• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    滇西点苍山新元古代辉长岩的识别及其大地构造意义

    陈丛敏 周云 冯佐海 李政林 蔡瑾 焦显杨 蔡永丰

    陈丛敏, 周云, 冯佐海, 李政林, 蔡瑾, 焦显杨, 蔡永丰, 2024. 滇西点苍山新元古代辉长岩的识别及其大地构造意义. 地球科学, 49(12): 4434-4449. doi: 10.3799/dqkx.2024.062
    引用本文: 陈丛敏, 周云, 冯佐海, 李政林, 蔡瑾, 焦显杨, 蔡永丰, 2024. 滇西点苍山新元古代辉长岩的识别及其大地构造意义. 地球科学, 49(12): 4434-4449. doi: 10.3799/dqkx.2024.062
    Chen Congmin, Zhou Yun, Feng Zuohai, Li Zhenglin, Cai Jin, Jiao Xianyang, Cai Yongfeng, 2024. Identification of Neoproterozoic Gabbro from Diancangshan in West Yunnan and Its Geotectonic Implication. Earth Science, 49(12): 4434-4449. doi: 10.3799/dqkx.2024.062
    Citation: Chen Congmin, Zhou Yun, Feng Zuohai, Li Zhenglin, Cai Jin, Jiao Xianyang, Cai Yongfeng, 2024. Identification of Neoproterozoic Gabbro from Diancangshan in West Yunnan and Its Geotectonic Implication. Earth Science, 49(12): 4434-4449. doi: 10.3799/dqkx.2024.062

    滇西点苍山新元古代辉长岩的识别及其大地构造意义

    doi: 10.3799/dqkx.2024.062
    基金项目: 

    国家自然科学基金 42072259

    国家自然科学基金 41502180

    详细信息
      作者简介:

      陈丛敏(1997-),女,硕士研究生,研究方向为矿物学、岩石学、矿床学.ORCID:0009-0003-8522-749X.E-mail:ccm18285364807@163.com

      通讯作者:

      蔡永丰,ORCID: 0000-0002-0110-1335. E-mail: caiyongfeng@glut.edu.cn

    • 中图分类号: P543, P581, P597

    Identification of Neoproterozoic Gabbro from Diancangshan in West Yunnan and Its Geotectonic Implication

    • 摘要: 滇西点苍山-哀牢山构造带保存有大量前寒武纪岩石学记录,为探究扬子地块西南缘前寒武纪的构造演化历史提供了理想窗口.对点苍山地区出露的辉长岩进行了元素地球化学和同位素年代学研究.研究结果显示,辉长岩的侵入年龄为771~769 Ma,表明点苍山地区发育新元古代基性岩浆活动.点苍山辉长岩的全碱(K2O+Na2O)含量变化介于4.40%~4.49%,Na2O/K2O值为2.30~2.34,属于钙碱性系列;具有较高的Fe2O3t(7.36%~7.50%)、MgO(7.15%~7.30%)和Mg#(69.46~69.52),相对富集大离子亲石元素Rb、Ba、Sr,亏损Nb、Ta、Ti等高场强元素.样品相对富集轻稀土,轻重稀土元素分馏明显,Eu显示轻微正异常(Eu/Eu*=1.17~1.29),具有较高的锆石εHf(t)值(6.72~10.84).综合有关数据资料表明,辉长岩形成于弧后盆地环境,来源于受俯冲带流体交代地幔楔橄榄岩的部分熔融.新元古代时期,扬子地块西南缘发育弧-盆体系,这一时期华南大陆的古地理位置处于Rodinia超大陆的边缘.

