• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    多年冻土过渡带研究进展与展望

    罗栋梁 刘佳 陈方方 李世珍

    罗栋梁, 刘佳, 陈方方, 李世珍, 2024. 多年冻土过渡带研究进展与展望. 地球科学, 49(11): 4063-4081. doi: 10.3799/dqkx.2024.075
    引用本文: 罗栋梁, 刘佳, 陈方方, 李世珍, 2024. 多年冻土过渡带研究进展与展望. 地球科学, 49(11): 4063-4081. doi: 10.3799/dqkx.2024.075
    Luo Dongliang, Liu Jia, Chen Fangfang, Li Shizhen, 2024. Research Progress and Prospect of Transition Zone in Permafrost. Earth Science, 49(11): 4063-4081. doi: 10.3799/dqkx.2024.075
    Citation: Luo Dongliang, Liu Jia, Chen Fangfang, Li Shizhen, 2024. Research Progress and Prospect of Transition Zone in Permafrost. Earth Science, 49(11): 4063-4081. doi: 10.3799/dqkx.2024.075

    多年冻土过渡带研究进展与展望

    doi: 10.3799/dqkx.2024.075
    基金项目: 

    甘肃省科技重大专项 23ZDFA017

    陇原青年英才项目 E4390601

    国家自然科学基金项目 U2243214

    中国科学院西部青年学者项目 E2290601

    详细信息
      作者简介:

      罗栋梁(1983-),男,博士,研究员,主要从事冻土环境与全球变化研究.E-mail:luodongliang@lzb.ac.cn

    • 中图分类号: P66

    Research Progress and Prospect of Transition Zone in Permafrost

    • 摘要: 随着气候临界点的迫近,多年冻土两层分层体系的局限性日益凸显,因此有必要单独考虑多年冻土上部即过渡带的特殊性质.通过系统梳理已有研究发现:(1)过渡带是多年冻土区内成冰和过剩冰的主要分布带,广泛分布于粉黏土中及部分细粒多孔且冻结敏感性强的风化基岩地带,地下冰多为分凝冰、脉冰和大块冰,冷生构造主要为透镜状、层状、网状和斑杂状等,其变化与热融沉陷和斜坡地带热融滑塌、融冻泥流和活动层滑脱等现象密切相关;(2)其蕴含的丰富有机质和腐殖质常与多年冻土的加积和重复分凝成冰过程伴生,是重建冻土形成时气候与环境的可靠替代性指标;(3)多年冻土退化的程度和幅度与过渡带的厚度、冷生构造、地下冰和有机质含量等内在性质密不可分,呈现极强的时空异质性,其因地下冰巨大相变潜热效应而减缓甚至阻抗多年冻土退化,但一旦融化即产生临界点效应,由此多年冻土退化加速,热喀斯特现象激增,并造成上覆工程构筑物失稳.因此,亟待开展包含过渡带的气候环境重建、生态水文效应、力学性能和结构性质的演化与冻土精准模拟研究.

       

    • 图  1  多年冻土分层体系

      a.活动层‒多年冻土的两层概念模型;b.活动层‒过渡带‒多年冻土的三层概念模型;c.包含转换层和中间层的过渡带结构示意,白色不规则形状为地下冰,为由动植物和微生物残体组成的有机质,为悬浮状冷生构造,为包含垂直叶理脉冰的网状冷生构造,为层状冷生构造

      Fig.  1.  Layered structure of permafrost

      图  2  基于Web of Science的1990—2023年多年冻土过渡带论文数量和被引次数

      Fig.  2.  Number of publications about transition zone and their citations related to permafrost from 1990 to 2023 retrieved from Web of Science

      图  3  过渡带内主要冷生构造.冰为白色,沉积物为棕色(修改自Murton and French (1994))

      Fig.  3.  Main cryostructures and their codes within the transition zone. Ice and sediment are marked in white and brown, respectively (modified from Murton and French (1994))

      图  4  多年冻土过渡带关键词的共现图谱

      Fig.  4.  Co-occurrence network of keywords about transition zone related to permafrost

      图  5  北半球多年冻土年均地温(地温年变化深度10~25 m处)(a)和多年冻土上限附近(主要为地表以下5 m内)体积含冰率空间分布(b)

      叶叨码冻土分布源自(Strauss et al.,2021),年均地温源自(Ran et al.,2022),地下冰体积含冰率源自(Karjalainen et al.,2023

