• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    湖泊湿地潜流带沉积物碳氮磷生态化学计量特征

    陆帅帅 周念清 蔡奕 郭梦申 夏明锐 刘科豪 山红翠

    陆帅帅, 周念清, 蔡奕, 郭梦申, 夏明锐, 刘科豪, 山红翠, 2025. 湖泊湿地潜流带沉积物碳氮磷生态化学计量特征. 地球科学, 50(4): 1651-1662. doi: 10.3799/dqkx.2024.069
    引用本文: 陆帅帅, 周念清, 蔡奕, 郭梦申, 夏明锐, 刘科豪, 山红翠, 2025. 湖泊湿地潜流带沉积物碳氮磷生态化学计量特征. 地球科学, 50(4): 1651-1662. doi: 10.3799/dqkx.2024.069
    Lu Shuaishuai, Zhou Nianqing, Cai Yi, Guo Mengshen, Xia Mingrui, Liu Kehao, Shan Hongcui, 2025. Ecological Stoichiometric Characteristics of Carbon, Nitrogen, and Phosphorus in Sediments of Hyporheic Zone within Lake Wetland. Earth Science, 50(4): 1651-1662. doi: 10.3799/dqkx.2024.069
    Citation: Lu Shuaishuai, Zhou Nianqing, Cai Yi, Guo Mengshen, Xia Mingrui, Liu Kehao, Shan Hongcui, 2025. Ecological Stoichiometric Characteristics of Carbon, Nitrogen, and Phosphorus in Sediments of Hyporheic Zone within Lake Wetland. Earth Science, 50(4): 1651-1662. doi: 10.3799/dqkx.2024.069

    湖泊湿地潜流带沉积物碳氮磷生态化学计量特征

    doi: 10.3799/dqkx.2024.069
    基金项目: 

    国家自然科学基金 42077176

    国家自然科学基金 42272291

    详细信息
      作者简介:

      陆帅帅(1995-),男,博士研究生,主要研究方向为湿地碳氮磷循环.ORCID:0009-0001-7813-6093. E-mail:lushuaishuai@tongji.edu.cn

      通讯作者:

      周念清(1964-),男,教授,博士,E-mail:nq.zhou@tongji.edu.cn

    • 中图分类号: P593

    Ecological Stoichiometric Characteristics of Carbon, Nitrogen, and Phosphorus in Sediments of Hyporheic Zone within Lake Wetland

    • 摘要: 为了研究湖泊湿地潜流带沉积物中碳氮磷生态化学计量特征及其影响因素,在南洞庭湖湘江入湖口处湿地布设了4条监测剖面共16个钻孔,在0~10 m深度范围内共采集沉积物样品156件进行参数测试.运用相关性分析、冗余分析和结构方程模型等方法开展相关研究.结果表明,沉积物总碳(TC)、有机碳(SOC)、总氮(TN)和总磷(TP)含量均值分别为8.99、7.30、0.93和0.46 g/kg,具有随取样深度(H)增加而减小的特征.沉积物C/N、C/P和N/P的平均比值分别为10.46、46.51和5.06,具有很强的空间变异性.C/N和C/P较低说明有机氮和有机磷容易发生矿化作用,而较低的N/P则指示沉积物主要受到氮的限制.TC、SOC、TN、TP与H和氧化还原电位(Eh)显著负相关,与含水率(ω)显著正相关.H、Eh和ω是影响湿地沉积物碳氮磷含量及其生态化学计量特征的主要驱动因素.

       

    • 图  1  研究区取样点分布及剖面岩性特征

      Fig.  1.  Distribution of sampling points and lithologic characteristics of the transection in the study area

      图  2  湿地沉积物C、N、P含量的垂直分布

      Fig.  2.  Vertical distribution of C, N and P contents in wetland sediments

      图  3  湿地沉积物C、N、P生态化学计量比垂直分布

      Fig.  3.  Vertical distribution of ecological stoichiometric ratios of C, N and P in wetland sediments

      图  4  理化参数与C、N、P生态化学计量比冗余分析结果

      Fig.  4.  Redundancy analysis results of physicochemical parameters and ecological stoichiometric ratios of C, N and P

      图  5  沉积物理化参数与生态化学计量比SEM模型

      图a中椭圆表示潜变量,内部数值表示R2;箭头上数值表示路径系数;*表示P < 0.1,**表示P < 0.05,***表示P < 0.001,其他P > 0.05.图b~e分别表示TC、SOC、TN和TP含量的影响因素及影响程度. 图f~h分别表示C/N、C/P和N/P变化的影响因素及影响程度