       

    • 图  1  扬子地块周缘新元古代岩浆岩分布地质简图

      Fig.  1.  Simplified geotectonic map showing the distribution of Neoproterozoic magmatic rocks of the Yangtze block and its surrounding areas

      图  2  点苍山-哀牢山构造带(a)及点苍山地区地质简图(b)

      Fig.  2.  Simplified geological maps of the Diancangshan⁃Ailaoshan tectonic belt (a) and Diancangshan area (b)

      图  3  点苍山辉长岩野外照片(a)、手标本照片(b)和显微照片(c, d)

      Fig.  3.  Field photo (a), hand specimens (b), and photomicrographs (c, d) of the gabbro from the Diancangshan area

      图  4  点苍山辉长岩锆石U⁃Pb年龄谐和图及其代表性锆石阴极发光图像

      Fig.  4.  Zircon U⁃Pb concordia diagrams and representative CL images for the gabbro from the Diancangshan area

      图  5  点苍山辉长岩TAS图解(a)和SiO2⁃K2O图解(b)

      Fig.  5.  Plots of TAS (a) and SiO2⁃K2O (b) of the gabbro from the Diancangshan area

      图  6  点苍山辉长岩原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土配分模式图(b)

      Fig.  6.  Primitive mantle⁃normalized trace element spidergrams (a) and chondrite⁃normalized REE patterns (b) of the gabbro from the Diancangshan area

      图  7  点苍山辉长岩Nb/La⁃La/Sm(a)和Nb/La⁃Sm/Nd(b)图解

      Fig.  7.  Plots of Nb/La⁃La/Sm (a) and Nb/La⁃Sm/Nd (b) for the gabbro in the Diancangshan area

      图  8  点苍山辉长岩La/Yb⁃Sm/Yb(a)和Sm/Yb⁃La/Sm(b)图解

      Fig.  8.  Plots of La/Yb⁃Sm/Yb (a) and Sm/Yb⁃La/Sm (b) of the gabbro in the Diancangshan area

      图  9  点苍山辉长岩Th/Zr ⁃Nb/Zr(a)和Th/Yb ⁃Ba/La (b)图解

      Fig.  9.  Plots of Th/Zr -Nb/Zr (a) and Th/Yb ⁃Ba/La (b) for the gabbro in the Diancangshan area

      图  10  点苍山辉长岩Th⁃Hf⁃Nb(a)和Ti⁃V(b)图解

      Fig.  10.  Plots of Th⁃Hf⁃Nb(a) and Ti⁃V(b) for the gabbro in the Diancangshan area

      图  11  Rodinia超大陆新元古代古地理格局重建图(据Xu et al., 2022修改)

      Fig.  11.  Neoproterozoic paleogeographic reconstruction of the Rodina Supercontinent (modified from Xu et al., 2022)

      表  1  点苍山辉长岩锆石U⁃Pb同位素测试结果

      Table  1.   Zircon U⁃Pb isotopic analyses results of the gabbro from the Diancangshan area

