• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    岩浆热源型高温热泉中的微生物群落特征及其主控环境因素辨识

    赵倩 王露霞 李煜 郭清海

    赵倩, 王露霞, 李煜, 郭清海, 2025. 岩浆热源型高温热泉中的微生物群落特征及其主控环境因素辨识. 地球科学, 50(4): 1638-1650. doi: 10.3799/dqkx.2024.049
    引用本文: 赵倩, 王露霞, 李煜, 郭清海, 2025. 岩浆热源型高温热泉中的微生物群落特征及其主控环境因素辨识. 地球科学, 50(4): 1638-1650. doi: 10.3799/dqkx.2024.049
    Zhao Qian, Wang Luxia, Li Yu, Guo Qinghai, 2025. Characteristics of Microbial Communities and Controlling Environmental Factor Identification in Magma-Heated High-Temperature Hot Springs. Earth Science, 50(4): 1638-1650. doi: 10.3799/dqkx.2024.049
    Citation: Zhao Qian, Wang Luxia, Li Yu, Guo Qinghai, 2025. Characteristics of Microbial Communities and Controlling Environmental Factor Identification in Magma-Heated High-Temperature Hot Springs. Earth Science, 50(4): 1638-1650. doi: 10.3799/dqkx.2024.049

    岩浆热源型高温热泉中的微生物群落特征及其主控环境因素辨识

    doi: 10.3799/dqkx.2024.049
    基金项目: 

    国家自然科学基金项目 42277188

    国家自然科学基金项目 42077278

    详细信息
      作者简介:

      赵倩(1993-),女,博士后,主要从事高温地热水生物地球化学方向的研究.ORCID:0000-0001-6325-0048.E-mail:1909034746@qq.com

      通讯作者:

      郭清海(1978-),男,教授,E-mail: qhguo2006@gmail.com

    • 中图分类号: P593

    Characteristics of Microbial Communities and Controlling Environmental Factor Identification in Magma-Heated High-Temperature Hot Springs

    • 摘要: 探究微生物群落在岩浆热源型高温热泉的分布特征及其对环境变化响应,选取云南腾冲3处热泉及其流径上的14个样品,对样点进行物化指标测定和16S rRNA基因扩增子测序,并分析微生物群落与环境因子之间的相关性.3处热泉在属水平上具有不同的优势类群,蛤蟆嘴及其流径为ThermusHydrogenobacterCaldimicrobiumFervidobacterium;朗蒲及其流径为Candidatus_Caldiarchaeum、IgnavibacteriumThermodesulfovibrio;桥泉及其流径为Candidatus_Nitrosocaldus、ChloroflexusMeiothermusRalstoniaGemmata.典范对应分析结果表明热泉中基本物化参数(T和S(-II))、主量元素(Mg、Ca和K)和微量元素(W、Al、Ba、Rb、Li和Cs)对微生物群落影响显著(P < 0.05,方差分解分析结果表明它们的解释量分别为21.07%、6.69%和6.24%,共同解释量为7.32%,环境因子解释量总计41.32%.云南腾冲岩浆热源型热泉的水化学组成差异在一定程度上驱动了微生物优势类群发生演替.

       

    • 图  1  腾冲热泉样品Piper三线图

      Fig.  1.  Piper diagram of the hot spring samples collected from Tengchong

      图  2  腾冲热泉样品微量元素浓度箱线图(单位:μg/L)

      Fig.  2.  Box plots of concentrations of trace elements in the hot spring samples collected from Tengchong (unit: μg/L)

      图  3  腾冲热泉样品门水平的物种组成

      Fig.  3.  Phylum-level distribution of microbes in the hot spring samples collected from Tengchong

      图  4  腾冲热泉样品属水平微生物的相对丰度热图

      单元格内颜色表示经过log2x+1)转换的丰度,x为物种相对丰度

      Fig.  4.  Heatmap of relative abundance of genus-level microbes in the hot spring samples collected from Tengchong

      图  5  腾冲热泉样品微生物群落的PCoA分析

      Fig.  5.  PCoA analysis of microbial communities in the hot spring samples collected from Tengchong

      图  6  腾冲热泉样品微生物群落的Alpha多样性分析

      Fig.  6.  Alpha diversity index analysis of microbial communities in the hot spring samples collected from Tengchong

