Development Direction of Offshore Seismic Exploration Technology
-
摘要: 随着近海油气勘探程度的不断深入,中浅层构造型油气藏占比大幅减少,深水、中深层、超浅层、潜山、岩性和复杂构造领域已成为油气增储上产新的增长极,对地震勘探技术提出新的挑战.为破解这些复杂领域的地质难题,基于变观测系统的小面元、高覆盖、超长偏移距、宽/多方位节点等地震采集方式不断涌现,作业方式变得越发复杂,在提升复杂地质条件下地震资料品质的同时,也带来了采集成本的大幅攀升.践行价值勘探开发理念,通过海洋地震勘探技术创新降低采集成本,引领油气高质量发展迫在眉睫.介绍了主要几种国内外海洋经济高效地震采集技术,重点分析了海洋地震勘探技术发展现状、应用成效及前景.在改善海洋地震资料品质、提高采集作业效率的同时,降低采集成本,发展经济技术一体化海洋地震勘探技术,推动产业高质量发展,实现价值勘探开发.Abstract: With the deepening of offshore oil and gas exploration in China, the proportion of tectonic oil and gas reservoirs has decreased significantly, and complex fields such as deep layer, buried hill, and lithology have become new growth poles in the searching of offshore oil and gas. This poses a new challenge to seismic exploration technology. In order to solve the geological problems in these complex fields, seismic acquisition methods such as small bins, high folds, ultra-long offsets, wide/multi azimuth Ocean Bottom Nodes are constantly emerging. The geometry and operation methods for offshore seismic acquisition have become increasingly complex, leading to a substantial increase in the cost of acquisition while enhancing the quality of seismic data under complex offshore geological conditions. It is urgent to practice the concept of value-driven exploration, reduce acquisition cost through technical innovation, and lead the high-quality development of offshore seismic exploration. This paper focuses on introducing several efficient offshore seismic acquisition technologies, including analysis of current status, applications, and prospects of technological development. While improving the quality of offshore seismic data and enhancing exploration efficiency, concerted efforts are made to raise acquisition efficiency and develop an economically and technically integrated offshore seismic exploration technology. This is essential for achieving value-driven exploration and promoting the high-quality development of offshore oil and gas exploration.
-
图 4 拖缆与稀疏节点联合采集示意图(Dhelie et al.,2021)
Fig. 4. Schematic diagram of joint acquisition of streamer and sparse node (Dhelie et al., 2021)
图 5 拖缆TopSeis采集示意图(Vinje and Elboth, 2019)
Fig. 5. Schematic of a towed TopSeis acquisition system (Vinje and Elboth, 2019)
图 6 TopSeis采集对成像效果的改善(Dhelie et al.,2018)
Fig. 6. Improvements in imaging with TopSeis acquisition (Dhelie et al., 2018)
图 9 双源采集与三源拖缆高密度采集的效果对比
据Widmaier et al.,2020. a.双源采集的地震剖面;b.三源高密度采集的地震剖面;c.双源采集的深度地震切片;d.三源高密度采集的深度地震切片
Fig. 9. The comparison between the results of conventional two sources and three sources streamer acquisition
图 10 共炮点道集混叠分离前(a)、后(b)(李培明等, 2020)
Fig. 10. The comparison between the common receiver gathers before (a) and after deblending (Li et al., 2020)
图 11 混叠分离前(a)、后(b)的粗叠剖面(李培明等, 2020)
Fig. 11. The comparison between the stack section before (a) and after (b) deblending (Li et al., 2020)
图 12 双船六源随机混叠激发拖缆采集观测系统(Poole et al., 2019)
Fig. 12. The geometry of random blended sources streamer acquisition with two vessels and six sources (Poole et al., 2019)
图 13 (a) 老资料和(b)双船六源随机混叠激发在Crossline方向资料(Poole et al., 2019)
Fig. 13. The comparison between legacy data (a) and random blended sources streamer acquisition with two vessels and six sources in Crossline direction (b) (Poole et al., 2019)