      Fig.  5.  Spatial distribution of the temperature at the depth of zero annual amplitude (TZAA, 10‒25 m) and volumetric ice content (VIC, %)

      图  6  多年冻土过渡带的冷生构造、地貌景观、地下冰分布及其灾害效应

      Fig.  6.  Schematic map showing cryostructure, land-scape, ground ice, and geohazard effects of the transition zone in permafrost

    • Andersland, O. B., Ladanyi, B., 2003. An Introduction to Frozen Ground Engineering. John Wiley & Sons, Inc., Hoboren, 1-363.
      Associate Committee on Geotechnical Research, 1988. Glossary of Permafrost and Related Ground-Ice Terms. National Research Council Canada, Technical Memorandum No. 142, Ottawa.
      Armstrong McKay, D. I., Staal, A., Abrams, J. F., et al., 2022. Exceeding 1.5 ℃ Global Warming could Trigger Multiple Climate Tipping Points. Science, 377(6611): eabn7950. https://doi.org/10.1126/science.abn7950
      Ballantyne, C. K., 2018. Periglacial Geomorphology. Wiley Black, Hoboken, 1-454.
      Bartsch, A., Leibman, M., Strozzi, T., et al., 2019. Seasonal Progression of Ground Displacement Identified with Satellite Radar Interferometry and the Impact of Unusually Warm Conditions on Permafrost at the Yamal Peninsula in 2016. Remote Sensing, 11(16): 1865. https://doi.org/10.3390/rs11161865
      Bernard-Grand'Maison, C., Pollard, W., 2018. An Estimate of Ice Wedge Volume for a High Arctic Polar Desert Environment, Fosheim Peninsula, Ellesmere Island. The Cryosphere, 12(11): 3589-3604. https://doi.org/10.5194/tc-12-3589-2018
      Biskaborn, B. K., Smith, S. L., Noetzli, J., et al., 2019. Permafrost is Warming at a Global Scale. Nature Communications, 10(1): 264. https://doi.org/10.1038/s41467-018-08240-4
      Bockheim, J. G., 2015. Cryopedology. Springer International Publishing, New York. https://doi.org/10.1007/978-3-319-08485-5.
      Bockheim, J. G., Hinkel, K. M., 2010. Characteristics and Significance of the Transition Zone in Drained Thaw-Lake Basins of the Arctic Coastal Plain, Alaska. Arctic, 58(4): 406-417.
      Bonnaventure, P. P., Lamoureux, S. F., 2013. The Active Layer: A Conceptual Review of Monitoring, Modelling Techniques and Changes in a Warming Climate. Progress in Physical Geography: Earth and Environment, 37(3): 352-376. https://doi.org/10.1177/0309133313478314
      Brown, J., Ferrians Jr., O. J., Heginbottom, J. A., et al., 1997. Circum-Arctic Map of Permafrost and Ground-Ice Conditions. National Snow and Ice Data Center, Colorado.
      Burn, C. R., 1997. Cryostratigraphy, Paleogeography, and Climate Change during the Early Holocene Warm Interval, Western Arctic Coast, Canada. Canadian Journal of Earth Sciences, 34(7): 912-925. https://doi.org/10.1139/e17-076
      Burn, C. R., 1998. The Active Layer: Two Contrasting Definitions. Permafrost and Periglacial Processes, 9(4): 411-416. https://doi.org/10.1002/(sici)1099-1530(199810/12)9: 4411: aid-ppp292>3.0.co;2-6 doi: 10.1002/(sici)1099-1530(199810/12)9:4411:aid-ppp292>3.0.co;2-6
      Burn, C. R., Michel, F. A., 1988. Evidence for Recent Temperature-Induced Water Migration into Permafrost from the Tritium Content of Ground Ice near Mayo, Yukon Territory, Canada. Canadian Journal of Earth Sciences, 25(6): 909-915. https://doi.org/10.1139/e88-087
      Cai, L., Lee, H. N., Aas, K. S., et al., 2020. Projecting Circum-Arctic Excess-Ground-Ice Melt with a Sub-Grid Representation in the Community Land Model. The Cryosphere, 14(12): 4611-4626. https://doi.org/10.5194/tc-14-4611-2020