      图  7  环境因子与微生物群落的CCA分析

      Fig.  7.  Canonical correspondence analysis between environmental factors and microbial communities

      图  8  环境因子与属水平微生物的Spearman相关性分析

      Fig.  8.  Spearman analysis between environmental factors and genus-level microbes

      图  9  基本物化参数、主量元素和微量元素对微生物群落组成贡献VPA图

      Fig.  9.  VPA plot of the contribution of basic physical and chemical parameters, major elements, and trace elements to microbial communities

      表  1  样品采集信息和基本物化参数

      Table  1.   Information of sampling points and basic physical and chemical parameters

      编号 位置 T
      (℃)
      pH Eh
      (mV)
      EC
      (μS/cm)
      TDS
      (mg/L)
      Fe(II)
      (mg/L)
      S(-II)
      (mg/L)
      碱度CaCO3 (mg/L)
      HMZ 蛤蟆嘴 97 9.20 -135 1 881 994.1 0 0.78 595
      HMZ-D1 蛤蟆嘴流径1 80 8.82 -112.7 2 028 1 018 0 0.25 575
      HMZ-D2 蛤蟆嘴流径2 70 8.86 -111.4 2 077 1 024 0 0.19 615
      HMZ-D3 蛤蟆嘴流径3 64 8.85 -113.7 2 089 1 030 0 0.19 615
      LP01 郎蒲 95 8.32 -135.2 2 607 1 280 0.04 0.05 1 260
      LP01-D1 郎蒲流径1 80 8.62 -77.8 2 937 1 453 0 0.04 1 240
      LP01-D2 郎蒲流径2 72 8.36 11.9 2 940 1 442 0.04 0.02 1 230
      LP01-D3 郎蒲流径3 61 8.27 131.3 2 926 1 450 0 0.03 1 305
      LP01-D4 郎蒲流径4 50 8.35 174.8 2 878 1 412 0 0 1 340
      LP01-D5 郎蒲流径5 40 8.51 99.1 2 522 1 243 0 0 1 290
      QQ 桥泉 74 7.03 -2.8 1 683 826.1 0 0.02 345
      QQ-D1 桥泉流径1 65 7.51 -32.4 1 701 833.8 0 0 330
      QQ-D2 桥泉流径2 55 8.09 -66.8 1 704 835.4 0.04 0 345
      QQ-D3 桥泉流径3 50 8.29 -77 1 713 839.9 0 0 350
      下载: 导出CSV
    • Abby, S. S., Melcher, M., Kerou, M., et al., 2018. Candidatus Nitrosocaldus Cavascurensis, an Ammonia Oxidizing, Extremely Thermophilic Archaeon with a Highly Mobile Genome. Frontiers in Microbiology, 9: 28. https://doi.org/10.3389/fmicb.2018.00028
      Alcorta, J., Espinoza, S., Viver, T., et al., 2018. Temperature Modulates Fischerella Thermalis Ecotypes in Porcelana Hot Spring. Systematic and Applied Microbiology, 41(6): 531-543. https://doi.org/10.1016/j.syapm.2018.05.006
      Appelo, C. A. J., Postma, D., 2004. Geochemistry, Groundwater and Pollution. CRC Press, Boca Raton. https://doi.org/10.1201/9781439833544
      Colman, D. R., Feyhl-Buska, J., Robinson, K. J., et al., 2016. Ecological Differentiation in Planktonic and Sediment-Associated Chemotrophic Microbial Populations in Yellowstone Hot Springs. FEMS Microbiology Ecology, 92(9): fiw137. https://doi.org/10.1093/femsec/fiw137
      Edgar, R. C., 2013. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nature Methods, 10(10): 996-998. https://doi.org/10.1038/nmeth.2604
      Edgar, R. C., Haas, B. J., Clemente, J. C., et al., 2011. UCHIME Improves Sensitivity and Speed of Chimera Detection. Bioinformatics, 27(16): 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
      Feng, C., Yang, J., Jiang, H. C., 2018. Community Diversity of Nitrogen-Fixing Bacteria in Two Hot Spring Streams in Tengchong, Yunnan. Earth Science, 43(S1): 10-18(in Chinese with English abstract).
      Fouke, B. W., 2011. Hot-Spring Systems Geobiology: Abiotic and Biotic Influences on Travertine Formation at Mammoth Hot Springs, Yellowstone National Park, USA. Sedimentology, 58(1): 170-219. https://doi.org/10.1111/j.1365-3091.2010.01209.x
