• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    区域应力场与岩质滑坡的关系: 以2022年泸定Ms6.8级地震区为例

    孔维林 伍纯昊 崔鹏 张亦凡 李渝生

    孔维林, 伍纯昊, 崔鹏, 张亦凡, 李渝生, 2025. 区域应力场与岩质滑坡的关系: 以2022年泸定Ms6.8级地震区为例. 地球科学, 50(1): 299-310. doi: 10.3799/dqkx.2024.074
    引用本文: 孔维林, 伍纯昊, 崔鹏, 张亦凡, 李渝生, 2025. 区域应力场与岩质滑坡的关系: 以2022年泸定Ms6.8级地震区为例. 地球科学, 50(1): 299-310. doi: 10.3799/dqkx.2024.074
    Kong Weilin, Wu Chunhao, Cui Peng, Zhang Yifan, Li Yusheng, 2025. The Relationship between Regional Stress Field and Rock Landslide: A Case Study of the 2022 Luding Ms6.8 Earthquake. Earth Science, 50(1): 299-310. doi: 10.3799/dqkx.2024.074
    Citation: Kong Weilin, Wu Chunhao, Cui Peng, Zhang Yifan, Li Yusheng, 2025. The Relationship between Regional Stress Field and Rock Landslide: A Case Study of the 2022 Luding Ms6.8 Earthquake. Earth Science, 50(1): 299-310. doi: 10.3799/dqkx.2024.074

    区域应力场与岩质滑坡的关系: 以2022年泸定Ms6.8级地震区为例

    doi: 10.3799/dqkx.2024.074
    基金项目: 

    国家自然科学基金青年科学基金项目 42201096

    第二次青藏高原科学考察研究 2019QZKK0906

    详细信息
      作者简介:

      孔维林(1997-),男,博士研究生,主要从事地应力与滑坡方面的研究. ORCID:0000-0003-4628-6529. E-mail:kongweilin19@mails.ucas.ac.cn

      通讯作者:

      伍纯昊,ORCID:0000-0003-3660-7747. E-mail: wuchunhao@imde.ac.cn

    • 中图分类号: P642.23

    The Relationship between Regional Stress Field and Rock Landslide: A Case Study of the 2022 Luding Ms6.8 Earthquake

    • 摘要: 地球表面和内部发生的各种构造现象及其伴生的地质灾害都与区域应力场密切相关.然而,区域应力场与滑坡密度或规模的定量化关系认识尚不明确.基于考虑断层和地形影响的高分辨率三维应力场模型,结合岩体结构损伤数据,分析了2022年9月5日泸定Ms6.8级地震前后发生的岩质滑坡规模和面密度与不同应力参数的关系.结果表明,最大剪应力与岩质滑坡的面积上限和面密度之间存在显著正相关关系,最大剪应力高值区与地震前后岩质滑坡的空间分布高度吻合,90%以上的岩质滑坡所在区域的最大剪应力最小值为6.95 MPa.受地形与断层扰动的应力场控制了岩体结构面的发育,为岩质滑坡的形成创造了必要的物质条件.本研究强调了岩质滑坡的发生不仅仅是由随机因素触发的简单过程,而是一个受地应力、地形和地质结构影响的复杂过程.

       

    • 图  1  研究区及邻区构造背景

      黑色框表示三维应力模型区域(见图 4

      Fig.  1.  Tectonic setting of the study area and adjacent areas

      图  2  滑坡分布与岩体结构

      a.同震与震前滑坡分布;b. 基岩露头岩体结构面解译

      Fig.  2.  Landslide distribution and rock mass structure

      图  3  滑坡分布特征

      a. 岩质滑坡面密度分布特征;b. 岩质滑坡面积‒频率分布特征

      Fig.  3.  Distribution characteristics of landslides

      图  4  地质力学模型

      Fig.  4.  Setup of the geomechanical model

      图  5  研究区最大和最小主应力分布

      a.最大主应力;b.最小主应力;c.沿AB剖面最大主应力分布;d.沿AB剖面最小主应力分布

      Fig.  5.  Distribution of maximum and minimum principal stresses in the study area

