. Proceedings of the National Academy of Sciences, 114(37): E7737-E7745. https://doi.org/10.1073/pnas.1620089114
      Schrag, D. P., Higgins, J. A., Macdonald, F. A., et al., 2013. Authigenic Carbonate and the History of the Global Carbon Cycle. Science, 339(6119): 540-543. https://doi.org/10.1126/science.1229578
      Scott, C., Lyons, T. W., Bekker, A., et al., 2008. Tracing the Stepwise Oxygenation of the Proterozoic Ocean. Nature, 452(7186): 456-459. https://doi.org/10.1038/ nature06811 doi: 10.1038/nature06811
      Scott, C., Planavsky, N. J., Dupont, C. L., et al., 2013. Bioavailability of Zinc in Marine Systems through Time. Nature Geoscience, 6: 125-128. https://doi.org/10.1038/ngeo1679
      Sforna, M. C., Loron, C. C., Demoulin, C. F., et al., 2022. Intracellular Bound Chlorophyll Residues Identify 1 Gyr-Old Fossils as Eukaryotic Algae. Nature Communications, 13: 146. https://doi.org/10.1038/s41467- 021-27810-7 doi: 10.1038/s41467-021-27810-7
      Shen, B., Dong, L., Xiao, S. H., et al., 2016. Molar Tooth Carbonates and Benthic Methane Fluxes in Proterozoic Oceans. Nature Communications, 7: 10317. https://doi.org/10.1038/ncomms10317
      Shields, G. A., Mills, B. J. W., 2017. Tectonic Controls on the Long-Term Carbon Isotope Mass Balance. Proceedings of the National Academy of Sciences of the United States of America, 114(17): 4318-4323. https://doi.org/10.1073/pnas.1614506114
      Spear, N., Holland, H. D., Garcia-Veígas, J., et al., 2014. Analyses of Fluid Inclusions in Neoproterozoic Marine Halite Provide Oldest Measurement of Seawater Chemistry. Geology, 42(2): 103-106. https://doi.org/10.1130/g34913.1
      Sperling, E. A., Frieder, C. A., Raman, A. V., et al., 2013a. Oxygen, Ecology, and the Cambrian Radiation of Animals. Proceedings of the National Academy of Sciences, 110(33): 13446-13451. https://doi.org/10.1073/pnas.1312778110
      Sperling, E. A., Halverson, G. P., Knoll, A. H., et al., 2013b. A Basin Redox Transect at the Dawn of Animal Life. Earth and Planetary Science Letters, 371-372: 143-155. https://doi.org/10.1016/j.epsl.2013.04.003
      Su, W. B., 2016. Revision of the Mesoproterozoic Chronostratigraphic Subdivision Both of North China and Yangtze Cratons and the Relevant Issues. Earth Science Frontiers, 23(6): 156-185 (in Chinese with English abstract).
      Tang, Q., Hughes, N. C., McKenzie, N. R., et al., 2017a. Late Mesoproterozoic-Early Neoproterozoic Organic-Walled Microfossils from the Madhubani Group of the Ganga Valley, Northern India. Palaeontology, 60(6): 869-891. https://doi.org/10.1111/pala.12323
      Tang, Q., Pang, K., Yuan, X. L., et al., 2017b. Electron Microscopy Reveals Evidence for Simple Multicellularity in the Proterozoic Fossil Chuaria. Geology, 45(1): 75-78. https://doi.org/10.1130/g38680.1
      Tang, Q., Pang, K., Li, G. J., et al., 2021. One-Billion-Year-Old Epibionts Highlight Symbiotic Ecological Interactions in Early Eukaryote Evolution. Gondwana Research, 97: 22-33. https://doi.org/10.1016/j.gr.2021.05.008
      Tang, Q., Pang, K., Yuan, X. L., et al., 2020. A One- Billion-Year-Old Multicellular Chlorophyte. Nature Ecology & Evolution, 4: 543-549. https://doi.org/10.1038/s41559-020-1122-9
      Thomson, D., Rainbird, R. H., Planavsky, N., et al., 2015. Chemostratigraphy of the Shaler Supergroup, Victoria Island, NW Canada: A Record of Ocean Composition Prior to the Cryogenian Glaciations. Precambrian Research, 263: 232-245. https://doi.org/10.1016/j.precamres.2015.02.007
      Turner, E. C., 2021. Possible Poriferan Body Fossils in Early Neoproterozoic Microbial Reefs. Nature, 596: 87-91. https://doi.org/10.1038/s41586-021-03773-z