图 16 压缩感知采集提高地震成像品质
据Mosher et al.,2014. a.常规采集;b.压缩感知采集;c.压缩感知采集重构后
Fig. 16. Improvement of seismic imaging from compressive sensing acquisition
表 1 PGS公司单船多源采集统计表(Widmaier et al., 2020)
Table 1. Overview of the six wide-tow multi-source projects acquired (Widmaier et al., 2020)
序号 年份 国家 缆数 缆距(m) 源数 Xline面元(m) 标准源距 宽拖源距(m) 总源宽(m) 1 2019 澳大利亚 12 75.00 2 18.750 37.50 112.50 112.50 2 2019 挪威 12 84.38 3 14.063 28.13 112.50 225.00 3 2020 挪威 14 93.75 3 15.625 31.25 125.00 250.00 4 2020 英国 12 93.75 3 15.625 31.25 62.50 125.00 5 2020 挪威 16 56.25 3 9.375 18.75 93.75 187.50 6 2020 挪威 16 56.25 5 5.625 18.75 78.75 315.00 -
Abma, R., Kabir, N., 2006.3D Interpolation of Irregular Data with a POCS Algorithm. Geophysics, 71(6): E91-E97. https://doi.org/10.1190/1.2356088 Baardman, R., van Borselen, R., 2013. A Simulated Simultaneous Source Experiment in Shallow Waters and the Impact of Randomization Schemes. SEG Technical Program Expanded Abstracts 2013. Society of Exploration Geophysicists, 4382-4386. https://doi.org/10.1190/segam2013-1199.1 Beasley, C. J., 2008. A New Look at Marine Simultaneous Sources. The Leading Edge, 27(7): 914-917. https://doi.org/10.1190/1.2954033 Beasley, C. J., Chambers, R. E., Jiang, Z. R., 1998. A New Look at Simultaneous Sources. SEG Technical Program Expanded Abstracts 1998. Society of Exploration Geophysicists, 133-135. https://doi.org/10.1190/1.1820149 Berkhout, A. J., 2008. Changing the Mindset in Seismic Data Acquisition. The Leading Edge, 27(7): 924-938. https://doi.org/10.1190/1.2954035 Berkhout, A. J., 2012. Blended Acquisition with Dispersed Source Arrays. Geophysics, 77(4): A19-A23. https://doi.org/10.1190/geo2011-0480.1 Candès, E. J., Romberg, J. K., Tao, T., 2006. Stable Signal Recovery from Incomplete and Inaccurate Measurements. Communications on Pure and Applied Mathematics, 59(8): 1207-1223. https://doi.org/10.1002/cpa.20124 Chen, S. C., Chen, G. X., Wang, H. C., 2015. The Preliminary Study on High Efficient Acquisition of Geophysical Data with Sparsity Constraints. Geophysical Prospecting for Petroleum, 54(1): 24-35 (in Chinese with English abstract). Dhelie, P. E., Danielsen, V., Lie, J. E., et al., 2018. Improving Seismic Imaging in the Barents Sea by Source-over-Cable Acquisition. SEG Technical Program Expanded Abstracts 2018. Society of Exploration Geophysicists, 71-75. https://doi.org/10.1190/segam2018-2998198.1 Dhelie, P. E., Danielsen, V., Lie, J. E., 2021. Combining Nodes and Streamers to Tackle the Imaging Challenges of Salt Basins in the Barents Sea. First International Meeting for Applied Geoscience & Energy Expanded Abstracts. Society of Exploration Geophysicists, 41-45. https://doi.org/10.1190/segam2021-3594693.1 Donoho, D. L., 2006. Compressed Sensing. IEEE Transactions on Information Theory, 52(4): 1289-1306. https://doi.org/10.1109/tit.2006.871582 Du, X. D., 2018. Progress of Seismic Exploration Technology in Offshore China. Geophysical Prospecting for Petroleum, 57(3): 321-331 (in Chinese with English abstract). Hennenfent, G., Herrmann, F. J., 2008. Simply Denoise: Wavefield Reconstruction via Jittered Undersampling. Geophysics, 