• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    弧前盆地的沉积和构造特征

    谭毅滢 肖文交 宋东方

    谭毅滢, 肖文交, 宋东方, 2024. 弧前盆地的沉积和构造特征. 地球科学, 49(7): 2539-2551. doi: 10.3799/dqkx.2024.057
    引用本文: 谭毅滢, 肖文交, 宋东方, 2024. 弧前盆地的沉积和构造特征. 地球科学, 49(7): 2539-2551. doi: 10.3799/dqkx.2024.057
    Tan Yiying, Xiao Wenjiao, Song Dongfang, 2024. Sedimentary and Structural Characteristics of Forearc Basins. Earth Science, 49(7): 2539-2551. doi: 10.3799/dqkx.2024.057
    Citation: Tan Yiying, Xiao Wenjiao, Song Dongfang, 2024. Sedimentary and Structural Characteristics of Forearc Basins. Earth Science, 49(7): 2539-2551. doi: 10.3799/dqkx.2024.057

    弧前盆地的沉积和构造特征

    doi: 10.3799/dqkx.2024.057
    基金项目: 

    国家自然科学基金项目 42488201

    详细信息
      作者简介:

      谭毅滢(1998-),女,硕士研究生,构造地质学专业. ORCID:0009-0008-0694-1705. E-mail:tanyiying20@mails.ucas.ac.cn

      通讯作者:

      肖文交,E-mail: wj-xiao@mail.iggcas.ac.cn

    • 中图分类号: P542;P588.2

    Sedimentary and Structural Characteristics of Forearc Basins

    • 摘要: 汇聚板块边缘的沉积盆地是造山带研究的重要对象,其中弧前盆地位于弧前区域靠近岛弧一侧,更易在造山过程中被保留下来,保存造山带结构和演化的信息.本文以研究较为充分的新生代弧前盆地为例,详述了弧前盆地的大地构造位置、形成机制、沉积、物源和构造特征,为古老造山带研究中弧前盆地的识别提供依据.弧前盆地位于岛弧和海沟外坡之间,可以形成于伸展或挤压环境中,前者由伸展正断层形成地堑式盆地,后者由增生楔逆冲构造形成挤压盆地.弧前盆地发育多种类型的沉积,其中洋内弧以半深海‒深海相沉积为主,大陆弧则涵盖陆相‒海陆交互相‒海相等多种沉积相,总体呈现粒度从边缘向中心变细、从下往上变粗的沉积序列.陆源碎屑主要来源于相邻岛弧和增生楔,通过河流、海底峡谷和海底滑坡等方式进入盆地.洋中脊、海山、洋底高原和大洋破碎带俯冲都能不同程度地影响俯冲带结构,造成弧前盆地的反转、抬升剥蚀、沉积间断、物源区变化以及沉积环境的改变.弧前盆地的沉积过程复杂,难以用单一模型简单概括,在应用弧前盆地对造山带进行分析时,应结合多学科资料对地质记录进行综合分析.

       

    • 图  1  俯冲带基本结构与组成(修改自Ingersoll, 2011)

      Fig.  1.  Basic structures and components of a subduction zone (after Ingersoll, 2011)

      图  2  弧前盆地的形成机制(修改自Noda, 2016)

      Fig.  2.  Formation mechanism of forearc basin (after Noda, 2016)

      图  3  伊豆‒小笠原弧前盆地沉积特征(修改自Robertson et al., 2018)

      Fig.  3.  Sedimentary characteristics of forearc basins in Izu-Bonin arc (after Robertson et al., 2018)

      图  4  日本熊野盆地近海沟一侧的构造模型(修改自Moore et al., 2015)

      Fig.  4.  Structural model of Japan Kumano basin near trench (after Moore et al., 2015)

      图  5  中阿留申阿米利亚破碎带两侧的弧前盆地构造特征(修改自Ryan et al., 2012)

      a. 阿米利亚破碎带(绿线)及其两侧弧前盆地地震剖面(黄线)的位置;b. 阿米利亚破碎带西侧弧前盆地地震剖面;c. 阿米利亚破碎带东侧弧前盆地地震剖面

      Fig.  5.  Structural characteristics of forearc basins located in two sides of the Amlia fracture zone in the Central Aleutian (after Ryan et al., 2012)