      图  6  最大剪应力与同震、震前滑坡空间分布与统计

      a. 同震、震前滑坡与最大剪应力空间对应关系;b. 同震、震前滑坡与最大剪应力统计分析

      Fig.  6.  Spatial distribution and statistics of maximum shear stress and landslide before and after earthquake

      图  7  滑坡面积与最大剪应力相关性分析

      a. 同震滑坡与最大剪应力的相关性;b. 震前滑坡与最大剪应力的相关性

      Fig.  7.  Correlation analysis between landslide area and maximum shear stress

      图  8  同震、震前滑坡面密度与最大剪应力统计分析

      Fig.  8.  Statistical analysis of landslide areal density and maximum shear stress before and after earthquake

      图  9  跨鲜水河断层剖面岩体结构面面密度

      a.剖面1岩体结构面面密度;b.剖面2岩体结构面面密度. 剖面位置见图 2a

      Fig.  9.  Rock mass surface density across Xianshuihe fault section

      表  1  遥感影像来源

      Table  1.   Data source of remote sensing images

      时段 来源 日期 分辨率(m)
      2022泸定地震震前 Google Earth Pro Multiple Multiple
      2022泸定地震震后 Aerial images 2022.09.06‒2022.09.10 0.2
      BJ-3A 2022.09.10 0.5
      GF-6 2022.09.10 2
      下载: 导出CSV

      表  2  不同应力参数与岩质滑坡的相关性

      Table  2.   Correlation between different stress parameters and bedrock landslide