73(3): V19-V28. https://doi.org/10.1190/1.2841038 Herrmann, F. J., 2009. Sub-Nyquist Sampling and Sparsity: How to Get More Information from Fewer Samples. SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists, 3410-3415. https://doi.org/10.1190/1.3255570 Herrmann, F. J., 2010. Randomized Sampling and Sparsity: Getting More Information from Fewer Samples. Geophysics, 75(6): WB173-WB187. https://doi.org/10.1190/1.3506147 Herrmann, F. J., Hennenfent, G., 2008. Non-Parametric Seismic Data Recovery with Curvelet Frames. Geophysical Journal International, 173(1): 233-248. https://doi.org/10.1111/j.1365-246X.2007.03698.x Huang, X. G., 2019. Offshore Seismic Exploration Based on Compressive Sensing. Geophysical Prospecting for Petroleum, 58(2): 162-175 (in Chinese with English abstract). Huang, X. G., 2020. A Simulation of Acquisition Design and Data Processing for Offshore Compressive Sensing Seismic. Oil Geophysical Prospecting, 55(2): 248-256 (in Chinese with English abstract). Huang, X. G., Wang, Y. B., Liu, Y. K., et al., 2014. Weighted Anti-Alias Seismic Data Reconstruction in R-P Domain. Chinese Journal of Geophysics, 57(7): 2278-2290 (in Chinese with English abstract). Huang, X. G., Zhang, J. M., Du, X. D., et al., 2022. Compressive Sensing Aided Seismic Geometry Design for Offshore Acquisition. Acta Geophysica, 70(2): 547-562. https://doi.org/10.1007/s11600-022-00748-0 Krohn, C. E., Johnson, M. L., 2003. High Fidelity Vibratory Seismic (HFVS) II-Superior Source Separation. SEG Technical Program Expanded Abstracts 2003. Society of Exploration Geophysicists, 2452. https://doi.org/10.1190/1.1817957 Li, C. B., Zhang, Y., 2018. CSI: An Efficient High- Resolution Seismic Acquisition Technology Based on Compressive Sensing. Geophysical Prospecting for Petroleum, 57(4): 537-542 (in Chinese with English abstract). Li, H. Y., Xiao, S. G., Li, F., et al., 2023. Reservoir Characteristics and Main Controlling Factors of Hydrocarbon Accumulation of Lower Paleozoic Buried-Hill in Northwestern Shaleitian Slope of Western Bohai Sea. Earth Science, 48(1): 329-341 (in Chinese with English abstract). Li, P. M., Song, J. W., Liu, X. G., et al., 2020. Optimal Design of Parameters for Efficient Offshore Aliasing Acquisition. Oil Geophysical Prospecting, 55(4): 707-715 (in Chinese with English abstract). Li, Y., Xue, Z. J., 2020. Progress and Development Directions of Reservoir Geophysics at SINOPEC. Geophysical Prospecting for Petroleum, 59(2): 159-168 (in Chinese with English abstract). Liu, G. C., Chen, X. H., Guo, Z. F., et al., 2011. Missing Seismic Data Rebuilding by Interpolation Based on Curvelet Transform. Oil Geophysical Prospecting, 46(2): 237-246 (in Chinese with English abstract). Long, A., 2017. Source and Streamer Towing Strategies for Improved Efficiency, Spatial Sampling and near Offset Coverage. First Break, 35(11): 71-74. Lü, G. H., Di, Z. X., Huo, S. D., et al., 2018. Seismic Data Acquisition Based on Compressive Sensing. Geophysical Prospecting for Petroleum, 57(6): 831-841 (in Chinese with English abstract). Ma, J. W., 2011. Sparse Promotion Seismic Exploration. The 27th Annual Meeting of the Chinese Geophysical Society, Changsha, 101-102 (in Chinese). Ma, J. W., Yu, S. W., 