      Castagner, A., Brenning, A., Gruber, S., et al., 2023. Vertical Distribution of Excess Ice in Icy Sediments and Its Statistical Estimation from Geotechnical Data (Tuktoyaktuk Coastlands and Anderson Plain, Northwest Territories). Arctic Science, 9(2): 483-496. https://doi.org/10.1139/as-2021-0041
      Chang, Q. X., Sun, Z. Y., Pan, Z., et al., 2022. Stream Runoff Formation and Hydrological Regulation Mechanism in Mountainous Alpine Regions: A Review. Earth Science, 47(11): 4196-4209 (in Chinese with English abstract).
      Cheng, G., 1983. The Mechanism of Repeated-Segregation for the Formation of Thick Layered Ground Ice. Cold Regions Science and Technology, 8(1): 57-66. https://doi.org/10.1016/0165-232X(83)90017-4
      Cheng, G. D., 1981. One-Way Accumulation Effect of Unfrozen Water in Seasonal Freezing and Thawing Layers. Chinese Science Bulletin, 26(23): 1448-1451 (in Chinese). doi: 10.1360/csb1981-26-23-1448
      Cheng, G. D., 1982. The Formation of Thick Layers of Underground Ice. Science in China (Series B: Chemistry), (3): 281-288 (in Chinese).
      Cheng, G. D., 1984. Problems on Zonation of High-Altitude Permafrost. Acta Geographica Sinica, 39(2): 185-193 (in Chinese with English abstract). doi: 10.3321/j.issn:0375-5444.1984.02.006
      Cheng, G. D., Jin, H. J., 2013. Permafrost and Groundwater on the Qinghai-Tibet Plateau and in Northeast China. Hydrogeology Journal, 21(1): 5-23. https://doi.org/10.1007/s10040-012-0927-2
      Cheng, G. D., Zhao, L., Li, R., et al., 2019. Characteristics, Changes and Impacts of Permafrost in Qinghai-Tibet Plateau. Chinese Science Bulletin, 64(27): 2783-2795 (in Chinese). doi: 10.1360/TB-2019-0191
      Cheng, J., Zhang, X. J., Tian, M. Z., et al., 2006. Ice-Wedge Casts Discovered in the Source Area of Yellow River, Northeast Tibetan Plateau and Their Paleoclimatic Implications. Quaternary Sciences, 26(1): 92-98 (in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.2006.01.012
      Couture, N. J., Pollard, W. H., 2017. A Model for Quantifying Ground-Ice Volume, Yukon Coast, Western Arctic Canada. Permafrost and Periglacial Processes, 28(3): 534-542. https://doi.org/10.1002/ppp.1952
      Dobinski, W., 2011. Permafrost. Earth-Science Reviews, 108(3/4): 158-169. https://doi.org/10.1016/j.earscirev.2011.06.007
      Dredge, L. A., Kerr, D. E., Wolfe, S. A., 1999. Surficial Materials and Related Ground Ice Conditions, Slave Province, N. W. T., Canada. Canadian Journal of Earth Sciences, 36(7): 1227-1238. https://doi.org/10.1139/e98-087
      Esper, J., Torbenson, M., Büntgen, U., 2024. 2023 Summer Warmth Unparalleled over the Past 2, 000 Years. Nature, 631(8019): 94-97. https://doi.org/10.1038/s41586-024-07512-y
      Fan, X. W., Lin, Z. J., Gao, Z. Y., et al., 2021. Cryostructures and Ground Ice Content in Ice-Rich Permafrost Area of the Qinghai-Tibet Plateau with Computed Tomography Scanning. Journal of Mountain Science, 18(5): 1208-1221. https://doi.org/10.1007/s11629-020-6197-x
      Farquharson, L. M., Mann, D. H., Grosse, G., et al., 2016. Spatial Distribution of Thermokarst Terrain in Arctic Alaska. Geomorphology, 273: 116-133. https://doi.org/10.1016/j.geomorph.2016.08.007
      French, H., Shur, Y., 2010. The Principles of Cryostratigraphy. Earth-Science Reviews, 101(3/4): 190-206. https://doi.org/10.1016/j.earscirev.2010.04.002
      French, H. M., 2018. The Periglacial Environment. John Wiley & Sons Ltd., Hoboken, 1-515.
      Gilbert, G. L., Kanevskiy, M., Murton, J. B., 2016. Recent Advances (2008-2015) in the Study of Ground Ice and Cryostratigraphy. Permafrost and Periglacial Processes, 27(4): 377-389. https://doi.org/10.1002/ppp.1912