      Turner, E. C., Bekker, A., 2016. Thick Sulfate Evaporite Accumulations Marking a Mid-Neoproterozoic Oxygenation Event (Ten Stone Formation, Northwest Territories, Canada). Geological Society of America Bulletin, 128(1-2): 203-222. https://doi.org/10.1130/b31268.1
      Vidal, G., Moczydłowska-Vidal, M., 1997. Biodiversity, Speciation, and Extinction Trends of Proterozoic and Cambrian Phytoplankton. Paleobiology, 23(2): 230-246. https://doi.org/10.1017/s0094837300016808
      Wang, H. Y., Liu, A. R., Li, C., et al., 2021. A Benthic Oxygen Oasis in the Early Neoproterozoic Ocean. Precambrian Research, 355: 106085. https://doi.org/10.1016/j.precamres.2020.106085
      Wang, Z., Guo, W., Nie, T., et al., 2019. Is Seawater Geochemical Composition Recorded in Marine Carbonate? Evidence from Iron and Manganese Contents in Late Devonian Carbonate Rocks. Acta Geochimica, 38(2): 173-189. https://doi.org/10.1007/s11631-018-00312-y
      Ward, L. M., Shih, P. M., 2019. The Evolution and Productivity of Carbon Fixation Pathways in Response to Changes in Oxygen Concentration over Geological Time. Free Radical Biology and Medicine, 140: 188-199. https://doi.org/10.1016/j.freeradbiomed.2019.01.049
      Williams, J. J., Mills, B. J. W., Lenton, T. M., 2019. A Tectonically Driven Ediacaran Oxygenation Event. Nature Communications, 10: 2690. https://doi.org/10.1038/s41467-019-10286-x
      Wörndle, S., Crockford, P. W., Kunzmann, M., et al., 2019. Linking the Bitter Springs Carbon Isotope Anomaly and Early Neoproterozoic Oxygenation through I/[Ca+Mg] Ratios. Chemical Geology, 524: 119-135. https://doi.org/10.1016/j.chemgeo.2019.06.015
      Xiao, S., 2014. Oxygen and Early Animal Evolution. Treatise on Geochemistry. Elsevier, Amsterdam, 231-250. https://doi.org/10.1016/b978-0-08-095975-7.01310-3
      Xiao, S. H., Dong, L., 2006. On the Morphological and Ecological History of Proterozoic Macroalgae. In: Xiao, S. H., Kaufman, A. J., eds., Neoproterozoic Geobiology and Paleobiology. Springer, Dordrecht, 57-90. https://doi.org/10.1007/1-4020-5202-2_3
      Xiao, S. H., Knoll, A. H., Kaufman, A. J., et al., 1997. Neoproterozoic Fossils in Mesoproterozoic Rocks? Chemostratigraphic Resolution of a Biostratigraphic Conundrum from the North China Platform. Precambrian Research, 84(3-4): 197-220. https://doi.org/10.1016/S0301-9268(97)00029-6
      Xiao, S. H., Shen, B., Tang, Q., et al., 2014. Biostratigraphic and Chemostratigraphic Constraints on the Age of Early Neoproterozoic Carbonate Successions in North China. Precambrian Research, 246: 208-225. https://doi.org/10.1016/j.precamres.2014.03.004
      Xiao, S. H., Tang, Q., 2018. After the Boring Billion and before the Freezing Millions: Evolutionary Patterns and Innovations in the Tonian Period. Emerging Topics in Life Sciences, 2(2): 161-171. https://doi.org/10.1042/etls20170165
      Yuan, X. L., Pang, K., Tang, Q., et al., 2023. The Origin and Early Evolution of Complex Organisms. Chinese Science Bulletin, 68(S1): 169-187 (in Chinese).
      Zhang, F. F., Stockey, R. G., Xiao, S. H., et al., 2022. Uranium Isotope Evidence for Extensive Shallow Water Anoxia in the Early Tonian Oceans. Earth and Planetary Science Letters, 583: 117437. https://doi.org/10.1016/j.epsl.2022.117437
      Zhang, K., Zhu, X. K., Wood, R. A., et al., 2018. Oxygenation of the Mesoproterozoic Ocean and the Evolution of Complex Eukaryotes. Nature Geoscience, 11: 345-350. https://doi.org/10.1038/s41561-018-0111-y
      Zhang, S. C., Su, J., Ma, S. H., et al., 2021. Eukaryotic Red and Green Algae Populated the Tropical Ocean 1400 Million Years ago. Precambrian Research, 357: 106166. https://doi.org/10.1016/j.precamres.2021.106166
      Zhang, S. C., Wang, H. J., Wang, X. M., et al., 2022. The Mesoproterozoic Oxygenation Event. Scientia Sinica Terrae, 52(1): 26-52 (in Chinese).