    • Asada, M., Moore, G. F., Kawamura, K., et al., 2021. Mud Volcano Possibly Linked to Seismogenic Faults in the Kumano Basin, Nankai Trough, Japan. Marine Geophysical Research, 42(1): 4. https://doi.org/10.1007/s11001-020-09425-7
      Bachman, S. B., Lewis, S. D., Schweller, W. J., 1983. Evolution of a Forearc Basin, Luzon Central Valley, Philippines. AAPG Bulletin, 67(7): 1143-1162. https://doi.org/10.1306/03B5B718-16D1-11D7-8645000102C1865D
      Bangs, N. L., Cande, S. C., 1997. Episodic Development of a Convergent Margin Inferred from Structures and Processes along the Southern Chile Margin. Tectonics, 16(3): 489-503. https://doi.org/10.1029/97TC00494
      Berglar, K., Gaedicke, C., Lutz, R., et al., 2008. Neogene Subsidence and Stratigraphy of the Simeulue Forearc Basin, Northwest Sumatra. Marine Geology, 253(1-2): 1-13. https://doi.org/10.1016/j.margeo.2008.04.006
      Clift, P., Vannucchi, P., 2004. Controls on Tectonic Accretion Versus Erosion in Subduction Zones: Implications for the Origin and Recycling of the Continental Crust. Reviews of Geophysics, 42(2): RG2001. https://doi.org/10.1029/2003RG000127
      Clift, P. D., MacLeod, C. J., 1999. Slow Rates of Subduction Erosion Estimated from Subsidence and Tilting of the Tonga Forearc. Geology, 27(5): 411-414. https://doi.org/10.1130/0091-7613(1999)027<0411:SROSEE>2.3.CO;2 doi: 10.1130/0091-7613(1999)027<0411:SROSEE>2.3.CO;2
      Cole, R. B., Stewart, B. W., 2009. Continental Margin Volcanism at Sites of Spreading Ridge Subduction: Examples from Southern Alaska and Western California. Tectonophysics, 464(1-4): 118-136. https://doi.org/10.1016/j.tecto.2007.12.005
      Decou, A., Von Eynatten, H., Mamani, M., et al., 2011. Cenozoic Forearc Basin Sediments in Southern Peru (15-18°S): Stratigraphic and Heavy Mineral Constraints for Eocene to Miocene Evolution of the Central Andes. Sedimentary Geology, 237(1-2): 55-72. https://doi.org/10.1016/j.sedgeo.2011.02.004
      Dickinson, W. R., 1995. Forearc Basins. In: Busby, C. J., Ingersoll, R., eds., Tectonics of Sedimentary Basins. Blackwell Science, Cambridge, 221-261.
      Dickinson, W. R., Seely, D. R., 1979. Structure and Stratigraphy of Forearc Regions. AAPG Bulletin, 63(1): 2-31. https://doi.org/10.1306/C1EA55AD-16C9-11D7-8645000102C1865D
      Finzel, E. S., Ridgway, K. D., Trop, J. M., 2015. Provenance Signature of Changing Plate Boundary Conditions along a Convergent Margin: Detrital Record of Spreading-Ridge and Flat-Slab Subduction Processes, Cenozoic Forearc Basins, Alaska. Geosphere, 11(3): 823-849. https://doi.org/10.1130/GES01029.1
      Finzel, E. S., Trop, J. M., Ridgway, K. D., et al., 2011. Upper Plate Proxies for Flat-Slab Subduction Processes in Southern Alaska. Earth and Planetary Science Letters, 303(3-4): 348-360. https://doi.org/10.1016/j.epsl.2011.01.014
      Fu, Y., Wang, Z., Obayashi, M., 2023. Global P-Wave and Joint S-Wave Tomography in the North Pacific: Implications for Slab Geometry and Evolution. Journal of Geophysical Research: Solid Earth, 128(11): e2023JB027406. https://doi.org/10.1029/2023JB027406
      Geersen, J., Ranero, C. R., Barckhausen, U., et al., 2015. Subducting Seamounts Control Interplate Coupling and Seismic Rupture in the 2014 Iquique Earthquake Area. Nature Communications, 6(1): 8267. https://doi.org/10.1038/ncomms9267