      Gruber, S., 2020. Ground Subsidence and Heave over Permafrost: Hourly Time Series Reveal Interannual, Seasonal and Shorter-Term Movement Caused by Freezing, Thawing and Water Movement. The Cryosphere, 14(4): 1437-1447. https://doi.org/10.5194/tc-14-1437-2020
      Gubin, S. V., Lupachev, A. V., 2008. Soil Formation and the Underlying Permafrost. Eurasian Soil Science, 41(6): 574-585. https://doi.org/10.1134/S1064229308060021
      Halla, C., Blöthe, J. H., Tapia Baldis, C., et al., 2021. Ice Content and Interannual Water Storage Changes of an Active Rock Glacier in the Dry Andes of Argentina. The Cryosphere, 15(2): 1187-1213. https://doi.org/10.5194/tc-15-1187-2021
      Harris, C., Lewkowicz, A. G., 2000. An Analysis of the Stability of Thawing Slopes, Ellesmere Island, Nunavut, Canada. Canadian Geotechnical Journal, 37(2): 449-462. https://doi.org/10.1139/t99-118
      Harris, S. A., 2001. Twenty Years of Data on Climate-Permafrost-Active Layer Variations at the Lower Limit of Alpine Permafrost, Marmot Basin, Jasper National Park, Canada. Geografiska Annaler: Series A, Physical Geography, 83(1/2): 1-13. https://doi.org/10.1111/j.0435-3676.2001.00140.x
      Harris, S. A., Brouchkov, A., Cheng, G., 2018. Geocryology: An Introduction to Frozen Ground. CRC Press, Oxford.
      Hayes, S., Lim, M., Whalen, D., et al., 2022. The Role of Massive Ice and Exposed Headwall Properties on Retrogressive Thaw Slump Activity. Journal of Geophysical Research: Earth Surface, 127(11): e2022JF006602. https://doi.org/10.1029/2022jf006602
      He, R. X., Jin, H. J., Vanderberghe, J., et al., 2023. Permafrost and Paleoenvironments on the Northeastern Qinghai-Tibet Plateau, China during the Local Last Permafrost Maximum. International Geology Review, 65(15): 2332-2347. https://doi.org/10.1080/00206814.2022.2137860
      Heginbottom, J. A., 2002. Permafrost Mapping: A Review. Progress in Physical Geography, 26(4): 623-642. doi: 10.1191/0309133302pp355ra
      Hjort, J., Streletskiy, D., Doré, G., et al., 2022. Impacts of Permafrost Degradation on Infrastructure. Nature Reviews Earth & Environment, 3: 24-38. https://doi.org/10.1038/s43017-021-00247-8
      Hollesen, J., Elberling, B., Jansson, P. E., 2011. Future Active Layer Dynamics and Carbon Dioxide Production from Thawing Permafrost Layers in Northeast Greenland. Global Change Biology, 17(2): 911-926. https://doi.org/10.1111/j.1365-2486.2010.02256.x
      Holloway, J. E., Rudy, A. C. A., Lamoureux, S. F., et al., 2017. Determining the Terrain Characteristics Related to the Surface Expression of Subsurface Water Pressurization in Permafrost Landscapes Using Susceptibility Modelling. The Cryosphere, 11(3): 1403-1415. https://doi.org/10.5194/tc-11-1403-2017
      IPCC, 2019. Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press, Cambridge.
      Jin, H. J., Jin, X. Y., He, R. X., et al., 2019. Evolution of Permafrost in China during the Last 20 ka. Science China Earth Sciences, 62(8): 1207-1223. https://doi.org/10.1007/s11430-018-9272-0
      Jin, H. J., Vandenberghe, J., Luo, D. L., et al., 2020. Quaternary Permafrost in China: Framework and Discussions. Quaternary, 3(4): 32. https://doi.org/10.3390/quat3040032
      Jin, H. J., Yu, Q. H., Wang, S. L., et al., 2008. Changes in Permafrost Environments along the Qinghai-Tibet Engineering Corridor Induced by Anthropogenic Activities and Climate Warming. Cold Regions Science and Technology, 53(3): 317-333. https://doi.org/10.1016/j.coldregions.2007.07.005