2017. Sparsity in Compressive Sensing. The Leading Edge, 36(8): 646-652. https://doi.org/10.1190/tle36080646.1 Moldoveanu, N., 2010. Random Sampling: A New Strategy for Marine Acquisition. SEG Technical Program Expanded Abstracts 2010. Society of Exploration Geophysicists, 51-55. https://doi.org/10.1190/1.3513834 Moldoveanu, N., Ji, Y., Beasley, C., 2012. Multivessel Coil Shooting Acquisition with Simultaneous Sources. SEG Technical Program Expanded Abstracts 2012. Society of Exploration Geophysicists, 1-6. https://doi.org/10.1190/segam2012-1526.1 Mosher, C., Li, C. B., Ji, Y. C., et al., 2017. Compressive Seismic Imaging: Moving from Research to Production. SEG Technical Program Expanded Abstracts 2017. Society of Exploration Geophysicists, 74-78. https://doi.org/10.1190/segam2017-17679803.1 Mosher, C., Li, C. B., Morley, L., et al., 2014. Increasing the Efficiency of Seismic Data Acquisition via Compressive Sensing. The Leading Edge, 33(4): 386-391. https://doi.org/10.1190/tle33040386.1 Poole, G., Page, C., James, G., et al., 2019. Rich Azimuth Dual Triple-Source Simultaneous Shooting West of Shetland. 81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, 1-5. https://doi.org/10.3997/2214-4609.201900896 Rietsch, E., 1981. Reduction of Harmonic Distortion in Vibratory Source Records. Geophysical Prospecting, 29(2): 178-188. https://doi.org/10.1111/j.1365-2478.1981.tb00400.x Silverman, D., 1980. Method of Three Dimensional Seismic Prospecting. The Journal of the Acoustical Society of America, 67(1): 365. https://doi.org/10.1121/1.383740 Song, J. W., Li, P. M., Wang, W. C., et al., 2019. High-Productivity Blended Acquired Data Separation by Sparse Inversion. Oil Geophysical Prospecting, 54(2): 268-273 (in Chinese with English abstract). Thomas, J. W. T., Chandler, B., Osten, D., 2010. Galcode: Simultaneous Seismic Sourcing. SEG Technical Program Expanded Abstracts 2010. Society of Exploration Geophysicists, 86-90. https://doi.org/10.1190/1.3513917 Vigh, D., Glaccum, K., Cheng, X., et al., 2023. Delve Deep: Seismic Revolution in Acquisition and Model Building for Exploration. The Leading Edge, 42(10): 663-669. https://doi.org/10.1190/tle42100663.1 Vinje, V., Elboth, T., 2019. Hunting High and Low in Marine Seismic Acquisition; Combining Wide-Tow Top Sources with Front Sources. 81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, 1-5. https://doi.org/10.3997/2214-4609.201900899 Vinje, V., Lie, J. E., Danielsen, V., et al., 2017. Shooting over the Seismic Spread. First Break, 35(6). https://doi.org/10.3997/1365-2397.35.6.89461 Wang, B. F., Han, D., Li, J. K., 2022. Intelligent Regularly Missing Shots Reconstruction Based on Dilated Convolution. Chinese Journal of Geophysics, 65(6): 2226-2243 (in Chinese with English abstract). Wang, B. F., Lu, W. K., Chen, X. H., et al., 2018. Efficient Seismic Data Interpolation Using Three-Dimensional Curvelet Transform in the Frequency Domain. Geophysical Prospecting for Petroleum, 57(1): 65-71 (in Chinese with English abstract). Wang, H. C., Tao, C. H., Chen, S. C., et al., 2016. Study on Highly Efficient Seismic Data Acquisition Method and Theory Based on Sparsity Constraint. Chinese Journal of Geophysics, 