      Gregory Caporaso, J., Kuczynski, J., Stombaugh, J., et al., 2010. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nature Methods, 7(5): 335-336. https://doi.org/10.1038/nmeth.f.303
      Guo, Q. H., Wang, Y. X., 2012. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215: 61-73. https://doi.org/10.1016/j.jvolgeores.2011.12.003
      Hamilton, T. L., Vogl, K., Bryant, D. A., et al., 2012. Environmental Constraints Defining the Distribution, Composition, and Evolution of Chlorophototrophs in Thermal Features of Yellowstone National Park. Geobiology, 10(3): 236-249. https://doi.org/10.1111/j.1472-4669.2011.00296.x
      Han, J., Chen, B., Dai, X., et al., 2010. Diversity of Thermoacidophilic Sulfolobus in Hot Springs in Tengchong of Yunnan, China. Chinese Journal of Applied & Environmental Biology, 16(5): 692-696(in Chinese with English abstract).
      Hedlund, B. P., Murugapiran, S. K., Alba, T. W., et al., 2015. Uncultivated Thermophiles: Current Status and Spotlight on 'Aigarchaeota'. Current Opinion in Microbiology, 25: 136-145. https://doi.org/10.1016/j.mib.2015.06.008
      Hou, W. G., Wang, S., Dong, H. L., et al., 2013. A Comprehensive Census of Microbial Diversity in Hot Springs of Tengchong, Yunnan Province China Using 16S rRNA Gene Pyrosequencing. PLoS One, 8(1): e53350. https://doi.org/10.1371/journal.pone.0053350
      Liu, K. H., Ding, X. W., Zhang, B., et al., 2017. High-Throughput Sequencing to Reveal Fungal Diversity in Hot Springs of Rehai at Tengchong in Yunnan. Acta Microbiologica Sinica, 57(9): 1314-1322(in Chinese with English abstract).
      Magoč, T., Salzberg, S. L., 2011. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics, 27(21): 2957-2963. https://doi.org/10.1093/bioinformatics/btr507
      Menzel, P., Gudbergsdóttir, S. R., Rike, A. G., et al., 2015. Comparative Metagenomics of Eight Geographically Remote Terrestrial Hot Springs. Microbial Ecology, 70(2): 411-424. https://doi.org/10.1007/s00248-015-0576-9
      Merino, N., Aronson, H. S., Bojanova, D. P., et al., 2019. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Frontiers in Microbiology, 10: 780. https://doi.org/10.3389/fmicb.2019.00780
      Miller, S. R., Strong, A. L., Jones, K. L., et al., 2009. Bar-Coded Pyrosequencing Reveals Shared Bacterial Community Properties along the Temperature Gradients of Two Alkaline Hot Springs in Yellowstone National Park. Applied and Environmental Microbiology, 75(13): 4565-4572. https://doi.org/10.1128/AEM.02792-08
      Ming, H., 2015. Exploitation of Thermophilic Prokaryotic Microbial Resources and Screening of Thermophilic Xylanase in Tengchong Hot Spring, Yunnan Province (Dissertation). Yunnan University, Kunming (in Chinese with English abstract).
      Niu, M. M., 2021. Analysis of Microbial Community Structure in Tengchong Hot Springs and Screening of Thermophilic Strains with Xylanase Activity (Dissertation). Henan Normal University, Xinxiang (in Chinese with English abstract).
      Nordstrom, D. K., Ball, J. W., McCleskey, R. B., 2005. Ground Water to Surface Water: Chemistry of Thermal Outflows in Yellowstone National Park. Montana State University, Bozeman, 73-94.