      应力指标 岩质滑坡面积 岩质滑坡面密度
      同震 震前 同震 震前
      最大主应力 r=0.35
      p=0.43
      r=-0.28
      p=0.49
      r=0.83
      p < 0.05
      r=0.53
      p=0.09
      最小主应力 r=-0.89
      p < 0.05
      r=-0.85
      p < 0.05
      r=0.51
      p=0.38
      r=-0.32
      p=0.60
      最大剪应力 r=0.55
      p < 0.05
      r=0.72
      p < 0.05
      r=0.96
      p < 0.000 1
      r=0.73
      p < 0.05
      下载: 导出CSV
    • Allen, C. R., Luo, Z. L., Qian, H., et al., 1991. Field Study of a Highly Active Fault Zone: The Xianshuihe Fault of Southwestern China. Geological Society of America Bulletin, 103(9): 1178-1199. https://doi.org/10.1130/0016-7606(1991)1031178: fsoaha>2.3.co;2 doi: 10.1130/0016-7606(1991)1031178:fsoaha>2.3.co;2
      Ai, N. S., Zuo, F. Y., 1985. Statistical Analysis of Landslide Sliding Direction in Dongxiang Area of Gansu Province. Journal of Lanzhou University, 21(3): 133 (in Chinese).
      Chai, C. P., Delorey, A. A., Maceira, M., et al., 2021. A 3D Full Stress Tensor Model for Oklahoma. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB021113. https://doi.org/10.1029/2020JB021113
      Chen, H. K., Tang, H. M., Ai, N. S., 1997. Neotectonic Strese Field and Its Effects on the Dominant Sliding Direction of Landslides in the Three Gorges Reservoir Region. Geographical Research, 16(4): 16-23 (in Chinese with English abstract).
      Choi, J. H., Edwards, P., Ko, K., et al., 2016. Definition and Classification of Fault Damage Zones: A Review and a New Methodological Approach. Earth-Science Reviews, 152: 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006
      Clair, J. St., Moon, S., Holbrook, W. S., et al., 2015. Geophysical Imaging Reveals Topographic Stress Control of Bedrock Weathering. Science, 350(6260): 534-538. https://doi.org/10.1126/science.aab2210
      Cui, P., 2014. Progress and Prospects in Research on Mountain Hazards in China. Progress in Geography, 33(2): 145-152 (in Chinese with English abstract).
      Cui, P., Ge, Y. G., Li, S. J., et al., 2022. Scientific Challenges in Disaster Risk Reduction for the Sichuan-Tibet Railway. Engineering Geology, 309: 106837. https://doi.org/10.1016/j.enggeo.2022.106837
      Cui, P., Wei, F. Q., He, S. M., et al., 2008. Mountain Disasters Induced by the Earthquake of May 12 in Wenchuan and the Disasters Mitigation. Mountain Research, 26(3): 280-282 (in Chinese with English abstract). doi: 10.3969/j.issn.1008-2786.2008.03.006
      Fan, X. M., Wang, X., Dai, L. X., et al., 2022. Characteristics and Spatial Distribution Pattern of MS 6.8 Luding Earthquake Occurred on September 5, 2022. Journal of Engineering Geology, 30(5): 1504-1516 (in Chinese with English abstract).
      Huang, R. Q., Lin, F., Chen, D. J., et al., 2001. Formation Mechanism of Unloading Fracture Zone of High Slopes and Its Engineering Behaviors. Journal of Engineering Geology, 9(3): 227-232 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2001.03.001
      Iverson, R. M., Reid, M. E., 1992. Gravity-Driven Groundwater Flow and Slope Failure Potential: Elastic Effective-Stress Model. Water Resources Research, 28(3): 925-938. https://doi.org/10.1029/91wr02694
      Jaeger, J. C., Cook, N. G., Zimmerman, R., 2007. Fundamentals of Rock Mechanics. John Wiley & Sons, New Jersey.
      Kong, W. L., Huang, L. Y., Yao, R., et al., 2021. Review of Stress Field Studies in Sichuan-Yunnan Region. Progress in Geophysics, 36(5): 1853-1864 (in Chinese with English abstract).
      Li, G. K., Moon, S., 2021. Topographic Stress Control on Bedrock Landslide Size. Nature Geoscience, 14: 307-313. https://doi.org/10.1038/s41561-021-00739-8
      Li, X. R., Gao, K., Feng, Y., et al., 2022. 3D Geomechanical Modeling of the Xianshuihe Fault Zone, SE Tibetan Plateau: Implications for Seismic Hazard Assessment. Tectonophysics, 839: 229546. https://doi.org/10.1016/j.tecto.2022.229546