59(11): 4246-4265 (in Chinese with English abstract). Wang, Y. F., Cao, J. J., Yang, C. C., 2011. Recovery of Seismic Wavefields Based on Compressive Sensing by an L1-Norm Constrained Trust Region Method and the Piecewise Random Subsampling. Geophysical Journal International, 187(1): 199-213. https://doi.org/10.1111/j.1365-246X.2011.05130.x Widmaier, M., O'Dowd, D., 2017. Strategies for High- Resolution Towed-Streamer Acquisition and Imaging of Shallow Targets. SEG Technical Program Expanded Abstracts 2017. Society of Exploration Geophysicists, 186-190. https://doi.org/10.1190/segam2017-17783497.1 Widmaier, M., O'Dowd, D., Roalkvam, C., 2019. Redefining Marine Towed-Streamer Acquisition. First Break, 37(11): 57-62. https://doi.org/10.3997/1365-2397.2019035 Widmaier, M., Tønnessen, R., Oukili, J., et al., 2020. Recent Advances with Wide-Tow Multi-Sources in Marine Seismic Streamer Acquisition and Imaging. First Break, 38(12): 75-79. https://doi.org/10.3997/1365-2397.fb2020093 Wu, K. Q., Xie, X. J., Liao, J. H., et al., 2023. The Rules of Reservoir Characteristics and Dissolution of Paleogene Clastic Rocks in Offshore China. Earth Science, 48(2): 385-397 (in Chinese with English abstract). Xie, Y. H., 2018. New Progress and Prospect of Oil and Gas Exploration of China National Offshore Oil Corporation. China Petroleum Exploration, 23(1): 26-35 (in Chinese with English abstract). Xie, Y. H., 2020. Practices and Thoughts of CNOOC Offshore Oil and Gas Exploration. China Offshore Oil and Gas, 32(2): 1-13 (in Chinese with English abstract). Yang, H. C., Zhang, J. Z., 2022. Image-Domain Least-Squares Reverse-Time Migration of Combined Towed-Streamer and OBN Data. Chinese Journal of Geophysics, 65(10): 4099-4110 (in Chinese with English abstract). Yu, P. F., Chu, M. Z., Xu, Y. X., et al., 2023. Joint Elastic Reverse Time Migration of Towed Streamer and Sparse Ocean-Bottom Seismic Node Hybrid Data. Geophysics, 88(1): S47-S57. https://doi.org/10.1190/geo2021-0333.1 Zhang, G. C., Mi, L. J., Wu, S. G., et al., 2007. Deepwater Area—The New Prospecting Targets of Northern Continental Margin of South China Sea. Acta Petrolei Sinica, 2(28): 15-21 (in Chinese with English abstract). Zhang, G. C., Qu, H. J., 2019. Major New Discoveries of Oil and Gas in Global Deepwaters and Enlightenment. Acta Petrolei Sinica, 40(1): 34-55 (in Chinese with English abstract). Zhang, G. C., Qu, H. J., Liu, S. X., et al., 2015. Tectonic Cycle of Marginal Sea Controlled the Hydrocarbon Accumulation in Deepwater Areas of South China Sea. Acta Petrolei Sinica, 36(5): 533-545 (in Chinese with English abstract). Zhang, Q. C., Abma, R., Ahmed, I., 2013. A Marine Node Simultaneous Source Acquisition Trial at Atlantis, Gulf of Mexico. SEG Technical Program Expanded Abstracts 2013. Society of Exploration Geophysicists, 99-103. https://doi.org/10.1190/segam2013-0699.1 Zhao, X. Z., Chen, C. W., Song, S. Y., et al., 2023. Shale Oil Reservoir Structure Characteristics of the Second Member of Kongdian Formation in Cangdong Sag, Bohai Bay Basin. Earth Science, 48(1): 63-76 (in Chinese with English abstract). Zhou, S., Lü, Y., Lü, G. H., et al., 2017. Irregular Seismic Geometry Design and Data Reconstruction Based on Compressive Sensing. Geophysical Prospecting for Petroleum, 56(5): 617-625 (in Chinese with English abstract). 