      点号 元素(10-6) Th/U 同位素比值 年龄(Ma)
      232Th 238U 207Pb/
      206Pb
      ±1σ 207Pb/
      235U
      ±1σ 206Pb/
      238U
      ±1σ 207Pb/
      206Pb
      ±1σ 207Pb/
      235U
      ±1σ 206Pb/
      238U
      ±1σ
      样品16MH37A
      01 234 250 0.94 0.064 6 0.001 8 1.125 0 0.030 8 0.126 9 0.001 5 761 59 765 15 770 9
      02 149 209 0.71 0.064 1 0.001 8 1.118 5 0.031 9 0.126 7 0.001 3 744 258 762 15 769 7
      03 216 208 1.04 0.063 2 0.003 0 1.112 8 0.057 6 0.127 5 0.002 1 722 102 760 28 774 12
      04 213 399 0.53 0.063 6 0.001 4 1.114 6 0.025 3 0.127 0 0.001 1 729 46 760 12 771 6
      05 161 278 0.58 0.064 5 0.007 1 1.122 0 0.120 2 0.126 2 0.001 9 761 233 764 58 766 11
      06 283 433 0.65 0.065 3 0.001 1 1.145 2 0.020 9 0.127 4 0.001 2 783 35 775 10 773 7
      07 1 464 1 086 1.35 0.063 7 0.001 9 1.097 3 0.032 4 0.124 9 0.001 0 731 63 752 16 759 6
      08 436 439 0.99 0.064 7 0.002 0 1.129 7 0.031 7 0.127 0 0.001 2 765 65 768 15 771 7
      09 96 110 0.87 0.065 5 0.001 9 1.130 2 0.032 4 0.126 8 0.001 5 791 59 768 15 769 9
      10 777 796 0.98 0.066 3 0.001 3 1.160 6 0.033 0 0.126 5 0.002 4 817 41 782 16 768 14
      11 299 395 0.76 0.066 2 0.001 2 1.162 4 0.022 8 0.127 2 0.000 9 813 38 783 11 772 5
      12 256 418 0.61 0.064 4 0.001 3 1.123 7 0.021 0 0.126 7 0.000 8 767 38 765 10 769 5
      13 67 127 0.52 0.062 3 0.006 9 1.072 4 0.104 8 0.127 2 0.003 6 683 239 740 51 772 20
      14 214 426 0.50 0.064 9 0.002 8 1.134 9 0.044 8 0.127 1 0.001 7 772 91 770 21 771 9
      15 405 720 0.56 0.064 9 0.001 8 1.136 5 0.031 9 0.126 9 0.001 5 772 55 771 15 770 9
      16 179 192 0.93 0.063 6 0.002 2 1.109 5 0.040 9 0.126 8 0.002 1 728 73 758 20 769 12
      17 295 313 0.94 0.067 3 0.002 2 1.174 8 0.038 2 0.127 0 0.001 6 856 73 789 18 771 9
      18 84 121 0.69 0.062 9 0.003 8 1.093 6 0.065 9 0.127 0 0.002 6 702 130 750 32 770 15
      19 120 142 0.84 0.062 0 0.002 7 1.070 6 0.045 3 0.126 7 0.002 1 672 94 739 22 769 12
      20 57 106 0.54 0.061 5 0.004 0 1.065 9 0.067 3 0.126 8 0.003 0 657 132 737 33 770 17
      样品16MH37B
      01 385 312 1.23 0.067 4 0.002 5 1.076 4 0.029 3 0.126 7 0.001 8 850 78 742 14 769 10
      02 49 73 0.67 0.065 0 0.003 5 1.107 8 0.045 1 0.127 8 0.001 5 776 114 757 22 776 8
      03 37 50 0.75 0.064 7 0.004 9 1.113 8 0.065 1 0.128 1 0.002 2 765 159 760 31 777 13
      04 270 199 1.36 0.069 7 0.002 3 1.144 2 0.030 5 0.125 9 0.001 2 920 69 775 14 764 7
      05 607 365 1.66 0.066 9 0.002 1 1.115 3 0.030 9 0.126 1 0.001 4 835 67 761 15 765 8
      06 86 111 0.78 0.060 9 0.003 7 1.118 2 0.037 1 0.126 6 0.001 6 635 134 762 18 768 9
      07 68 111 0.62 0.062 6 0.003 0 1.096 3 0.042 0 0.130 0 0.001 7 694 104 752 20 788 10
      08 49 64 0.77 0.065 2 0.004 8 1.122 6 0.065 2 0.126 3 0.002 0 789 156 764 31 767 11
      09 74 175 0.43 0.069 1 0.008 6 1.145 0 0.060 6 0.124 8 0.002 6 902 259 775 29 758 15
      10 86 77 1.11 0.060 7 0.005 4 1.085 3 0.063 6 0.129 3 0.002 4 628 188 746 31 784 13
      11 205 154 1.33 0.063 4 0.004 5 1.133 5 0.037 2 0.126 4 0.001 7 724 150 769 18 768 10
      12 142 134 1.06 0.068 1 0.002 8 1.127 5 0.035 3 0.128 1 0.001 4 872 92 767 17 777 8
      13 58 103 0.56 0.066 2 0.003 4 1.110 7 0.040 8 0.127 5 0.001 4 813 107 759 20 774 8
      14 106 146 0.73 0.067 7 0.003 8 1.097 1 0.044 9 0.127 0 0.001 5 859 117 752 22 771 9
      15 121 113 1.08 0.067 5 0.004 0 1.096 1 0.047 9 0.127 5 0.001 3 854 124 751 23 774 7
      16 187 150 1.25 0.062 8 0.004 4 1.071 0 0.046 2 0.127 2 0.001 3 702 155 739 23 772 7
      17 242 180 1.35 0.065 1 0.003 6 1.083 7 0.044 2 0.130 1 0.001 3 776 115 745 22 789 8
      18 81 96 0.85 0.061 9 0.003 7 1.083 3 0.040 5 0.128 7 0.001 5 733 97 745 20 780 9
      19 333 253 1.32 0.066 7 0.002 7 1.100 7 0.034 5 0.127 1 0.001 5 828 83 754 17 771 8
      20 119 125 0.96 0.068 9 0.007 9 1.170 0 0.042 1 0.126 0 0.003 3 898 239 787 20 765 19
      下载: 导出CSV