      Perreault, N. N., Greer, C. W., Andersen, D. T., et al., 2008. Heterotrophic and Autotrophic Microbial Populations in Cold Perennial Springs of the High Arctic. Applied and Environmental Microbiology, 74(22): 6898-6907. https://doi.org/10.1128/AEM.00359-08
      Podar, P. T., Yang, Z., Björnsdóttir, S. H., et al., 2020. Comparative Analysis of Microbial Diversity across Temperature Gradients in Hot Springs from Yellowstone and Iceland. Frontiers in Microbiology, 11: 1625. https://doi.org/10.3389/fmicb.2020.01625
      Price, R. E., Giovannelli, D., 2017. A Review of the Geochemistry and Microbiology of Marine Shallow-Water Hydrothermal Vents. In: Elias, S. A., Reference Module in Earth Systems and Environmental Sciences. Elsevier, Oxford. https://doi.org/10.1016/b978-0-12-409548-9.09523-3
      Purcell, D., Sompong, U., Yim, L. C., et al., 2007. The Effects of Temperature, pH and Sulphide on the Community Structure of Hyperthermophilic Streamers in Hot Springs of Northern Thailand. FEMS Microbiology Ecology, 60(3): 456-466. https://doi.org/10.1111/j.1574-6941.2007.00302.x
      Qin, Y. L., Liang, Z. L., Song, Y., et al., 2019. Amplicon-Based High-Throughput Sequencing Reveals the Microbial Diversity in Rehai Hot Springs, Tengchong, Yunnan Province. Microbiology China, 46(10): 2482-2493(in Chinese with English abstract).
      Qing, C., 2023. Microbial Participation in Arsenic-Sulfur Transformation Process and Its Environmental Adaptation Mechanism in High Arsenic Hot Springs in Northeastern Tibet (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Reysenbach, A. L., Shock, E., 2002. Merging Genomes with Geochemistry in Hydrothermal Ecosystems. Science, 296(5570): 1077-1082. https://doi.org/10.1126/science.1072483
      Rothschild, L. J., Mancinelli, R. L., 2001. Life in Extreme Environments. Heliyon, 409(6823): 1092-1101.10.1038/35059215 doi: 10.1038/35059215
      Skirnisdottir, S., Hreggvidsson, G. O., Hjörleifsdottir, S., et al., 2000. Influence of Sulfide and Temperature on Species Composition and Community Structure of Hot Spring Microbial Mats. Applied and Environmental Microbiology, 66(7): 2835-2841. https://doi.org/10.1128/AEM.66.7.2835-2841.2000
      Song, Z. Q., Chen, J. Q., Zhi, X. Y., et al., 2008. Crenarchaeal Diversity and Phylogenetic Analysis of Two Hot Springs in Tengchong. Microbiology, 35(3): 372-377(in Chinese with English abstract).
      Song, Z. Q., Wang, L., Liu, X. H., et al., 2015. Diversities of Firmicutes in Four Hot Springs in Yunnan and Tibet. Biotechnology, 25(5): 481-486, 436(in Chinese with English abstract).
      Song, Z. Q., Wang, L., Liu, X. H., et al., 2016. The Diversities of Proteobacteria in Four Acidic Hot Springs in Yunnan. Journal of Henan Agricultural University, 50(3): 376-382(in Chinese with English abstract).
      Stetter, K. O., 1999. Extremophiles and Their Adaptation to Hot Environments. FEBS Letters, 452(1-2): 22-25. https://doi.org/10.1016/S0014-5793(99)00663-8
      Sun, X. X., Yang, J., Jiang, H. C., et al., 2022. Nitrite- and N2O-Reducing Bacteria Respond Differently to Ecological Factors in Saline Lakes. FEMS Microbiology Ecology, 98(2): fiac007. https://doi.org/10.1093/femsec/fiac007