陈生昌, 陈国新, 王汉闯, 2015. 稀疏性约束的地球物理数据高效采集方法初步研究. 石油物探, 54(1): 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201501004.htm 杜向东, 2018. 中国海上地震勘探技术新进展. 石油物探, 57(3): 321-331. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201803001.htm 黄小刚, 2019. 浅谈海上压缩感知地震勘探. 石油物探, 58(2): 162-175. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201902003.htm 黄小刚, 2020. 海上压缩感知地震仿真采集设计与处理. 石油地球物理勘探, 55(2): 248-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202002003.htm 黄小刚, 王一博, 刘伊克, 等, 2014. 半径‒斜率域加权反假频地震数据重建. 地球物理学报, 57(7): 2278-2290. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201407022.htm 李成博, 张宇, 2018. CSI: 基于压缩感知的高精度高效率地震资料采集技术. 石油物探, 57(4): 537-542. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201804007.htm 李慧勇, 肖述光, 李飞, 等, 2023. 渤海西部沙西北斜坡带下古生界潜山储层特征及成藏主控因素. 地球科学, 48(1): 329-341. doi: 10.3799/dqkx.2022.406 李培明, 宋家文, 柳兴刚, 等, 2020. 海上高效混叠采集参数优化设计. 石油地球物理勘探, 55(4): 707-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202004001.htm 李阳, 薛兆杰, 2020. 中国石化油藏地球物理技术进展与探讨. 石油物探, 59(2): 159-168. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT202002002.htm 刘国昌, 陈小宏, 郭志峰, 等, 2011. 基于Curvelet变换的缺失地震数据插值方法. 石油地球物理勘探, 46(2): 237-246. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201102015.htm 吕公河, 邸志欣, 霍守东, 等, 2018. 基于压缩感知的地震数据采集实践. 石油物探, 57(6): 831-841. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201806005.htm 马坚伟, 2011. 稀疏促进地震勘探. 中国地球物理学会第二十七届年会, 长沙: 101-102. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201110001018.htm 宋家文, 李培明, 王文闯, 等, 2019. 基于稀疏反演的高效混采数据分离方法. 石油地球物理勘探, 54(2): 268-273. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201902004.htm 王本锋, 韩东, 李家阔, 2022. 基于扩张卷积的智能化规则缺失炮插值重建方法. 地球物理学报, 65(6): 2226-2243. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202206028.htm 王本锋, 陆文凯, 陈小宏, 等, 2018. 基于3D Curvelet变换的频率域高效地震数据插值方法研究. 石油物探, 57(1): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT202403001.htm 王汉闯, 陶春辉, 陈生昌, 等, 2016. 基于稀疏约束的地震数据高效采集方法理论研究. 地球物理学报, 59(11): 4246-4265. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201709020.htm 吴克强, 谢晓军, 廖计华, 等, 2023. 中国近海古近纪碎屑岩储层特征与溶蚀作用规律. 地球科学, 48(2): 385-397. doi: 10.3799/dqkx.2022.151 谢玉洪, 2018. 中国海洋石油总公司油气勘探新进展及展望. 中国石油勘探, 23(1): 26-35. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201801003.htm 谢玉洪, 2020. 中国海油近海油气勘探实践与思考. 中国海上油气, 32(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202002001.htm 杨华臣, 张建中, 2022. 拖缆与OBN资料联合成像域最小二乘逆时偏移成像. 地球物理学报, 65(10): 4099-4110. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202210031.htm 张功成, 米立军, 吴时国, 等, 2007. 深水区——南海北部大陆边缘盆地油气勘探新领域. 石油学报, 28(2): 15. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200702002.htm 张功成, 屈红军, 2019. 全球深水油气重大新发现及启示. 石油学报, 40(1): 34-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201901001.htm 张功成, 屈红军, 刘世翔, 等, 2015. 边缘海构造旋回控制南海深水区油气成藏. 石油学报, 36(5): 533-545. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202304001.htm 赵贤正, 陈长伟, 宋舜尧, 等, 2023. 渤海湾盆地沧东凹陷孔二段页岩层系不同岩性储层结构特征. 地球科学, 48(1): 63-76. doi: 10.3799/dqkx.2022.212 周松, 吕尧, 吕公河, 等, 2017. 基于压缩感知的非规则地震勘探观测系统设计与数据重建. 石油物探, 56(5): 617-625. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201705001.htm -