      Jones, D. B., Harrison, S., Anderson, K., et al., 2019. Rock Glaciers and Mountain Hydrology: A Review. Earth-Science Reviews, 193: 66-90. https://doi.org/10.1016/j.earscirev.2019.04.001
      Jorgenson, M. T., Kanevskiy, M., Shur, Y., et al., 2015. Role of Ground Ice Dynamics and Ecological Feedbacks in Recent Ice Wedge Degradation and Stabilization. Journal of Geophysical Research: Earth Surface, 120(11): 2280-2297. https://doi.org/10.1002/2015jf003602
      Kanevskiy, M., Jorgenson, T., Shur, Y., et al., 2014. Cryostratigraphy and Permafrost Evolution in the Lacustrine Lowlands of West-Central Alaska. Permafrost and Periglacial Processes, 25(1): 14-34. https://doi.org/10.1002/ppp.1800
      Kanevskiy, M., Shur, Y., Fortier, D., et al., 2011. Cryostratigraphy of Late Pleistocene Syngenetic Permafrost (Yedoma) in Northern Alaska, Itkillik River Exposure. Quaternary Research, 75(3): 584-596. https://doi.org/10.1016/j.yqres.2010.12.003
      Kanevskiy, M., Shur, Y., Jorgenson, M. T., et al., 2013. Ground Ice in the Upper Permafrost of the Beaufort Sea Coast of Alaska. Cold Regions Science and Technology, 85: 56-70. https://doi.org/10.1016/j.coldregions.2012.08.002
      Kanevskiy, M., Shur, Y., Jorgenson, T., et al., 2017. Degradation and Stabilization of Ice Wedges: Implications for Assessing Risk of Thermokarst in Northern Alaska. Geomorphology, 297: 20-42. https://doi.org/10.1016/j.geomorph.2017.09.001
      Karjalainen, O., Aalto, J., Kanevskiy, M. Z., et al., 2023. High-Resolution Predictions of Ground Ice Content for the Northern Hemisphere Permafrost Region. Earth System Science Data Discuss, 1-40.
      Karjalainen, O., Luoto, M., Aalto, J., et al., 2020. High Potential for Loss of Permafrost Landforms in a Changing Climate. Environmental Research Letters, 15(10): 104065. https://doi.org/10.1088/1748-9326/abafd5
      Kokelj, S. V., Burn, C. R., 2005. Near-Surface Ground Ice in Sediments of the Mackenzie Delta, Northwest Territories, Canada. Permafrost and Periglacial Processes, 16(3): 291-303. https://doi.org/10.1002/ppp.537
      Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., et al., 2017. Climate-Driven Thaw of Permafrost Preserved Glacial Landscapes, Northwestern Canada. Geology, 45(4): 371-374. https://doi.org/10.1130/G38626.1
      Kokelj, S. V., Smith, C. A. S., Burn, C. R., 2002. Physical and Chemical Characteristics of the Active Layer and Permafrost, Herschel Island, Western Arctic Coast, Canada. Permafrost and Periglacial Processes, 13(2): 171-185. https://doi.org/10.1002/ppp.417
      Kotler, E., Burn, C. R., 2000. Cryostratigraphy of the Klondike "Muck" Deposits, West-Central Yukon Territory. Canadian Journal of Earth Sciences, 37(6): 849-861. https://doi.org/10.1139/e00-013
      Lacelle, D., Fisher, D. A., Verret, M., et al., 2022. Improved Prediction of the Vertical Distribution of Ground Ice in Arctic-Antarctic Permafrost Sediments. Communications Earth & Environment, 3: 31. https://doi.org/10.1038/s43247-022-00367-z
      Lapalme, C. M., Lacelle, D., Pollard, W., et al., 2017. Cryostratigraphy and the Sublimation Unconformity in Permafrost from an Ultraxerous Environment, University Valley, McMurdo Dry Valleys of Antarctica. Permafrost and Periglacial Processes, 28(4): 649-662. https://doi.org/10.1002/ppp.1948
      Lawrence, D. M., Slater, A. G., 2005. A Projection of Severe Near-Surface Permafrost Degradation during the 21st Century. Geophysical Research Letters, 32(24): L24401. https://doi.org/10.1029/2005gl025080
      Lee, H. N., Swenson, S. C., Slater, A. G., et al., 2014. Effects of Excess Ground Ice on Projections of Permafrost in a Warming Climate. Environmental Research Letters, 9(12): 124006. https://doi.org/10.1088/1748-9326/9/12/124006