      Ma, Z. J., Zhang, J. S., Wang, Y. P., 1998. The 3-D Deformational Movement Episodes and Neotectonic Domains in the Qinghai-Tibet Plateau. Acta Geologica Sinica, 72(3): 211-227 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.1998.03.003
      Martel, S. J., 2016. Effects of Small-Amplitude Periodic Topography on Combined Stresses Due to Gravity and Tectonics. International Journal of Rock Mechanics and Mining Sciences, 89: 1-13. https://doi.org/10.1016/j.ijrmms.2016.07.026
      Moon, S., Perron, J. T., Martel, S. J., et al., 2020. Present-Day Stress Field Influences Bedrock Fracture Openness Deep into the Subsurface. Geophysical Research Letters, 47(23): e2020GL090581. https://doi.org/10.1029/2020gl090581
      Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114 (in Chinese with English abstract).
      Riebe, C. S., Hahm, W. J., Brantley, S. L., 2017. Controls on Deep Critical Zone Architecture: A Historical Review and Four Testable Hypotheses. Earth Surface Processes and Landforms, 42(1): 128-156. https://doi.org/10.1002/esp.4052
      Tang, H. M., Chen, H. K., Zhu, X. Y., et al., 2000. Neotectonic Stress Field and Its Impact on Macro Development of Landslides in Chongqing Area of the Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 19(3): 352-356 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2000.03.021
      Tang, H. M., Li, C. D., Gong, W. P., et al., 2022. Fundamental Attribute and Research Approach of Landslide Evolution. Earth Science, 47(12): 4596-4608 (in Chinese with English abstract).
      Tang, R., Xu, Q., Fan, X. M., 2021. Influence of Tectonic Stress Field on Formation and Evolution of Sub-Horizontal Translational Landslides in Sichuan Basin. Journal of Engineering Geology, 29(5): 1437-1451 (in Chinese with English abstract).
      Valagussa, A., Marc, O., Frattini, P., et al., 2019. Seismic and Geological Controls on Earthquake-Induced Landslide Size. Earth and Planetary Science Letters, 506: 268-281. https://doi.org/10.1016/j.epsl.2018.11.005
      Wang, K. W., Zhang, F., Lin, D. C., et al., 2007. Relation between Neotectonism and Landslides in the Three Gorges Reservoir Area. Global Geology, 26(1): 26-32 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2007.01.005
      Wen, X. Z., Ma, S. L., Xu, X. W., et al., 2008. Historical Pattern and Behavior of Earthquake Ruptures along the Eastern Boundary of the Sichuan-Yunnan Faulted-Block, Southwestern China. Physics of the Earth and Planetary Interiors, 168(1-2): 16-36. https://doi.org/10.1016/j.pepi.2008.04.013
      Wu, C. H., Cui, P., Li, Y. S., et al., 2018. Seismogenic Fault and Topography Control on the Spatial Patterns of Landslides Triggered by the 2017 Jiuzhaigou Earthquake. Journal of Mountain Science, 15(4): 793-807. https://doi.org/10.1007/s11629-017-4761-9
      Wu, C. H., Cui, P., Li, Y. S., et al., 2021. Tectonic Damage of Crustal Rock Mass around Active Faults and Its Conceptual Model at Eastern Margin of Tibetan Plateau. Journal of Engineering Geology, 29(2): 289-306 (in Chinese with English abstract).
      Xu, C., Xu, X. W., Yao, X., et al., 2014. Three (nearly) Complete Inventories of Landslides Triggered by the May 12, 2008 Wenchuan Mw 7.9 Earthquake of China and Their Spatial Distribution Statistical Analysis. Landslides, 11(3): 441-461. https://doi.org/10.1007/s10346-013-0404-6
      Xu, J. P., Hu, H. T., Zhang, A. S., et al., 1999. Study on Statistical Characteristics of Physical and Mechanical Parameters of Slope Rock Mass. Chinese Journal of Rock Mechanics and Engineering, 18(4): 14-18 (in Chinese with English abstract).