      Zhang, S. C., Wang, X. M., Wang, H. J., et al., 2016. Sufficient Oxygen for Animal Respiration 1, 400 Million Years Ago. Proceedings of the National Academy of Sciences, 113(7): 1731-1736. https://doi.org/10.1073/pnas.1523449113
      Zhang, X. L., 2021. Cambrian Explosion: Past, Present, and Future. Acta Palaeontologica Sinica, 60(1): 10-24 (in Chinese with English abstract).
      Zheng, Y. F., 2003. Neoproterozoic Magmatic Activity and Global Changes. Chinese Science Bulletin, 48(16): 1705-1720 (in Chinese).
      Zhou, C. M., Xiao, S. H., Wang, W., et al., 2017. The Stratigraphic Complexity of the Middle Ediacaran Carbon Isotopic Record in the Yangtze Gorges Area, South China, and Its Implications for the Age and Chemostratigraphic Significance of the Shuram Excursion. Precambrian Research, 288: 23-38. https://doi.org/10.1016/j.precamres.2016.11.007
      Zhou, C. M., Yuan, X. L., Xiao, S. H., et al., 2019. Ediacaran Integrative Stratigraphy and Timescale of China. Scientia Sinica Terrae, 49(1): 7-25 (in Chinese with English abstract).
      储雪蕾, 2004. 新元古代的"雪球地球". 矿物岩石地球化学通报, 23(3): 233-238.
      高林志, 王自强, 张传恒, 2010. 华北块体南缘上元古界氧碳同位素特征及其沉积环境意义. 古地理学报, 12(6): 639-654.
      高林志, 张传恒, 史晓颖, 等, 2007. 华北青白口系下马岭组凝灰岩锆石SHRIMP U-Pb定年. 地质通报, 26(3): 249-255.
      旷红伟, 柳永清, 耿元生, 等, 2019. 中国中新元古代重要沉积地质事件及其意义. 古地理学报, 21(1): 1-30.
      旷红伟, 柳永清, 彭楠, 等, 2011. 辽东大连新元古代臼齿碳酸盐岩地球化学特征及其地质意义. 地学前缘, 18(4): 25-40.
      旷红伟, 彭楠, 柳永清, 等, 2023. 华北克拉通下马岭组与龙山组之间存在大型不整合吗? 中国科学: 地球科学, 53(5): 948-972.
      郎咸国, 陈家乐, 2023. 成冰纪全球冰期事件的环境效应研究进展. 沉积与特提斯地质, 43(3): 651-660.
      刘傲然, 冯庆来, 田立富, 2018. 青白口纪宏观藻类生物群及其古地理意义. 地球科学, 43(2): 475-490. doi: 10.3799/dqkx.2018.023
      刘伟, 张兴亮, 2021. 新元古代地球环境与生命演化研究进展与趋势. 西北大学学报(自然科学版), 51(6): 1057-1064.
      罗根明, 胡清扬, 2022. 什么过程促发了古元古代大氧化事件?. 地球科学, 47(10): 3842-3844. doi: 10.3799/dqkx.2022.833
      苏文博, 2016. 华北及扬子克拉通中元古代年代地层格架厘定及相关问题探讨. 地学前缘, 23(6): 156-185.
      袁训来, 庞科, 唐卿, 等, 2023. 复杂生物的起源和早期演化. 科学通报, 68(S1): 169-187.
      张水昌, 王华建, 王晓梅, 等, 2022. 中元古代增氧事件. 中国科学: 地球科学, 52(1): 26-52.
      张兴亮, 2021. 寒武纪大爆发的过去、现在与未来. 古生物学报, 60(1): 10-24.
      郑永飞, 2003. 新元古代岩浆活动与全球变化. 科学通报, 48(16): 1705-1720.
      周传明, 袁训来, 肖书海, 等, 2019. 中国埃迪卡拉纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 7-25.
    • 加载中
    图(4)
    计量
    • 文章访问数:  28
    • HTML全文浏览量:  9
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-03-29
    • 网络出版日期:  2025-07-29
    • 刊出日期:  2025-07-25

    目录

      /

      返回文章
      返回