      Fig.  5.  SEM model of sediment physicochemical parameters and ecological stoichiometric ratios

      表  1  理化参数和C、N、P含量统计结果

      Table  1.   Statistical results of physicochemical parameters and C, N and P contents

      pH Eh ω K ρ TC SOC TN
      (g/kg)
      TP
      (g/kg)
      C/N C/P N/P
      (mV) (%) (cm/s) (g/cm3) (g/kg) (g/kg)
      最小值 4.25 -127 12.40 1.2×10-6 1.60 0.60 0.13 0.08 0.06 0.41 0.86 0.32
      最大值 8.01 394 56.20 5.6×10-4 1.98 20.80 17.36 1.89 1.03 84.68 303.20 32.33
      平均值 6.46 80 35.02 3.3×10-5 1.80 8.99 7.30 0.93 0.46 10.46 46.51 5.06
      标准差 0.68 166 8.41 6.5×10-5 0.10 4.48 3.89 0.41 0.18 9.54 35.19 4.11
      变异系数(%) 10.53 207.50 24.01 196.97 5.56 49.83 53.29 44.09 39.13 91.20 75.66 81.23
      下载: 导出CSV

      表  2  相关性分析结果

      Table  2.   Correlation analysis results

      H pH Eh ω K ρ TC SOC TN TP C/N C/P N/P
      H 1
      pH -0.02 1
      Eh -0.63** -0.11 1
      ω -0.07 0.15 -0.32** 1
      K 0.07 -0.16 0.08 -0.02 1
      ρ 0.16 -0.33** 0.32* -0.87** 0.06 1
      TC -0.39** 0.02 -0.30** 0.33** -0.03 -0.06 1
      SOC -0.29** 0.01 -0.29** 0.32** -0.06 -0.04 0.85** 1
      TN -0.33** 0.05 -0.23* 0.45** -0.05 -0.07 0.68** 0.63** 1
      TP -0.28** -0.09 -0.23* 0.25** 0.11 -0.02 0.46** 0.34** 0.52** 1
      C/N 0.05 -0.08 -0.15 -0.18* -0.03 -0.05 0.18* 0.26** -0.31** -0.17* 1
      C/P -0.16* 0.02 0.22 0.04 -0.11 0.07 0.34** 0.48** 0.21** -0.42** 0.30** 1
      N/P -0.14 0.07 0.34** 0.05 -0.11 0.10 0.10 0.17** 0.36** -0.38** -0.16* 0.80** 1
      注:*在0.05水平上显著相关,**在0.01水平上显著相关.
      下载: 导出CSV

      表  3  理化参数和C、N、P含量对生态化学计量比贡献率

      Table  3.   Contribution of physicochemical parameters and C, N and P content to ecological stoichiometric ratio