      表  2  点苍山辉长岩锆石Hf同位素测试结果

      Table  2.   Zircon Hf isotopic analyses results of the gabbro from the Diancangshan area

      分析点 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf (176Hf/177Hf)i 年龄(Ma) εHf(t) TDMHf2(Ma)
      01 0.018 905 0.000 847 0.282 610 0.000 018 0.282 598 770 10.84 944
      02 0.023 133 0.001 037 0.282 498 0.000 022 0.282 483 768 6.72 1 148
      03 0.013 724 0.000 619 0.282 577 0.000 019 0.282 568 761 9.59 999
      04 0.021 500 0.001 081 0.282 564 0.000 018 0.282 549 762 8.92 1 033
      05 0.018 658 0.000 889 0.282 565 0.000 021 0.282 552 757 8.94 1 028
      06 0.022 564 0.001 137 0.282 567 0.000 027 0.282 550 786 9.49 1 025
      07 0.050 668 0.002 172 0.282 567 0.000 017 0.282 536 769 8.62 1 054
      08 0.036 675 0.001 507 0.282 577 0.000 020 0.282 555 786 9.67 1 016
      09 0.023 825 0.001 008 0.282 587 0.000 018 0.282 572 786 10.27 986
      10 0.024 894 0.001 173 0.282 564 0.000 021 0.282 547 781 9.29 1 031
      下载: 导出CSV

      表  3  点苍山辉长岩主量(%)和微量(10-6)元素测试结果

      Table  3.   Analytical results of major (%) and trace elements (10-6) of the gabbro from the Diancangshan area

