The Relationship between Regional Stress Field and Rock Landslide: A Case Study of the 2022 Luding Ms6.8 Earthquake
-
摘要: 地球表面和内部发生的各种构造现象及其伴生的地质灾害都与区域应力场密切相关.然而,区域应力场与滑坡密度或规模的定量化关系认识尚不明确.基于考虑断层和地形影响的高分辨率三维应力场模型,结合岩体结构损伤数据,分析了2022年9月5日泸定Ms6.8级地震前后发生的岩质滑坡规模和面密度与不同应力参数的关系.结果表明,最大剪应力与岩质滑坡的面积上限和面密度之间存在显著正相关关系,最大剪应力高值区与地震前后岩质滑坡的空间分布高度吻合,90%以上的岩质滑坡所在区域的最大剪应力最小值为6.95 MPa.受地形与断层扰动的应力场控制了岩体结构面的发育,为岩质滑坡的形成创造了必要的物质条件.本研究强调了岩质滑坡的发生不仅仅是由随机因素触发的简单过程,而是一个受地应力、地形和地质结构影响的复杂过程.Abstract: Various tectonic phenomena occurring on and beneath the Earth's surface, and the associated geological disasters, are closely related to regional stress fields. However, the quantitative relationship between regional stress fields and landslide density or size is not yet clear. This paper utilizes a high-resolution three-dimensional stress field model that accounts for fault and topographic influences, combined with rock damage data, to analyze the relationship between the size and density of rock landslides and different stress parameters before and after the Luding Ms6.8 earthquake on September 5, 2022. The results indicate that stress field shows a strong correlation with rock landslides. A significant positive correlation exists between the maximum shear stress and both the upper area limit and density of rock landslides. Areas of high maximum shear stress align closely with the spatial distribution of rock landslides before and after the earthquake, with over 90% of the landslides occurring above a threshold of 6.95 MPa in maximum shear stress. The stress fields, disturbed by topography and faults, control the development of structural planes in the rock, creating the necessary material conditions for the formation of rock landslides. This study emphasizes that the occurrence of rock landslides is not merely a simple process triggered by random factors, but a complex process influenced by ground stress, topography, and geological structures.
-
Key words:
- stress field /
- maximum shear stress /
- fault /
- rock landslide /
- rock damage /
- disaster geology
-
图 9 跨鲜水河断层剖面岩体结构面面密度
a.剖面1岩体结构面面密度;b.剖面2岩体结构面面密度. 剖面位置见图 2a
Fig. 9. Rock mass surface density across Xianshuihe fault section
表 1 遥感影像来源
Table 1. Data source of remote sensing images
时段 来源 日期 分辨率(m) 2022泸定地震震前 Google Earth Pro Multiple Multiple 2022泸定地震震后 Aerial images 2022.09.06‒2022.09.10 0.2 BJ-3A 2022.09.10 0.5 GF-6 2022.09.10 2 表 2 不同应力参数与岩质滑坡的相关性
Table 2. Correlation between different stress parameters and bedrock landslide
应力指标 岩质滑坡面积 岩质滑坡面密度 同震 震前 同震 震前 最大主应力 r=0.35
p=0.43r=-0.28
p=0.49r=0.83
p < 0.05r=0.53
p=0.09最小主应力 r=-0.89
p < 0.05r=-0.85
p < 0.05r=0.51
p=0.38r=-0.32
p=0.60最大剪应力 r=0.55
p < 0.05r=0.72
p < 0.05r=0.96
p < 0.000 1r=0.73
p < 0.05 -
Allen, C. R., Luo, Z. L., Qian, H., et al., 1991. Field Study of a Highly Active Fault Zone: The Xianshuihe Fault of Southwestern China. Geological Society of America Bulletin, 103(9): 1178-1199. https://doi.org/10.1130/0016-7606(1991)1031178: fsoaha>2.3.co;2 doi: 10.1130/0016-7606(1991)1031178:fsoaha>2.3.co;2 Ai, N. S., Zuo, F. Y., 1985. Statistical Analysis of Landslide Sliding Direction in Dongxiang Area of Gansu Province. Journal of Lanzhou University, 21(3): 133 (in Chinese). Chai, C. P., Delorey, A. A., Maceira, M., et al., 2021. A 3D Full Stress Tensor Model for Oklahoma. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB021113. https://doi.org/10.1029/2020JB021113 Chen, H. K., Tang, H. M., Ai, N. S., 1997. Neotectonic Strese Field and Its Effects on the Dominant Sliding Direction of Landslides in the Three Gorges Reservoir Region. Geographical Research, 16(4): 16-23 (in Chinese with English abstract). Choi, J. H., Edwards, P., Ko, K., et al., 2016. Definition and Classification of Fault Damage Zones: A Review and a New Methodological Approach. Earth-Science Reviews, 152: 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006 Clair, J. St., Moon, S., Holbrook, W. S., et al., 2015. Geophysical Imaging Reveals Topographic Stress Control of Bedrock Weathering. Science, 350(6260): 534-538. https://doi.org/10.1126/science.aab2210 Cui, P., 2014. Progress and Prospects in Research on Mountain Hazards in China. Progress in Geography, 33(2): 145-152 (in Chinese with English abstract). Cui, P., Ge, Y. G., Li, S. J., et al., 2022. Scientific Challenges in Disaster Risk Reduction for the Sichuan-Tibet Railway. Engineering Geology, 309: 106837. https://doi.org/10.1016/j.enggeo.2022.106837 Cui, P., Wei, F. Q., He, S. M., et al., 2008. Mountain Disasters Induced by the Earthquake of May 12 in Wenchuan and the Disasters Mitigation. Mountain Research, 26(3): 280-282 (in Chinese with English abstract). doi: 10.3969/j.issn.1008-2786.2008.03.006 Fan, X. M., Wang, X., Dai, L. X., et al., 2022. Characteristics and Spatial Distribution Pattern of MS 6.8 Luding Earthquake Occurred on September 5, 2022. Journal of Engineering Geology, 30(5): 1504-1516 (in Chinese with English abstract). Huang, R. Q., Lin, F., Chen, D. J., et al., 2001. Formation Mechanism of Unloading Fracture Zone of High Slopes and Its Engineering Behaviors. Journal of Engineering Geology, 9(3): 227-232 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2001.03.001 Iverson, R. M., Reid, M. E., 1992. Gravity-Driven Groundwater Flow and Slope Failure Potential: Elastic Effective-Stress Model. Water Resources Research, 28(3): 925-938. https://doi.org/10.1029/91wr02694 Jaeger, J. C., Cook, N. G., Zimmerman, R., 2007. Fundamentals of Rock Mechanics. John Wiley & Sons, New Jersey. Kong, W. L., Huang, L. Y., Yao, R., et al., 2021. Review of Stress Field Studies in Sichuan-Yunnan Region. Progress in Geophysics, 36(5): 1853-1864 (in Chinese with English abstract). Li, G. K., Moon, S., 2021. Topographic Stress Control on Bedrock Landslide Size. Nature Geoscience, 14: 307-313. https://doi.org/10.1038/s41561-021-00739-8 Li, X. R., Gao, K., Feng, Y., et al., 2022. 3D Geomechanical Modeling of the Xianshuihe Fault Zone, SE Tibetan Plateau: Implications for Seismic Hazard Assessment. Tectonophysics, 839: 229546. https://doi.org/10.1016/j.tecto.2022.229546 Ma, Z. J., Zhang, J. S., Wang, Y. P., 1998. The 3-D Deformational Movement Episodes and Neotectonic Domains in the Qinghai-Tibet Plateau. Acta Geologica Sinica, 72(3): 211-227 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.1998.03.003 Martel, S. J., 2016. Effects of Small-Amplitude Periodic Topography on Combined Stresses Due to Gravity and Tectonics. International Journal of Rock Mechanics and Mining Sciences, 89: 