      理化参数 贡献率(%) F P
      TP 31.4 31.1 0.002
      TN 23.7 13.7 0.002
      TC 19.4 28.2 0.002
      Eh 13.6 8.9 0.002
      SOC 7.4 13.1 0.002
      H 2.2 4.1 0.038
      ω 1.7 3.2 0.074
      K 0.3 0.5 0.524
      pH 0.2 0.4 0.640
      ρ 0.1 0.2 0.752
      下载: 导出CSV
    • Abrar, M. M., Xu, H., Aziz, T., et al., 2021. Carbon, Nitrogen, and Phosphorus Stoichiometry Mediate Sensitivity of Carbon Stabilization Mechanisms along with Surface Layers of a Mollisol after Long-Term Fertilization in Northeast China. Journal of Soils and Sediments, 21(2): 705-723. https://doi.org/10.1007/s11368-020-02825-7
      Bai, Y. F., Chen, S. Y., Shi, S. R., et al., 2020. Effects of Different Management Approaches on the Stoichiometric Characteristics of Soil C, N, and P in a Mature Chinese Fir Plantation. Science of the Total Environment, 723: 137868. https://doi.org/10.1016/j.scitotenv.2020.137868
      Borken, W., Matzner, E., 2009. Reappraisal of Drying and Wetting Effects on C and N Mineralization and Fluxes in Soils. Global Change Biology, 15(4): 808-824. https://doi.org/10.1111/j.1365-2486.2008.01681.x
      Bo, X. Y., Mi, W. B., Xu, H., et al., 2016. Contents and Ecological Stoichiometry Characteristics of Soil Carbon, Nitrogen and Phosphorus in Wetlands of Ningxia Plain. Journal of Zhejiang University (Agriculture and Life Sciences), 42(1): 107-118(in Chinese with English abstract).
      Chen, H. Y., Hu, H. Z., Ren, J. W., et al., 2023. Vertical Hyporheic Exchange and Nitrogen Transport and Transformation in Prairie Meandering Rivers. Earth Science, 48(10): 3866-3877(in Chinese with English abstract).
      Chen, Y., Li, Y. Q., Duan, Y. L., et al., 2022. Patterns and Driving Factors of Soil Ecological Stoichiometry in Typical Ecologically Fragile Areas of China. CATENA, 219: 106628. https://doi.org/10.1016/j.catena.2022.106628
      DeLaune, R. D., 2008. Biogeochemistry of Wetlands: Science and Applications. CRC Press, Boca Raton.
      Graham, E. B., Hofmockel, K. S., 2022. Ecological Stoichiometry as a Foundation for Omics-Enabled Biogeochemical Models of Soil Organic Matter Decomposition. Biogeochemistry, 157(1): 31-50. https://doi.org/10.1007/s10533-021-00851-2
      Guo, X., Jiang, Y. F., 2019. Spatial Characteristics of Ecological Stoichiometry and Their Driving Factors in Farmland Soils in Poyang Lake Plain, Southeast China. Journal of Soils and Sediments, 19(1): 263-274. https://doi.org/10.1007/s11368-018-2047-7
      Hessen, D. O., Elser, J. J., Sterner, R. W., et al., 2013. Ecological Stoichiometry: An Elementary Approach Using Basic Principles. Limnology and Oceanography, 58(6): 2219-2236. https://doi.org/10.4319/lo.2013.58.6.2219
      Hu, C., Li, F., Xie, Y. H., et al., 2019. Spatial Distribution and Stoichiometry of Soil Carbon, Nitrogen and Phosphorus along an Elevation Gradient in a Wetland in China. European Journal of Soil Science, 70(6): 1128-1140. https://doi.org/10.1111/ejss.12821
      Hu, Y., Deng, Y., Jiang, Z. C., et al., 2016. Soil Water Infiltration Characteristics and Their Influence Factors on Karst Hill Slopes under Different Vegetation Types. Chinese Journal of Ecology, 35(3): 597-604(in Chinese with English abstract).
      Jing, L., Zhou, Y., Lü, S., et al., 2018. Characterization of the Soil and Leaf C, N, and P Stoichiometry of Poplar Plantations of Three Different Stand Ages in Dongting Lake Wetland, China. Acta Ecologica Sinica, 38(18): 6530-6538(in Chinese with English abstract).
      Li, W. Q., Xiang, Q., Xie, X. F., et al., 2023. Effect of Spartina Alterniflora Invasion on Soil C: N: P Stoichiometry in Coastal Wetland of Hangzhou Bay. Environmental Science, 44(5): 2735-2745(in Chinese with English abstract).
      Li, X. F., Ding, C. X., Bu, H., et al., 2020. Effects of Submergence Frequency on Soil C∶ N∶ P Ecological Stoichiometry in Riparian Zones of Hulunbuir Steppe. Journal of Soils and Sediments, 20(3): 1480-1493. https://doi.org/10.1007/s11368-019-02533-x