      样品号 16MH37A 16MH37B 16MH37C 16MH37D 16MH37E
      SiO2 50.21 49.75 50.15 50.46 50.46
      TiO2 0.83 0.81 0.81 0.82 0.82
      Al2O3 18.68 18.24 18.45 18.50 18.50
      Fe2O3T 7.50 7.36 7.40 7.45 7.44
      MgO 7.32 7.15 7.24 7.29 7.27
      CaO 8.81 8.65 8.74 8.76 8.74
      K2O 1.35 1.33 1.34 1.34 1.35
      Na2O 3.14 3.07 3.12 3.13 3.11
      MnO 0.15 0.14 0.15 0.14 0.14
      P2O5 0.03 0.03 0.03 0.03 0.03
      烧失量 2.53 2.57 2.50 2.51 2.53
      总量 100.55 99.10 99.93 100.43 100.39
      Mg# 69.46 69.36 69.51 69.52 69.49
      La 8.20 8.40 8.30 8.00 8.00
      Ce 17.50 18.30 17.80 17.60 17.40
      Pr 2.44 2.39 2.38 2.38 2.40
      Nd 10.30 10.50 10.50 10.20 10.20
      Sm 2.47 2.54 2.53 2.53 2.49
      Eu 1.12 1.05 1.08 1.10 1.05
      Gd 2.86 2.94 2.73 2.70 2.79
      Tb 0.44 0.45 0.46 0.44 0.47
      Dy 2.92 2.84 2.91 2.96 2.82
      Ho 0.57 0.59 0.61 0.55 0.56
      Er 1.59 1.58 1.69 1.65 1.63
      Tm 0.24 0.24 0.24 0.25 0.25
      Yb 1.54 1.51 1.51 1.45 1.57
      Lu 0.23 0.24 0.24 0.23 0.22
      V 160 156 186 178 163
      Cr 360 370 360 370 360
      Ni 78.58 78.58 78.58 78.58 78.58
      Ga 17.60 18.30 17.70 17.80 17.60
      Rb 33.40 34.30 34.00 34.40 33.50
      Sr 379 387 383 386 377
      Y 17.00 17.30 17.30 17.30 17.00
      Zr 124 128 125 123 118
      Nb 3.40 3.50 3.50 3.40 3.50
      Cs 1.22 1.26 1.33 1.24 1.24
      Ba 320 326 326 323 322
      Hf 3.30 3.40 3.20 3.30 2.90
      Ta 0.30 0.30 0.30 0.20 0.30
      Th 0.37 0.37 0.35 0.37 0.37
      U 0.12 0.11 0.10 0.14 0.12
      ∑REE 52.42 53.57 52.98 52.04 51.85
      LREE 40.91 42.13 41.51 40.71 40.49
      MREE 7.34 7.28 7.18 7.20 7.13
      HREE 4.17 4.16 4.29 4.13 4.23
      LREE/HREE 9.81 10.13 9.68 9.86 9.57
      LREE/MREE 5.57 5.79 5.78 5.65 5.68
      MREE/HREE 1.76 1.75 1.67 1.74 1.69
      (La/Yb)N 3.59 3.75 3.71 3.72 3.44
      (La/Sm)N 2.09 2.08 2.06 1.99 2.02
      (Gd/Yb)N 1.50 1.57 1.46 1.50 1.43
      Eu/Eu* 1.29 1.17 1.25 1.28 1.21
      下载: 导出CSV
    • Ao, W. H., Zhao, Y., Zhang, Y. K., et al., 2019. The Neoproterozoic Magmatism in the Northern Margin of the Yangtze Block: Insights from Neoproterozoic (950-706 Ma) Gabbroic-Granitoid Rocks of the Hannan Complex. Precambrian Research, 333: 105442. https://doi.org/10.1016/j.precamres.2019.105442
      Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Developments in Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3
      Brophy, J. G., Marsh, B. D., 1986. On the Origin of High-Alumina Arc Basalt and the Mechanics of Melt Extraction. Journal of Petrology, 27(4): 763-789. https://doi.org/10.1093/petrology/27.4.763
      Cai, Y. F., Liu, H. C., Feng, Z. H., et al., 2020. Neoproterozoic Active Margin of the SW South China Block: Constraints from U-Pb Ages, Sr-Nd Isotopes and Geochemical Data for the Gabbro and Granodiorite along the Ailaoshan Tectonic Belt. Lithos, 358: 105387. https://doi.org/10.1016/j.lithos.2020.105387
      Cai, Y. F., Wang, Y. J., Cawood, P. A., et al., 2014. Neoproterozoic Subduction along the Ailaoshan Zone, South China: Geochronological and Geochemical Evidence from Amphibolite. Precambrian Research, 245: 13-28. https://doi.org/10.1016/j.precamres.2014.01.009
      Chen, X. Y., Liu, J. L., Fan, W. K., et al., 2017. Neoproterozoic Granitoids along the Ailao Shan-Red River Belt: Zircon U-Pb Geochronology, Hf Isotope Analysis and Tectonic Implications. Precambrian Research, 299: 244-263. https://doi.org/10.1016/j.precamres.2017.06.024