      González, F. A., Bello-González, J. P., Contreras-Reyes, E., et al., 2023. Shallow Structure of the Northern Chilean Marine Forearc between 19°S-21°S Using Multichannel Seismic Reflection and Refraction Data. Journal of South American Earth Sciences, 123: 104243. https://doi.org/10.1016/j.jsames.2023.104243
      Guarnieri, P., 2006. Plio-Quaternary Segmentation of the South Tyrrhenian Forearc Basin. International Journal of Earth Sciences, 95(1): 107-118. https://doi.org/10.1007/s00531-005-0005-2
      Hartley, A. J., May, G., Chong, G., et al., 2000. Development of a Continental Forearc: A Cenozoic Example from the Central Andes, Northern Chile. Geology, 28(4): 331-334. https://doi.org/10.1130/0091-7613(2000)28<331:DOACFA>2.0.CO;2 doi: 10.1130/0091-7613(2000)28<331:DOACFA>2.0.CO;2
      Hu, X. M., Wang, J. G., An, W., et al., 2017. Constraining the Timing of the India-Asia Continental Collision by the Sedimentary Record. Scientia Sinica Terrae, 47(3): 261-283 (in Chinese). doi: 10.1360/N072016-00237
      Hu, X. M., Xue, W. W., Lai, W., et al., 2021. Sedimentary Basins in Orogenic Belt and Continental Geodynamics. Acta Geologica Sinica, 95(1): 139-158 (in Chinese with English abstract).
      Ingersoll, R. V., 1983. Petrofacies and Provenance of Late Mesozoic Forearc Basin, Northern and Central California. AAPG Bulletin, 67(7): 1125-1142. https://doi.org/10.1306/03B5B713-16D1-11D7-8645000102C1865D
      Ingersoll, R. V., 2011. Tectonics of Sedimentary Basins, with Revised Nomenclature. In: Busby, C. J., Azor, A., eds., Tectonics of Sedimentary Basins. Wiley-Blackwell, Cambridge, 1-43. https://doi.org/10.1002/9781444347166.ch1
      Ingersoll, R. V., Graham, S. A., Dickinson, W. R., 1995. Remnant Ocean Basin. In: Busby, C. J., Ingersoll, R., eds., Tectonics of Sedimentary Basins. Blackwell Science, Cambridge, 363-391.
      Kelemen, P. B., Yogodzinski, G. M., Scholl, D. W., 2004. Along-Strike Variation in the Aleutian Island Arc: Genesis of High Mg# Andesite and Implications for Continental Crust. In: Eiler, J., ed., Inside the Subduction Factory. American Geophysical Union, Washington, D. C., 223-276. https://doi.org/10.1029/138GM11
      Kimura, G., Nakamura, Y., Shiraishi, K., et al., 2022. Nankai Forearc Structural and Seismogenic Segmentation Caused by a Magmatic Intrusion off the Kii Peninsula. Geochemistry, Geophysics, Geosystems, 23(8): e2022GC010331. https://doi.org/10.1029/2022GC010331
      Kurtz, W., Micheuz, P., Christeson, G. L., et al., 2019. Postmagmatic Tectonic Evolution of the Outer Izu- Bonin Forearc Revealed by Sediment Basin Structure and Vein Microstructure Analysis: Implications for a 15 Ma Hiatus between Pacific Plate Subduction Initiation and Forearc Extension. Geochemistry, Geophysics, Geosystems, 20(12): 5867-5895. https://doi.org/10.1029/2019GC008329
      Kusky, T., Wang, J. P., Wang, L., et al., 2020. Mélanges through Time: Life Cycle of the World's Largest Archean Mélange Compared with Mesozoic and Paleozoic Subduction-Accretion-Collision Mélanges. Earth-Science Reviews, 209: 103303. https://doi.org/10.1016/j.earscirev.2020.103303