      Liang, J., Zeng, G. M., Guo, S. L., et al., 2008. Effect of Hydraulic Conductivity Heterogeneity on Solute Transport in Groundwater. Journal of Hydraulic Engineering, 39(8): 900-906(in Chinese with English abstract).
      Liu, Y., Jiang, M., Lu, X. G., et al., 2017. Carbon, Nitrogen and Phosphorus Contents of Wetland Soils in Relation to Environment Factors in Northeast China. Wetlands, 37(1): 153-161. https://doi.org/10.1007/s13157-016-0856-2
      Ma, Y. Y., Wang, Z. Q., Ma, T., et al., 2020. Spatial Distribution Characteristics and Influencing Factors of Organic Carbon in Sediments of Tongshun River Riparian Zone. Chemosphere, 252: 126322. https://doi.org/10.1016/j.chemosphere.2020.126322
      Mueller, K. E., Eissenstat, D. M., Hobbie, S. E., et al., 2012. Tree Species Effects on Coupled Cycles of Carbon, Nitrogen, and Acidity in Mineral Soils at a Common Garden Experiment. Biogeochemistry, 111(1): 601-614. https://doi.org/10.1007/s10533-011-9695-7
      Qin, J. F., Zhang, J. P., Sang, L., et al., 2023. Effects of Water-Salt Environment on Freshwater Wetland Soil C, N, and P Ecological Stoichiometric Characteristics in the Yellow River Estuary Wetland. Environmental Science, 44(8): 4698-4705(in Chinese with English abstract).
      Redfield, A. C., 1960. The Biological Control of Chemical Factors in the Environment. Science Progress, 11: 150-170.
      Shang, Z. H., Feng, Q. S., Wu, G. L., et al., 2013. Grasslandification has Significant Impacts on Soil Carbon, Nitrogen and Phosphorus of Alpine Wetlands on the Tibetan Plateau. Ecological Engineering, 58: 170-179. https://doi.org/10.1016/j.ecoleng.2013.06.035
      Shen, R. C., Huang, X. Y., Wen, X. T., et al., 2023. The Determining Factors of Sediment Nutrient Content and Stoichiometry along Profile Depth in Seasonal Water. Science of the Total Environment, 856: 158972. https://doi.org/10.1016/j.scitotenv.2022.158972
      Shi, J. S., Du, Y. B., Zou, J. C., et al., 2024. Mechanisms of Microbial-Driven Changes in Soil Ecological Stoichiometry around Gold Mines. Journal of Hazardous Materials, 465: 133239. https://doi.org/10.1016/j.jhazmat.2023.133239
      Sun, D. B., Li, Y. Z., Yu, J. B., et al., 2022. Spatial Distribution and Eco-Stoichiometric Characteristics of Soil Nutrient Elements under Different Vegetation Types in the Yellow River Delta Wetland. Environmental Science, 43(6): 3241-3252(in Chinese with English abstract).
      Tong, C., Jia, R. X., Wang, W. Q., et al., 2010. Spatial Variations of Carbon, Nitrogen and Phosphorous in Tidal Salt Marsh Soils of the Minjiang River Estuary. Geographical Research, 29(7): 1203-1213(in Chinese with English abstract).
      Torgeson, J. M., Rosenfeld, C. E., Dunshee, A. J., et al., 2022. Hydrobiogechemical Interactions in the Hyporheic Zone of a Sulfate-Impacted, Freshwater Stream and Riparian Wetland Ecosystem. Environmental Science Processes & Impacts, 24(9): 1360-1382. https://doi.org/10.1039/d2em00024e
      Uwasawa, M., Sangtong, P., Cholitkul, W., 1988. Behavior of Phosphorus in Paddy Soils of Thailand. Soil Science and Plant Nutrition, 34(2): 183-194. https://doi.org/10.1080/00380768.1988.10415672
      Wan, S. A., Mou, X. J., Liu, X. T., 2018. Effects of Reclamation on Soil Carbon and Nitrogen in Coastal Wetlands of Liaohe River Delta, China. Chinese Geographical Science, 28(3): 443-455. https://doi.org/10.1007/s11769-018-0961-7
      Wang, J. J., Bai, J. H., Zhao, Q. Q., et al., 2014. Profile Characteristics of Carbon, Nitrogen and Phosphorus Inhosphorus Soils of Phragmites Australis Marshes in Halahai Wetlands. Wetland Science, 12(6): 690-696(in Chinese with English abstract).