      Chung, S. L., Lee, T. Y., Lo, C. H., et al., 1997. Intraplate Extension Prior to Continental Extrusion along the Ailao Shan-Red River Shear Zone. Geology, 25(4): 311. https://doi.org/10.1130/0091-7613(1997)0250311:ieptce>2.3.co;2 doi: 10.1130/0091-7613(1997)0250311:ieptce>2.3.co;2
      Deng, J., Wang, Q. F., Li, G. J., et al., 2014. Cenozoic Tectono-Magmatic and Metallogenic Processes in the Sanjiang Region, Southwestern China. Earth-Science Reviews, 138: 268-299. https://doi.org/10.1016/j.earscirev.2014.05.015
      Ernst, R. E., Buchan, K. L., Campbell, I. H., 2005. Frontiers in Large Igneous Province Research. Lithos, 79(3-4): 271-297. https://doi.org/10.1016/j.lithos.2004.09.004
      Ewart, A., Collerson, K. D., Regelous, M., et al., 1998. Geochemical Evolution within the Tonga-Kermadec-Lau Arc-Back-Arc Systems: The Role of Varying Mantle Wedge Composition in Space and Time. Journal of Petrology, 39(3): 331-368. https://doi.org/10.1093/petroj/39.3.331
      Gamble, J. A., Wright, I. C., Woodhead, J. D., et al., 1994. Arc and Back-Arc Geochemistry in the Southern Kermadec Arc-Ngatoro Basin and Offshore Taupo Volcanic Zone, SW Pacific. Geological Society, London, Special Publications, 81(1): 193-212. 10.1144/GSL.SP.1994.081.01.11
      Hoffman, P. F., 1991. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out? Science, 252(5011): 1409-1412. https://doi.org/10.1126/science.252.5011.1409
      Hu, P. Y., Zhai, Q. G., Wang, J., et al., 2020. U-Pb Zircon Geochronology, Geochemistry, and Sr-Nd-Hf-O Isotopic Study of Middle Neoproterozoic Magmatic Rocks in the Kangdian Rift, South China: Slab Rollback and Backarc Extension at the Northwestern Edge of the Rodinia. Precambrian Research, 347: 105863. https://doi.org/10.1016/j.precamres.2020.105863
      Kou, C. H., Liu, Y. X., Li, J., et al., 2022. Geochronology and Geochemistry of 830 Ma Gabbro in the Western Segment of the Jiangnan Orogen and Constraint on Its Petrogenesis. Earth Science Frontiers, 29(2): 218-233(in Chinese with English abstract).
      Lai, S. C., Zhu, Y., 2020. Petrogenesis and Geodynamic Implications of Neoproterozoic Typical Intermediate-Felsic Magmatism in the Western Margin of the Yangtze Block, South China. Journal of Geomechanics, 26(5): 759-790(in Chinese with English abstract).
      Li, B. L., Ji, J. Q., Fu, X. Y., et al., 2008. Zircon SHRIMP Dating and Its Geological Implications of the Metamorphic Rocks in Ailao Shan-Diancang Mountain Ranges, West Yunnan. Acta Petrologica Sinica, 24(10): 2322-2330(in Chinese with English abstract). http://www.oalib.com/paper/1471252
      Li, D. P., Chen, Y. L., Kang, H., et al., 2018. Neoproterozoic Continental Arc System along the NW Margin of Rodinia Supercontinent: Constraints from Geochronological and Geochemical Studies of Neoproterozoic Granitoids in the Diancangshan Massif. Lithos, 316: 77-91. https://doi.org/10.1016/j.lithos.2018.07.011
      Li, X. H., Li, W. X., He, B., 2012. Building of the South China Block and Its Relevance to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559(in Chinese with English abstract).
      Li, Z. X., Li, X. H., Kinny, P. D., et al., 1999. The Breakup of Rodinia: Did It Start with a Mantle Plume beneath South China? Earth and Planetary Science Letters, 173(3): 171-181. https://doi.org/10.1016/s0012-821x(99)00240-x doi: 10.1016/S0012-821X(99)00240-X
      Liu, J. L., Tang, Y., Song, Z. J., et al., 2011. The Ailaoshan Belt in Western Yunnan: Tectonic Framework and Tectonic Evolution. Journal of Jilin University (Earth Science Edition), 41(5): 1285-1303(in Chinese with English abstract).