      Kutterolf, S., Schindlbeck, J. C., Robertson, A. H. F., et al., 2018. Tephrostratigraphy and Provenance from IODP Expedition 352, Izu-Bonin Arc: Tracing Tephra Sources and Volumes from the Oligocene to Recent. Geochemistry, Geophysics, Geosystems, 19(1): 150-174. https://doi.org/10.1002/2017GC007100
      Li, J. L., Chen, J. L., Bai, J. K., et al., 2013. Orogenic Sedimentology Series I—Sedimentions in the Forearc of Orogenic Belts. Northwestern Geology, 46(1): 11-21 (in Chinese with English abstract).
      Li, M., Huang, S., Hao, T. Y., et al., 2023. Neogene Subduction Initiation Models in the Western Pacific and Analysis of Subduction Zone Parameters. Scientia Sinica Terrae, 53(3): 461-480 (in Chinese). doi: 10.1360/SSTe-2022-0189
      Lizarralde, D., Holbrook, W. S., McGeary, S., et al., 2002. Crustal Construction of a Volcanic Arc, Wide- Angle Seismic Results from the Western Alaska Peninsula. Journal of Geophysical Research: Solid Earth, 107(B8): EPM 4-1-EPM 4-21. https://doi.org/10.1029/2001JB000230
      Melnick, D., Echtler, H. P., 2006. Inversion of Forearc Basins in South-Central Chile Caused by Rapid Glacial Age Trench Fill. Geology, 34(9): 709-712. https://doi.org/10.1130/G22440.1
      Mitchell, C., Graham, S. A., Suek, D. H., 2010. Subduction Complex Uplift and Exhumation and Its Influence on Maastrichtian Forearc Stratigraphy in the Great Valley Basin, Northern San Joaquin Valley, California. GSA Bulletin, 122(11-12): 2063-2078. https://doi.org/10.1130/B30180.1
      Moore, G. F., Boston, B. B., Strasser, M., et al., 2015. Evolution of Tectono-Sedimentary Systems in the Kumano Basin, Nankai Trough Forearc. Marine and Petroleum Geology, 67: 604-616. https://doi.org/10.1016/j.marpetgeo.2015.05.032
      Moore, G. F., Strasser, M., 2016. Large Mass Transport Deposits in Kumano Basin, Nankai Trough, Japan. In: Lamarche, G., Mountjoy, J., Bull, S., et al., eds., Submarine Mass Movements and Their Consequences: 7th International Symposium. Springer International Publishing, Cham, 371-379. https://doi.org/10.1007/978-3-319-20979-1_37
      Nester, P., Jordan, T., 2011. The Pampa Del Tamarugal Forearc Basin in Northern Chile: The Interaction of Tectonics and Climate. In: Busby, C. J., Azor, A., eds., Tectonics of Sedimentary Basins. Wiley-Blackwell, Cambridge, 369-381. https://doi.org/10.1002/9781444347166.ch18
      Noda, A., 2016. Forearc Basins: Types, Geometries, and Relationships to Subduction Zone Dynamics. GSA Bulletin, 128(5-6): 879-895. https://doi.org/10.1130/B31345.1
      Noda, A., TuZino, T., 2010. Shelf-Slope Sedimentation during the Late Quaternary on the Southwestern Kuril Forearc Margin, Northern Japan. Sedimentary Geology, 232(1): 35-51. https://doi.org/10.1016/j.sedgeo.2010.09.008
      Omura, A., Ikehara, K., Sugai, T., et al., 2012. Determination of the Origin and Processes of Deposition of Deep-Sea Sediments from the Composition of Contained Organic Matter: An Example from Two Forearc Basins on the Landward Flank of the Nankai Trough, Japan. Sedimentary Geology, 249-250: 10-25. https://doi.org/10.1016/j.sedgeo.2012.01.005
      Orme, D. A., Surpless, K. D., 2019. The Birth of a Forearc: The Basal Great Valley Group, California, USA. Geology, 47(8): 757-761. https://doi.org/10.1130/G46283.1