      Xu, Q., Zheng, G., Li, W. L., et al., 2018. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018. Journal of Engineering Geology, 26(6): 1534-1551 (in Chinese with English abstract).
      Yamagishi, H., Iwahashi, J., 2007. Comparison between the Two Triggered Landslides in Mid-Niigata, Japan by July 13 Heavy Rainfall and October 23 Intensive Earthquakes in 2004. Landslides, 4(4): 389-397. https://doi.org/10.1007/s10346-007-0093-0
      Yi, S. J., Wu, C. H., Cui, P., et al., 2022. Cause of the Baige Landslides: Long-Term Cumulative Coupled Effect of Tectonic Action and Surface Erosion. Lithosphere, 2021(Special 7): 7784535. https://doi.org/10.2113/2022/7784535
      Yin, L., Zhou, B. G., Ren, Z. K., et al., 2024. Spatial Distribution of Seismic Moment Deficit in Xianshuihe Fault Zone and the 2022 Luding M 6.8 Earthquake. Earth Science, 49(2): 425-436 (in Chinese with English abstract).
      Yin, Y. P., 2000. Study on Characteristics and Disaster Reduction of High-Speed Giant Landslide in Yigong in the Bomi, Tigbet. Hydrogeology and Engineering Geology, 27(4): 8-11 (in Chinese with English abstract).
      Zhang, J. W., Zhao, Z. Q., Yan, Y. N., et al., 2021. Lithium and Its Isotopes Behavior during Incipient Weathering of Granite in the Eastern Tibetan Plateau, China. Chemical Geology, 559: 119969. https://doi.org/10.1016/j.chemgeo.2020.119969
      Zhang, Y. F., Wu, C. H., Li, Y. S., et al., 2024. Quantitative Analysis of Damage Characteristics of Coseismic Rock Mass: A Case of 2022 Ms 6.8 Luding Earthquake. Journal of Engineering Geology, 32(3): 1020-1034 (in Chinese with English abstract).
      Zhang, Y. S., Ren, S. S., Guo, C. B., et al., 2019. Research on Engineering Geology Related with Active Fault Zone. Acta Geologica Sinica, 93(4): 763-775 (in Chinese with English abstract).
      Zhang, Z. Y., Wang, S. T., Wang, L. S., 2002. Principle of Engineering Geology Analysis. Geological Publishing House, Beijing, 355 (in Chinese).
      艾南山, 左发源, 1985. 甘肃东乡地区滑坡滑移方向统计分析. 兰州大学学报, 21(3): 133.
      陈洪凯, 唐红梅, 艾南山, 1997. 三峡库区的新构造应力场及其对库岸滑坡滑动优势方向的影响. 地理研究, 16(4): 16-23.
      崔鹏, 2014. 中国山地灾害研究进展与未来应关注的科学问题. 地理科学进展, 33(2): 145-152.
      崔鹏, 韦方强, 何思明, 等, 2008.5·12汶川地震诱发的山地灾害及减灾措施. 山地学报, 26(3): 280-282.
      范宣梅, 王欣, 戴岚欣, 等, 2022. 2022年Ms 6.8级泸定地震诱发地质灾害特征与空间分布规律研究. 工程地质学报, 30(5): 1504-1516.
      黄润秋, 林峰, 陈德基, 等, 2001. 岩质高边坡卸荷带形成及其工程性状研究. 工程地质学报, 9(3): 227-232.
      孔维林, 黄禄渊, 姚瑞, 等, 2021. 川滇地区应力场研究进展. 地球物理学进展, 36(5): 1853-1864.
      马宗晋, 张家声, 汪一鹏, 1998. 青藏高原三维变形运动学的时段划分和新构造分区. 地质学报, 72(3): 211-227.
      彭建兵, 张永双, 黄达, 等, 2023. 青藏高原构造变形圈‒岩体松动圈‒地表冻融圈‒工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114.
      唐红梅, 陈洪凯, 祝晓寅, 等, 2000. 重庆库区新构造应力场及其对滑坡宏观活动规律的控制. 岩石力学与工程学报, 19(3): 352-356.
      唐辉明, 李长冬, 龚文平, 等, 2022. 滑坡演化的基本属性与研究途径. 地球科学, 47(12): 4596-4608. doi: 10.3799/dqkx.2022.461
      唐然, 许强, 范宣梅, 2021. 构造应力场对平推式滑坡形成演化的影响. 工程地质学报, 29(5): 1437-1451.
      王孔伟, 张帆, 林东成, 等, 2007. 三峡地区新构造活动与滑坡分布关系. 世界地质, 26(1): 26-32.
      伍纯昊, 崔鹏, 李渝生, 等, 2021. 青藏高原东缘活动断裂带地壳岩体构造损伤特征与模式讨论. 工程地质学报, 29(2): 289-306.
      徐建平, 胡厚田, 张安松, 等, 1999. 边坡岩体物理力学参数的统计特征研究. 岩石力学与工程学报, 18(4): 14-18.
      许强, 郑光, 李为乐, 等, 2018.2018年10月和11月金沙江白格两次滑坡‒堰塞堵江事件分析研究. 工程地质学报, 26(6): 1534-1551.
      尹力, 周本刚, 任治坤, 等, 2024. 鲜水河断裂带地震矩亏损的空间分布及2022年泸定Ms6.8级地震. 地球科学, 49(2): 425-436. doi: 10.3799/dqkx.2023.138
      殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究. 水文地质工程地质, 27(4): 8-11.
      张亦凡, 伍纯昊, 李渝生, 等, 2024. 同震岩体损伤特征的定量分析——以2022年泸定Ms6.8地震为例. 工程地质学报, 32(3): 1020-1034.
      张永双, 任三绍, 郭长宝, 等, 2019. 活动断裂带工程地质研究. 地质学报, 93(4): 763-775.
      张倬元, 王士天, 王兰生, 2002. 工程地质分析原理. 北京: 地质出版社, 355.
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  237
    • HTML全文浏览量:  112
    • PDF下载量:  29
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-04-24
    • 网络出版日期:  2025-02-10
    • 刊出日期:  2025-01-25

    目录

      /

      返回文章
      返回