      Liu, J. L., Wang, A. J., Cao, S. Y., et al., 2008. Geochronology and Tectonic Implication of Migmatites from Diancangshan, Western Yunnan, China. Acta Petrologica Sinica, 24(3): 413-420(in Chinese with English abstract). http://www.oalib.com/paper/1472578
      Liu, P. W., Zhang, J. B., Ding, X. Z., et al., 2023. Geochronology and Tectonic Significance of Neoproterozoic Volcanic Rocks from Yanbian Group in Western Yangtze Block. Earth Science, 48(12): 4508-4526(in Chinese with English abstract).
      Luhr, J. F., Haldar, D., 2006. Barren Island Volcano (NE Indian Ocean): Island-Arc High-Alumina Basalts Produced by Troctolite Contamination. Journal of Volcanology and Geothermal Research, 149(3-4): 177-212. https://doi.org/10.1016/j.jvolgeores.2005.06.003
      Luo, G., Zhang, T., Jia, X. C., et al., 2021. Geochronology, Geochemical Features and Geological Significance of the Granitic Gneiss in the Shigu Complex, Northwest Yunnan, China. Acta Geologica Sinica, 95(11): 3335-3351(in Chinese with English abstract).
      Ma, Y. C., Cai, Y. F., Ma, L. Y., et al., 2021. Genesis of Neoproterozoic Amphibolite in Diancangshan, West Yunnan: Evidence from Zircon U-Pb Age and Whole-Rock Geochemistry. Earth Science, 46(8): 2860-2872(in Chinese with English abstract).
      McCulloch, M. T., Gamble, J. A., 1991. Geochemical and Geodynamical Constraints on Subduction Zone Magmatism. Earth and Planetary Science Letters, 102(3-4): 358-374. https://doi.org/10.1016/0012-821x(91)90029-h
      Nishiya, T., Watanabe, T., Yokoyama, K., 2001. Reconstruction and Breakup of the Rodinia Supercontinent: Constraints from Chronology in North Queensland, NE Australia. Gondwana Research, 4(4): 718. https://doi.org/10.1016/s1342-937x(05)70515-3
      Niu, Y., Gilmore, T., Mackie, S., et al., 2002. Mineral Chemistry, Whole-Rock Compositions, and Petrogenesis of Leg 176 Gabbros: Data and Discussion. In: Natland, J. H., Dick, H. J. B., Miller, D. J., et al., eds., Proceedings of the Ocean Drilling Program, Scientific Results, 176: 1-60. 10.2973/odp.proc.sr.176.011.2002
      Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/bf00375192
      Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23: 251-286. https://doi.org/10.1146/annurev.ea.23.050195.001343
      Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3-4): 325-394. https://doi.org/10.1016/s0009-2541(97)00150-2
      Qi, X. X., Wang, X. H., Zhu, L. H., et al., 2010. Validation on Age of Neoproterozoic Intrusions from Northeastern Margin of Indochina Block, Western Yunnan and Its Tectonic Implication: Evidence from Zircon LA-ICP-MS U-Pb Dating and Geochemistry. Acta Petrologica Sinica, 26(7): 2141-2154(in Chinese with English abstract).
      Smith, E. I., Sánchez, A., Walker, J. D., et al., 1999. Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small- and Large-Scale Chemical Variability of the Lithospheric Mantle. The Journal of Geology, 107(4): 433-448. https://doi.org/10.1086/314355
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. 10.1144/gsl.sp.1989.042.01.19
      Sun, W. H., Zhou, M. F., Gao, J. F., et al., 2009. Detrital Zircon U-Pb Geochronological and Lu-Hf Isotopic Constraints on the Precambrian Magmatic and Crustal Evolution of the Western Yangtze Block, SW China. Precambrian Research, 172(1-2): 99-126. https://doi.org/10.1016/j.precamres.2009.03.010