      Rabassa, J., Clapperton, C. M., 1990. Quaternary Glaciations of the Southern Andes. Quaternary Science Reviews, 9(2-3): 153-174. https://doi.org/10.1016/0277-3791(90)90016-4
      Ramirez, S. G., Hayman, N. W., Gulick, S. P. S., et al., 2021. Sediment Provenance, Routing and Tectonic Linkages in the Nankai Forearc Region, Japan. Basin Research, 33(6): 3231-3255. https://doi.org/10.1111/bre.12601
      Reagan, M. K., Heaton, D. E., Schmitz, M. D., et al., 2019. Forearc Ages Reveal Extensive Short-Lived and Rapid Seafloor Spreading Following Subduction Initiation. Earth and Planetary Science Letters, 506: 520-529. https://doi.org/10.1016/j.epsl.2018.11.020
      Reagan, M. K., Ishizuka, O., Stern, R. J., et al., 2010. Fore-Arc Basalts and Subduction Initiation in the Izu-Bonin-Mariana System. Geochemistry, Geophysics, Geosystems, 11(3): Q03X12. https://doi.org/10.1029/2009GC002871
      Reagan, M. K., Pearce, J. A., Petronotis, K., et al., 2017. Subduction Initiation and Ophiolite Crust: New Insights from IODP Drilling. International Geology Review, 59(11): 1439-1450. https://doi.org/10.1080/00206814.2016.1276482
      Reginato, G., Vera, E., Contreras-Reyes, E., et al., 2020. Seismic Structure and Tectonics of the Continental Wedge Overlying the Source Region of the Iquique Mw8.1 2014 Earthquake. Tectonophysics, 796: 228629. https://doi.org/10.1016/j.tecto.2020.228629
      Ridgway, K. D., Trop, J. M., Finzel, E. S., 2011. Modification of Continental Forearc Basins by Flat-Slab Subduction Processes: A Case Study from Southern Alaska. In: Busby, C. J., Azor, A., eds., Tectonics of Sedimentary Basins. Wiley-Blackwell, Cambridge, 327-346. https://doi.org/10.1002/9781444347166.ch16
      Robertson, A. H. F., Kutterolf, S., Avery, A., et al., 2018. Depositional Setting, Provenance, and Tectonic-Volcanic Setting of Eocene-Recent Deep-Sea Sediments of the Oceanic Izu-Bonin Forearc, Northwest Pacific (IODP Expedition 352). International Geology Review, 60(15): 1816-1854. https://doi.org/10.1080/00206814.2017.1393634
      Ryan, H. F., Draut, A. E., Keranen, K., et al., 2012. Influence of the Amlia Fracture Zone on the Evolution of the Aleutian Terrace Forearc Basin, Central Aleutian Subduction Zone. Geosphere, 8(6): 1254-1273. https://doi.org/10.1130/GES00815.1
      Ryan, H. F., Scholl, D. W., 1993. Geologic Implications of Great Interplate Earthquakes along the Aleutian Arc. Journal of Geophysical Research: Solid Earth, 98(B12): 22135-22146. https://doi.org/10.1029/93JB02451
      Sak, P. B., Fisher, D. M., Gardner, T. W., et al., 2009. Rough Crust Subduction, Forearc Kinematics, and Quaternary Uplift Rates, Costa Rican Segment of the Middle American Trench. GSA Bulletin, 121(7-8): 992-1012. https://doi.org/10.1130/B26237.1
      Scholl, D. W., Von Huene, R., Vallier, T. L., et al., 1980. Sedimentary Masses and Concepts about Tectonic Processes at Underthrust Ocean Margins. Geology, 8(12): 564-568. https://doi.org/10.1130/0091-7613(1980)8<564:SMACAT>2.0.CO;2 doi: 10.1130/0091-7613(1980)8<564:SMACAT>2.0.CO;2