1-13. https://doi.org/10.1016/j.ijrmms.2016.07.026 Moon, S., Perron, J. T., Martel, S. J., et al., 2020. Present-Day Stress Field Influences Bedrock Fracture Openness Deep into the Subsurface. Geophysical Research Letters, 47(23): e2020GL090581. https://doi.org/10.1029/2020gl090581 Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114 (in Chinese with English abstract). Riebe, C. S., Hahm, W. J., Brantley, S. L., 2017. Controls on Deep Critical Zone Architecture: A Historical Review and Four Testable Hypotheses. Earth Surface Processes and Landforms, 42(1): 128-156. https://doi.org/10.1002/esp.4052 Tang, H. M., Chen, H. K., Zhu, X. Y., et al., 2000. Neotectonic Stress Field and Its Impact on Macro Development of Landslides in Chongqing Area of the Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 19(3): 352-356 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2000.03.021 Tang, H. M., Li, C. D., Gong, W. P., et al., 2022. Fundamental Attribute and Research Approach of Landslide Evolution. Earth Science, 47(12): 4596-4608 (in Chinese with English abstract). Tang, R., Xu, Q., Fan, X. M., 2021. Influence of Tectonic Stress Field on Formation and Evolution of Sub-Horizontal Translational Landslides in Sichuan Basin. Journal of Engineering Geology, 29(5): 1437-1451 (in Chinese with English abstract). Valagussa, A., Marc, O., Frattini, P., et al., 2019. Seismic and Geological Controls on Earthquake-Induced Landslide Size. Earth and Planetary Science Letters, 506: 268-281. https://doi.org/10.1016/j.epsl.2018.11.005 Wang, K. W., Zhang, F., Lin, D. C., et al., 2007. Relation between Neotectonism and Landslides in the Three Gorges Reservoir Area. Global Geology, 26(1): 26-32 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2007.01.005 Wen, X. Z., Ma, S. L., Xu, X. W., et al., 2008. Historical Pattern and Behavior of Earthquake Ruptures along the Eastern Boundary of the Sichuan-Yunnan Faulted-Block, Southwestern China. Physics of the Earth and Planetary Interiors, 168(1-2): 16-36. https://doi.org/10.1016/j.pepi.2008.04.013 Wu, C. H., Cui, P., Li, Y. S., et al., 2018. Seismogenic Fault and Topography Control on the Spatial Patterns of Landslides Triggered by the 2017 Jiuzhaigou Earthquake. Journal of Mountain Science, 15(4): 793-807. https://doi.org/10.1007/s11629-017-4761-9 Wu, C. H., Cui, P., Li, Y. S., et al., 2021. Tectonic Damage of Crustal Rock Mass around Active Faults and Its Conceptual Model at Eastern Margin of Tibetan Plateau. Journal of Engineering Geology, 29(2): 289-306 (in Chinese with English abstract). Xu, C., Xu, X. W., Yao, X., et al., 2014. Three (nearly) Complete Inventories of Landslides Triggered by the May 12, 2008 Wenchuan Mw 7.9 Earthquake of China and Their Spatial Distribution Statistical Analysis. Landslides, 11(3): 441-461. https://doi.org/10.1007/s10346-013-0404-6 Xu, J. P., Hu, H. T., Zhang, A. S., et al., 1999. Study on Statistical Characteristics of Physical and Mechanical Parameters of Slope Rock Mass. Chinese Journal of Rock Mechanics and Engineering, 18(4): 14-18 (in Chinese with English abstract). Xu, Q., Zheng, G., Li, W. L., et al., 2018. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018. Journal of Engineering Geology, 26(6): 1534-1551 (in Chinese with English abstract). Yamagishi, H., Iwahashi, J., 2007. Comparison between the Two Triggered Landslides in Mid-Niigata, Japan by July 13 Heavy Rainfall and October 23 Intensive Earthquakes in 2004. Landslides, 4(4): 389-397. https://doi.org/10.1007/s10346-007-0093-0 Yi, S. J., Wu, C. H., Cui, P., et al., 2022. Cause of the Baige Landslides: Long-Term Cumulative Coupled Effect of Tectonic Action and Surface Erosion. Lithosphere, 2021(Special 7): 7784535. https://doi.org/10.2113/2022/7784535 Yin, L., Zhou, B. G., Ren, Z. K., et al., 2024. Spatial Distribution of Seismic Moment Deficit in Xianshuihe Fault Zone and the 2022 Luding M 6.8 Earthquake. Earth Science, 49(2): 425-436 (in Chinese with English abstract). Yin, Y. P., 2000. Study on Characteristics and Disaster Reduction of High-Speed Giant Landslide in Yigong in the Bomi, Tigbet. Hydrogeology and Engineering Geology, 27(4): 8-11 (in Chinese with English abstract). Zhang, J. W., Zhao, Z. Q., Yan, Y. N., et al., 2021. Lithium and Its Isotopes Behavior during Incipient Weathering of Granite in the Eastern Tibetan Plateau, China. Chemical Geology, 559: 119969. https://doi.org/10.1016/j.chemgeo.2020.119969 Zhang, Y. F., Wu, C. H., Li, Y. S., et al., 2024. Quantitative Analysis of Damage Characteristics of Coseismic Rock Mass: A Case of 2022 Ms 6.8 Luding Earthquake. Journal of Engineering Geology, 32(3): 1020-1034 (in Chinese with English abstract). Zhang, Y. S., Ren, S. S., Guo, C. B., et al., 2019. Research on Engineering Geology Related with Active Fault Zone. Acta Geologica Sinica, 93(4): 763-775 (in Chinese with English abstract). Zhang, Z. Y., Wang, S. T., Wang, L. S., 2002. Principle of Engineering Geology Analysis. Geological Publishing House, Beijing, 355 (in Chinese). 艾南山, 左发源, 1985. 甘肃东乡地区滑坡滑移方向统计分析. 兰州大学学报, 21(3): 133. 陈洪凯, 唐红梅, 艾南山, 1997. 三峡库区的新构造应力场及其对库岸滑坡滑动优势方向的影响. 地理研究, 16(4): 16-23. 崔鹏, 2014. 中国山地灾害研究进展与未来应关注的科学问题. 地理科学进展, 33(2): 145-152. 崔鹏, 韦方强, 何思明, 等, 2008.5·12汶川地震诱发的山地灾害及减灾措施. 山地学报, 26(3): 280-282. 范宣梅, 王欣, 戴岚欣, 等, 2022. 2022年Ms 6.8级泸定地震诱发地质灾害特征与空间分布规律研究. 工程地质学报, 30(5): 1504-1516. 黄润秋, 林峰, 陈德基, 等, 2001. 岩质高边坡卸荷带形成及其工程性状研究. 工程地质学报, 9(3): 227-232. 孔维林, 黄禄渊, 姚瑞, 等, 2021. 川滇地区应力场研究进展. 地球物理学进展, 36(5): 1853-1864. 马宗晋, 张家声, 汪一鹏, 1998. 青藏高原三维变形运动学的时段划分和新构造分区. 地质学报, 72(3): 211-227. 彭建兵, 张永双, 黄达, 等, 2023. 青藏高原构造变形圈‒岩体松动圈‒地表冻融圈‒工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114. 唐红梅, 陈洪凯, 祝晓寅, 等, 2000. 重庆库区新构造应力场及其对滑坡宏观活动规律的控制. 岩石力学与工程学报, 19(3): 352-356. 唐辉明, 李长冬, 龚文平, 等, 2022. 滑坡演化的基本属性与研究途径. 地球科学, 47(12): 4596-4608. doi: 10.3799/dqkx.2022.461 唐然, 许强, 范宣梅, 2021. 构造应力场对平推式滑坡形成演化的影响. 工程地质学报, 29(5): 1437-1451. 王孔伟, 张帆, 林东成, 等, 2007. 三峡地区新构造活动与滑坡分布关系. 世界地质, 26(1): 26-32. 伍纯昊, 崔鹏, 李渝生, 等, 2021. 青藏高原东缘活动断裂带地壳岩体构造损伤特征与模式讨论. 工程地质学报, 29(2): 289-306. 徐建平, 胡厚田, 张安松, 等, 1999. 边坡岩体物理力学参数的统计特征研究. 岩石力学与工程学报, 18(4): 14-18. 许强, 郑光, 李为乐, 等, 2018.2018年10月和11月金沙江白格两次滑坡‒堰塞堵江事件分析研究. 工程地质学报, 26(6): 1534-1551. 尹力, 周本刚, 任治坤, 等, 2024. 鲜水河断裂带地震矩亏损的空间分布及2022年泸定Ms6.8级地震. 地球科学, 49(2): 425-436. doi: 10.3799/dqkx.2023.138 殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究. 水文地质工程地质, 27(4): 8-11. 张亦凡, 伍纯昊, 李渝生, 等, 2024. 同震岩体损伤特征的定量分析——以2022年泸定Ms6.8地震为例. 工程地质学报, 32(3): 1020-1034. 张永双, 任三绍, 郭长宝, 等, 2019. 活动断裂带工程地质研究. 地质学报, 93(4): 763-775. 张倬元, 王士天, 王兰生, 2002. 工程地质分析原理. 北京: 地质出版社, 355. -