      Sun, W. H., Zhou, M. F., Yan, D. P., et al., 2008. Provenance and Tectonic Setting of the Neoproterozoic Yanbian Group, Western Yangtze Block (SW China). Precambrian Research, 167(1-2): 213-236. https://doi.org/10.1016/j.precamres.2008.08.001
      Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241-265. https://doi.org/10.1029/95rg00262
      Xu, J., Xia, X. P., Yin, C. Q., et al., 2022. Geochronology and Geochemistry of the Granitoids in the Diancangshan-Ailaoshan Fold Belt: Implications on the Neoproterozoic Subduction and Crustal Melting along the Southwestern Yangtze Block, South China. Precambrian Research, 383: 106907. https://doi.org/10.1016/j.precamres.2022.106907
      Xu, W., Dong, Y. S., Zhang, X. Z., et al., 2016. Petrogenesis of High-Ti Mafic Dykes from Southern Qiangtang, Tibet: Implications for a ca. 290 Ma Large Igneous Province Related to the Early Permian Rifting of Gondwana. Gondwana Research, 36: 410-422. https://doi.org/10.1016/j.gr.2015.07.016
      Xu, W. T., Liu, F. L., 2020. The Late Paleozoic Arc-Back Arc System in Western Ailaoshan: Evidence from Geochemistry and Geochronology of Basic Rocks. Acta Petrologica et Mineralogica, 39(4): 406-422(in Chinese with English abstract).
      Xu, X. S., Qiu, J. S., 2010. Igneous Petrology. Science Press, Beijing, 317(in Chinese).
      Yang, Z. N., Cai, X. Y., Yang, K. G., et al., 2023. Chronological and Geochemical Studies of the Middle Neoproterozoic Mafic Rock and Turbidite in the Dahongshan Orogenic Belt on the Northern Margin of the Yangtze Block: Implications for the Evolution of the Back-Arc Basin. Acta Petrologica Sinica, 39(5): 1423-1440(in Chinese with English abstract). doi: 10.18654/1000-0569/2023.05.13
      Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004
      Zhou, M. F., Yan, D. P., Wang, C. L., et al., 2006. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China): Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth and Planetary Science Letters, 248(1-2): 286-300. https://doi.org/10.1016/j.epsl.2006.05.032
      寇彩化, 刘燕学, 李江, 等, 2022. 江南造山带西段桂北四堡地区830 Ma辉长岩锆石SIMS U-Pb年代学和岩石地球化学特征及其岩石成因研究. 地学前缘, 29(2): 218-233.
      赖绍聪, 朱毓, 2020. 扬子板块西缘新元古代典型中酸性岩浆事件及其深部动力学机制: 研究进展与展望. 地质力学学报, 26(5): 759-790.
      李宝龙, 季建清, 付孝悦, 等, 2008. 滇西点苍山-哀牢山变质岩系锆石SHRIMP定年及其地质意义. 岩石学报, 24(10): 2322-2330.
      李献华, 李武显, 何斌, 2012. 华南陆块的形成与Rodinia超大陆聚合-裂解: 观察、解释与检验. 矿物岩石地球化学通报, 31(6): 543-559.
      刘俊来, 唐渊, 宋志杰, 等, 2011. 滇西哀牢山构造带: 结构与演化. 吉林大学学报(地球科学版), 41(5): 1285-1303.
      刘俊来, 王安建, 曹淑云, 等, 2008. 滇西点苍山杂岩中混合岩的地质年代学分析及其区域构造内涵. 岩石学报, 24(3): 413-420.
      刘佩雯, 张继彪, 丁孝忠, 等, 2023. 扬子西缘新元古代盐边群火山岩年代学及大地构造背景. 地球科学, 48(12): 4508-4526. doi: 10.3799/dqkx.2022.077
      罗改, 张彤, 贾小川, 等, 2021. 滇西北石鼓杂岩中花岗质片麻岩年代学、地球化学特征及地质意义. 地质学报, 95(11): 3335-3351.
      麻艺超, 蔡永丰, 马莉燕, 等, 2021. 滇西点苍山新元古代斜长角闪岩的成因: 来自锆石U-Pb年龄和全岩地球化学的证据. 地球科学, 46(8): 2860-2872. doi: 10.3799/dqkx.2020.288
      戚学祥, 王秀华, 朱路华, 等, 2010. 滇西印支地块东北缘新元古代侵入岩形成时代的厘定及其构造意义: 锆石LA-ICP-MS U-Pb定年及地球化学证据. 岩石学报, 26(7): 2141-2154.
      徐文涛, 刘福来, 2020. 哀牢山西部晚古生代岛弧-弧后盆地系统: 来自基性岩地球化学和年代学的证据. 岩石矿物学杂志, 39(4): 406-422.
      徐夕生, 邱检生, 2010. 火成岩岩石学. 北京: 科学出版社, 317.
      杨振宁, 蔡晓芸, 杨坤光, 等, 2023. 扬子北缘大洪山造山带中新元古代基性岩和浊积岩的年代学和地球化学研究: 对弧后盆地演化的指示. 岩石学报, 39(5): 1423-1440.
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  263
    • HTML全文浏览量:  72
    • PDF下载量:  45
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-10-11
    • 网络出版日期:  2025-01-09
    • 刊出日期:  2024-12-25

    目录

      /

      返回文章
      返回