      Scholz, C. H., Small, C., 1997. The Effect of Seamount Subduction on Seismic Coupling. Geology, 25(6): 487-490. https://doi.org/10.1130/0091-7613(1997)025<0487:TEOSSO>2.3.CO;2 doi: 10.1130/0091-7613(1997)025<0487:TEOSSO>2.3.CO;2
      Stern, C. R., 2011. Subduction Erosion: Rates, Mechanisms, and Its Role in Arc Magmatism and the Evolution of the Continental Crust and Mantle. Gondwana Research, 20(2-3): 284-308. https://doi.org/10.1016/j.gr.2011.03.006
      Stern, C. R., 2020. The Role of Subduction Erosion in the Generation of Andean and Other Convergent Plate Boundary Arc Magmas, the Continental Crust and Mantle. Gondwana Research, 88: 220-249. https://doi.org/10.1016/j.gr.2020.08.006
      Stern, R. J., 2010. The Anatomy and Ontogeny of Modern Intra-Oceanic Arc Systems. In: Kusky, T. M., Zhai, M. G., Xiao, W. J., eds., The Evolving Continents: Understanding Processes of Continental Growth. Geological Society of London, 7-34. https://doi.org/10.1144/SP338.2
      Stewart, R. J., 1978. Neogene Volcaniclastic Sediments from Atka Basin, Aleutian Ridge. AAPG Bulletin, 62(1): 87-97. https://doi.org/10.1306/C1EA47FC-16C9-11D7-8645000102C1865D
      Strasser, M., Moore, G. F., Kimura, G., et al., 2011. Slumping and Mass Transport Deposition in the Nankai Fore Arc: Evidence from IODP Drilling and 3-D Reflection Seismic Data. Geochemistry, Geophysics, Geosystems, 12(5): Q0AD13. https://doi.org/10.1029/2010GC003431
      Sun, W. D., Ling, M. X., Yang, X. Y., et al., 2010. Ridge Subduction and Porphyry Copper-Gold Mineralization: An Overview. Science China Earth Sciences, 53(4): 475-484. https://doi.org/10.1007/s11430-010-0024-0
      Surpless, K. D., 2015. Geochemistry of the Great Valley Group: An Integrated Provenance Record. International Geology Review, 57(5-8): 747-766. https://doi.org/10.1080/00206814.2014.923347
      Syracuse, E. M., Abers, G. A., 2006. Global Compilation of Variations in Slab Depth beneath Arc Volcanoes and Implications. Geochemistry, Geophysics, Geosystems, 7(5): Q05017. https://doi.org/10.1029/2005GC001045
      Underwood, M. B., Moore, G. F., 1995. Trenches and Trench-Slope Basins. In: Busby, C. J., Ingersoll, R. V., eds., Tectonics of Sedimentary Basins. Blackwell Science, Cambridge, 179-219.
      Underwood, M. B., Moore, G. F., 2011. Evolution of Sedimentary Environments in the Subduction Zone of Southwest Japan: Recent Results from the Nantroseize Kumano Transect. In: Busby, C. J., Azor, A., eds., Tectonics of Sedimentary Basins. Blackwell Science, Cambridge, 310-328. https://doi.org/10.1002/9781444347166.ch15
      Usman, M. O., Masago, H., Winkler, W., et al., 2014. Mid-Quaternary Decoupling of Sediment Routing in the Nankai Forearc Revealed by Provenance Analysis of Turbiditic Sands. International Journal of Earth Sciences, 103(4): 1141-1161. https://doi.org/10.1007/s00531-014-1011-z
      Von Huene, R., Scholl, D. W., 1991. Observations at Convergent Margins Concerning Sediment Subduction, Subduction Erosion, and the Growth of Continental Crust. Reviews of Geophysics, 29(3): 279-316. https://doi.org/10.1029/91RG00969
      Wakabayashi, J., 2017. Sedimentary Serpentinite and Chaotic Units of the Lower Great Valley Group Forearc Basin Deposits, California: Updates on Distribution and Characteristics. International Geology Review, 59(5-6): 599-620. https://doi.org/10.1080/00206814.2016.1219679