      Trivedi, C. B., Stamps, B. W., Lau, G. E., et al., 2020. Microbial Metabolic Redundancy is a Key Mechanism in a Sulfur-Rich Glacial Ecosystem. mSystems, 5(4): e00504-20. https://doi.org/10.1128/mSystems.00504-20
      Wang, L. P., Shao, Z. Z., 2021. Aerobic Denitrification and Heterotrophic Sulfur Oxidation in the Genus Halomonas Revealed by Six Novel Species Characterizations and Genome-Based Analysis. Frontiers in Microbiology, 12: 652766. https://doi.org/10.3389/fmicb.2021.652766
      Wang, L. X., Guo, Q. H., Wu, G., et al., 2023. Methanogens-Driven Arsenic Methylation Preceding Formation of Methylated Thioarsenates in Sulfide-Rich Hot Springs. Environmental Science & Technology, 57(19): 7410-7420. https://doi.org/10.1021/acs.est.2c08814
      Wang, S., Hou, W. G., Dong, H. L., et al., 2013. Control of Temperature on Microbial Community Structure in Hot Springs of the Tibetan Plateau. PLoS One, 8(5): e62901. https://doi.org/10.1371/journal.pone.0062901
      Wang, Y. X., Wu, M. X. J., Wang, W. Q., et al., 2023. Interaction between Stibnite and Microbial Communities Enriched from Tailings at Xikuangshan Coupling with Bacterial Community Succession. Earth Science, 48(11): 4311-4320(in Chinese with English abstract).
      Yan, G. S., Ma, L., Wang, L. X., et al., 2022. Diversity of Arsenic-Oxidizing Prokaryotes Containing arxA Gene in Yunnan-Tibet Hot Springs and the Influencing Factors. Acta Microbiologica Sinica, 62(6): 1986-2000(in Chinese with English abstract).
      Zhang, Y. M., 2018. Study on Microbial Population Composition and Function of Hot Springs in Tibet and the Role of Microorganisms in High Temperature Iron Circulation (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zhao, Z. L., 2019. Study on the Diversity of Prokaryotic Microorganisms and the Exploitation of Cellulase and Xylanase Resources in Ruidian Hot Spring. Henan Normal University, Xinxiang (in Chinese with English abstract).
      冯灿, 杨渐, 蒋宏忱, 2018. 云南腾冲两条热泉溪流的固氮细菌群落多样性. 地球科学, 43(增刊1): 10-18.
      韩剑, 陈波, 戴欣, 等, 2010. 云南腾冲热泉极端嗜酸热硫化叶菌多样性研究. 应用与环境生物学报, 16(5): 692-696.
      刘开辉, 丁小维, 张波, 等, 2017. 高通量测序分析云南腾冲热海热泉真菌多样性. 微生物学报, 57(9): 1314-1322.
      明红, 2015. 云南腾冲热泉嗜热原核微生物资源挖掘和高温木聚糖酶筛选(博士学位论文). 昆明: 云南大学.
      牛铭铭, 2021. 腾冲热泉微生物群落结构分析及木聚糖酶活性嗜热菌株的筛选(硕士学位论文). 新乡: 河南师范大学.
      秦亚玲, 梁宗林, 宋阳, 等, 2019. 高通量测序分析云南腾冲热海热泉微生物多样性. 微生物学通报, 46(10): 2482-2493.
      卿纯, 2023. 西藏东北部高砷热泉中微生物参与砷-硫的转化过程及其环境适应机制研究(博士学位论文). 武汉: 中国地质大学.
      宋兆齐, 陈经全, 职晓阳, 等, 2008. 腾冲两热泉泉古菌多样性及系统发育的初步分析. 微生物学通报, 35(3): 372-377.
      宋兆齐, 王莉, 刘秀花, 等, 2015. 云南和西藏四处热泉中的厚壁菌门多样性. 生物技术, 25(5): 481-486, 436.
      宋兆齐, 王莉, 刘秀花, 等, 2016. 云南4处酸性热泉中的变形菌门细菌多样性. 河南农业大学学报, 50(3): 376-382.
      王宇鑫, 邬梦晓俊, 王纬琦, 等, 2023. 湖南冷水江锡矿山尾矿库细菌富集群落与辉锑矿的相互作用及其群落演替. 地球科学, 48(11): 4311-4320.
      闫广盛, 马力, 王露霞, 等, 2022. 滇藏热泉arxA基因型厌氧砷氧化原核微生物多样性及其影响因素. 微生物学报, 62(6): 1986-2000.
      张艳敏, 2018. 西藏热泉微生物种群构成与功能及高温铁循环微生物作用研究(博士毕业论文). 武汉: 中国地质大学.
      赵卓丽, 2019. 瑞滇热泉原核微生物多样性研究及纤维素酶和木聚糖酶资源挖掘(硕士学位论文). 新乡: 河南师范大学.
    • dqkxzx-50-4-1638-附表1-2.docx
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  293
    • HTML全文浏览量:  97
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-01-16
    • 刊出日期:  2025-04-25

    目录

      /

      返回文章
      返回