      Lenton, T. M., Held, H., Kriegler, E., et al., 2008. Tipping Elements in the Earth's Climate System. Proceedings of the National Academy of Sciences of the United States of America, 105(6): 1786-1793. https://doi.org/10.1073/pnas.0705414105
      Lenton, T. M., Rockström, J., Gaffney, O., et al., 2019. Climate Tipping Points: Too Risky to Bet against. Nature, 575: 592-595. https://doi.org/10.1038/d41586-019-03595-0
      Lewkowicz, A. G., Clarke, S., 1998. Late-Summer Solifluction and Active Layer Depths, Fosheim Peninsula, Ellesmere Island, Canada. Proceedings of the 6th International Conference on Permafrost. Centre D'études Nordiques, Université Laval, Québec, 641-666.
      Lewkowicz, A. G., 2007. Dynamics of Active-Layer Detachment Failures, Fosheim Peninsula, Ellesmere Island, Nunavut, Canada. Permafrost and Periglacial Processes, 18(1): 89-103. https://doi.org/10.1002/ppp.578
      Lewkowicz, A. G., Harris, C., 2005a. Frequency and Magnitude of Active-Layer Detachment Failures in Discontinuous and Continuous Permafrost, Northern Canada. Permafrost and Periglacial Processes, 16(1): 115-130. https://doi.org/10.1002/ppp.522
      Lewkowicz, A. G., Harris, C., 2005b. Morphology and Geotechnique of Active-Layer Detachment Failures in Discontinuous and Continuous Permafrost, Northern Canada. Geomorphology, 69(1/2/3/4): 275-297. https://doi.org/10.1016/j.geomorph.2005.01.011
      Lewkowicz, A. G., Way, R. G., 2019. Extremes of Summer Climate Trigger Thousands of Thermokarst Landslides in a High Arctic Environment. Nature Communications, 10(1): 1329. https://doi.org/10.1038/s41467-019-09314-7
      Li, D. Q., Chen, J., Meng, Q. Z., et al., 2008. Numeric Simulation of Permafrost Degradation in the Eastern Tibetan Plateau. Permafrost and Periglacial Processes, 19(1): 93-99. https://doi.org/10.1002/ppp.611
      Li, R. W., Zhang, M. Y., Konstantinov, P., et al., 2022. Permafrost Degradation Induced Thaw Settlement Susceptibility Research and Potential Risk Analysis in the Qinghai-Tibet Plateau. Catena, 214: 106239. https://doi.org/10.1016/j.catena.2022.106239
      Lim, M., Whalen, D., Martin, J., et al., 2020. Massive Ice Control on Permafrost Coast Erosion and Sensitivity. Geophysical Research Letters, 47(17): e2020GL087917. https://doi.org/10.1029/2020gl087917
      Lin, Z. J., Gao, Z. Y., Fan, X. W., et al., 2020. Factors Controlling near Surface Ground-Ice Characteristics in a Region of Warm Permafrost, Beiluhe Basin, Qinghai-Tibet Plateau. Geoderma, 376: 114540. https://doi.org/10.1016/j.geoderma.2020.114540
      Liu, T., Chen, D. A., Yang, L., et al., 2023. Teleconnections among Tipping Elements in the Earth System. Nature Climate Change, 13: 67-74. https://doi.org/10.1038/s41558-022-01558-4
      Luo, D. L., Jin, H. J., Bense, V. F., et al., 2020. Hydrothermal Processes of Near-Surface Warm Permafrost in Response to Strong Precipitation Events in the Headwater Area of the Yellow River, Tibetan Plateau. Geoderma, 376: 114531. https://doi.org/10.1016/j.geoderma.2020.114531
      Luo, D. L., Jin, H. J., He, R. X., et al., 2018a. Characteristics of Water-Heat Exchanges and Inconsistent Surface Temperature Changes at an Elevational Permafrost Site on the Qinghai-Tibet Plateau. Journal of Geophysical Research: Atmospheres, 123(18): e2018jd028298. https://doi.org/10.1029/2018jd028298