      Wakabayashi, J., Tian, Z. H., Zhang, J. E., et al., 2021. Architecture of an Exhumed Forearc Region: Franciscan Complex, Coast Range Ophiolite, and Great Valley Group of California. Chinese Journal of Geology, 56(2): 357-394 (in Chinese with English abstract).
      Wakita, K., 2015. OPS Mélange: A New Term for Mélanges of Convergent Margins of the World. International Geology Review, 57(5-8): 529-539. https://doi.org/10.1080/00206814.2014.949312
      Wang, Q., Tang, G. J., Hao, L. L., et al., 2020. Ridge Subduction, Magmatism, and Metallogenesis. Science China Earth Sciences, 63(10): 1499-1518. https://doi.org/10.1007/s11430-019-9619-9
      Xiao, W. J., Ao, S. J., Yang, L., et al., 2017. Anatomy of Composition and Nature of Plate Convergence: Insights for Alternative Thoughts for Terminal India-Eurasia Collision. Science China Earth Sciences, 60(6): 1015-1039. https://doi.org/10.1007/s11430-016-9043-3
      Xiao, W. J., Song, D. F., Zhang, J. E., et al., 2022. Anatomy of the Structure and Evolution of Subduction Zones and Research Prospects. Earth Science, 47(9): 3073-3106 (in Chinese with English abstract).
      Xie, X. Y., Heller, P. L., 2009. Plate Tectonics and Basin Subsidence History. GSA Bulletin, 121(1-2): 55-64. https://doi.org/10.1130/B26398.1
      Yan, Z., Wang, Z. Q., Li, J. L., et al., 2008. Restoring the Original Tectonic Types of Sedimentary Basins in the Orogenic Belts. Geological Bulletin of China, 27(12): 2001-2013 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2008.12.005
      Yan, Z., Wang, Z. Q., Yan, Q. R., et al., 2018. Identification and Reconstruction of Tectonic Archetype of the Sedimentary Basin within the Orogenic Belt Developed along Convergent Margin. Acta Petrologica Sinica, 34(7): 1943-1958 (in Chinese with English abstract).
      胡修棉, 王建刚, 安慰, 等, 2017. 利用沉积记录精确约束印度‒亚洲大陆碰撞时间与过程. 中国科学: 地球科学, 47(3): 261-283. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201703001.htm
      胡修棉, 薛伟伟, 赖文, 等, 2021. 造山带沉积盆地与大陆动力学. 地质学报, 95(1): 139-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202101011.htm
      李继亮, 陈隽璐, 白建科, 等, 2013. 造山带沉积学系列之一——弧造山带的弧前沉积. 西北地质, 46(1): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201301006.htm
      李泯, 黄松, 郝天珧, 等, 2023. 西太平洋新近纪的俯冲起始模型及俯冲带参数分析. 中国科学: 地球科学, 53(3): 461-480. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202303003.htm
      Wakabayashi, J., 田忠华, 张继恩, 等, 2021. 弧前构造带结构特征: 来自加利福尼亚弗朗西斯科杂岩、海岸山脉蛇绿岩和大峡谷群的证据. 地质科学, 56(2): 357-394. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202102002.htm
      肖文交, 宋东方, 张继恩, 等, 2022. 俯冲带结构演变解剖与研究展望. 地球科学, 47(9): 3073-3106. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202209001.htm
      闫臻, 王宗起, 李继亮, 等, 2008. 造山带沉积盆地构造原型恢复. 地质通报, 27(12): 2001-2013. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200812007.htm
      闫臻, 王宗起, 闫全人, 等, 2018. 造山带汇聚板块边缘沉积盆地的鉴别与恢复. 岩石学报, 34(7): 1943-1958. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201807009.htm
    • 加载中
    图(5)
    计量
    • 文章访问数:  875
    • HTML全文浏览量:  309
    • PDF下载量:  198
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-04-28
    • 网络出版日期:  2024-08-03
    • 刊出日期:  2024-07-25

    目录

      /

      返回文章
      返回