      Wang, S. Q., Yu, G. R., 2008. Ecological Stoichiometry Characteristics of Ecosystem Carbon, Nitrogen and Phosphorus Elements. Acta Ecologica Sinica, 28(8): 3937-3947(in Chinese with English abstract).
      Xiong, J., Shao, X. X., Yuan, H. J., et al., 2022. Carbon, Nitrogen, and Phosphorus Stoichiometry and Plant Growth Strategy as Related to Land-Use in Hangzhou Bay Coastal Wetland, China. Frontiers in Plant Science, 13: 946949. https://doi.org/10.3389/fpls.2022.946949
      Xiong, J., Sun, Z. Y., Hu, Y. L., et al., 2024. Characteristics of Dissolved Organic Matter in Alpine Mountain Soils and Its Effect on Riverine Dissolved Organic Matter Export. Earth Science, 49(11): 4169-4183(in Chinese with English abstract).
      Xu, X. B., Chen, M. K., Yang, G. S., et al., 2020. Wetland Ecosystem Services Research: A Critical Review. Global Ecology and Conservation, 22: e01027. https://doi.org/10.1016/j.gecco.2020.e01027
      Yang, R., Sai, N., Su, L., et al., 2020. Ecological Stoichiometry Characteristics of Soil Carbon, Nitrogen and Phosphorus of the Yellow River Wetland in Baotou, Inner Mongolia. Acta Ecologica Sinica, 40(7): 2205-2214(in Chinese with English abstract).
      Zhang, F., Shi, X. N., Zeng, C., et al., 2020. Recent Stepwise Sediment Flux Increase with Climate Change in the Tuotuo River in the Central Tibetan Plateau. Science Bulletin, 65(5): 410-418. https://doi.org/10.1016/j.scib.2019.12.017
      Zhang, J. J., Liu, Z. C., Yan, C., et al., 2021. Effects of Soil pH on Soil Carbon, Nitrogen, and Phosphorus Ecological Stoichiometry in Three Types of Steppe. Acta Prataculturae Sinica, 30(2): 69-81(in Chinese with English abstract).
      Zhang, K., Su, Y. Z., Yang, R., 2019. Variation of Soil Organic Carbon, Nitrogen, and Phosphorus Stoichiometry and Biogeographic Factors across the Desert Ecosystem of Hexi Corridor, Northwestern China. Journal of Soils and Sediments, 19(1): 49-57. https://doi.org/10.1007/s11368-018-2007-2
      Zhang, Z. S., Lü, X. G., Xue, Z. S., et al., 2016. Is There a Redfield-Type C∶N∶P Ratio in Chinese Wetland Soils? Acta Pedologica Sinica, 53(5): 1160-1169(in Chinese with English abstract).
      Zheng, K. L., Deng, D. Z., 2019. Characteristic and Influencing Factors of Soil Infiltration in Zoige Wetland. Research of Soil and Water Conservation, 26(3): 179-184, 191(in Chinese with English abstract).
      卜晓燕, 米文宝, 许浩, 等, 2016. 宁夏平原不同类型湿地土壤碳氮磷含量及其生态化学计量学特征. 浙江大学学报(农业与生命科学版), 42(1): 107-118.
      陈皓月, 胡海珠, 任嘉伟, 等, 2023. 草原曲流河垂向潜流交换及其氮素迁移转化. 地球科学, 48(10): 3866-3877.
      胡阳, 邓艳, 蒋忠诚, 等, 2016. 岩溶坡地不同植被类型土壤水分入渗特征及其影响因素. 生态学杂志, 35(3): 597-604.
      靖磊, 周延, 吕偲, 等, 2018. 洞庭湖湿地3个林龄杨树人工林叶与土壤碳氮磷生态化学计量特征. 生态学报, 38(18): 6530-6538.
      李文琦, 项琦, 解雪峰, 等, 2023. 互花米草入侵对杭州湾滨海湿地土壤碳氮磷生态化学计量特征的影响. 环境科学, 44(5): 2735-2745.
      梁婕, 曾光明, 郭生练, 等, 2008. 渗透系数的非均质性对地下水溶质运移的影响. 水利学报, 39(8): 900-906.
      秦纪法, 张佳彭, 桑娈, 等, 2023. 水盐环境对黄河口淡水湿地土壤碳、氮、磷生态化学计量特征的影响. 环境科学, 44(8): 4698-4705.
      孙德斌, 栗云召, 于君宝, 等, 2022. 黄河三角洲湿地不同植被类型下土壤营养元素空间分布及其生态化学计量学特征. 环境科学, 43(6): 3241-3252.
      仝川, 贾瑞霞, 王维奇, 等, 2010. 闽江口潮汐盐沼湿地土壤碳氮磷的空间变化. 地理研究, 29(7): 1203-1213.
      王军静, 白军红, 赵庆庆, 等, 2014. 哈拉海湿地芦苇沼泽土壤碳、氮和磷含量的剖面特征. 湿地科学, 12(6): 690-696.
      王绍强, 于贵瑞, 2008. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28(8): 3937-3947.
      熊净, 孙自永, 胡雅璐, 马瑞, 2024. 高寒山区土壤溶解性有机质特征及其对河流溶解性有机质输出的影响. 地球科学, 49(11): 4169-4183.
      杨荣, 塞那, 苏亮, 等, 2020. 内蒙古包头黄河湿地土壤碳氮磷含量及其生态化学计量学特征. 生态学报, 40(7): 2205-2214.
      张静静, 刘尊驰, 鄢创, 等, 2021. 土壤pH值变化对3种草原类型土壤碳氮磷生态化学计量特征的影响. 草业学报, 30(2): 69-81.
      张仲胜, 吕宪国, 薛振山, 等, 2016. 中国湿地土壤碳氮磷生态化学计量学特征研究. 土壤学报, 53(5): 1160-1169.
      郑凯利, 邓东周, 2019. 若尔盖湿地土壤入渗性能及其影响因素. 水土保持研究, 26(3): 179-184, 191.
    • 加载中
    图(5) / 表(3)
    计量
    • 文章访问数:  268
    • HTML全文浏览量:  179
    • PDF下载量:  18
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-12-15
    • 网络出版日期:  2025-05-10
    • 刊出日期:  2025-04-25

    目录

      /

      返回文章
      返回