      Luo, D. L., Jin, H. J., Jin, X. Y., et al., 2018b. Elevation-Dependent Thermal Regime and Dynamics of Frozen Ground in the Bayan Har Mountains, Northeastern Qinghai-Tibet Plateau, Southwest China. Permafrost and Periglacial Processes, 29(4): 257-270. https://doi.org/10.1002/ppp.1988
      Luo, D. L., Jin, H. J., Lü, L. Z., et al., 2014a. Spatiotemporal Characteristics of Freezing and Thawing of the Active Layer in the Source Areas of the Yellow River (SAYR). Chinese Science Bulletin, 59(24): 3034-3045. https://doi.org/10.1007/s11434-014-0189-6
      Luo, D. L., Jin, H. J., Marchenko, S., et al., 2014b. Distribution and Changes of Active Layer Thickness (ALT) and Soil Temperature (TTOP) in the Source Area of the Yellow River Using the GIPL Model. Science China Earth Sciences, 57(8): 1834-1845. https://doi.org/10.1007/s11430-014-4852-1
      Luo, D. L., Jin, H. J., Wu, Q. B., et al., 2023. Research Progress and Prospect of Active Layer Thickness in Permafrost Regions under Natural State. Journal of Glaciology and Geocryology, 45(2): 558-574 (in Chinese with English abstract).
      Luo, D. L., Wu, Q. B., Jin, H. J., et al., 2016. Recent Changes in the Active Layer Thickness across the Northern Hemisphere. Environmental Earth Sciences, 75(7): 555. https://doi.org/10.1007/s12665-015-5229-2
      Luo, J., Niu, F. J., Lin, Z. J., et al., 2019. Recent Acceleration of Thaw Slumping in Permafrost Terrain of Qinghai-Tibet Plateau: An Example from the Beiluhe Region. Geomorphology, 341: 79-85. https://doi.org/10.1016/j.geomorph.2019.05.020
      Luo, J., Niu, F. J., Lin, Z. J., et al., 2022a. Abrupt Increase in Thermokarst Lakes on the Central Tibetan Plateau over the Last 50 Years. Catena, 217: 106497. https://doi.org/10.1016/j.catena.2022.106497
      Luo, J., Niu, F. J., Lin, Z. J., et al., 2022b. Inventory and Frequency of Retrogressive Thaw Slumps in Permafrost Region of the Qinghai-Tibet Plateau. Geophysical Research Letters, 49(23): e2022GL099829. https://doi.org/10.1029/2022gl099829
      Ma, L. J., Xiao, C. D., Kang, S. C., 2022. Characteristics and Similarities of Global Major Mountain Climate Change: A Comprehensive Interpretation of IPCC AR6 WGI Report and SROCC. Advances in Climate Change Research, 18(5): 605-621 (in Chinese with English abstract).
      Ma, R., Sun, Z. Y., Chang, Q. X., et al., 2021. Control of the Interactions between Stream and Groundwater by Permafrost and Seasonal Frost in an Alpine Catchment, Northeastern Tibet Plateau, China. Journal of Geophysical Research: Atmospheres, 126(5): e2020jd033689. https://doi.org/10.1029/2020jd033689
      Ma, R., Sun, Z. Y., Hu, Y. L., et al., 2017. Hydrological Connectivity from Glaciers to Rivers in the Qinghai-Tibet Plateau: Roles of Suprapermafrost and Subpermafrost Groundwater. Hydrology and Earth System Sciences, 21(9): 4803-4823. https://doi.org/10.5194/hess-21-4803-2017
      MacKay, J. R., 1995. Active Layer Changes (1968 to 1993) Following the Forest-Tundra Fire near Inuvik, N. W. T., Canada. Arctic and Alpine Research, 27(4): 323. https://doi.org/10.2307/1552025
      Marmy, A., Salzmann, N., Scherler, M., et al., 2013. Permafrost Model Sensitivity to Seasonal Climatic Changes and Extreme Events in Mountainous Regions. Environmental Research Letters, 8(3): 035048. https://doi.org/10.1088/1748-9326/8/3/035048
      Melvin, A. M., Larsen, P., Boehlert, B., et al., 2017. Climate Change Damages to Alaska Public Infrastructure and the Economics of Proactive Adaptation. Proceedings of the National Academy of Sciences of the United States of America, 114(2): E122-E131. https://doi.org/10.1073/pnas.1611056113
      Mu, C. C., Shang, J. G., Zhang, T. J., et al., 2020. Acceleration of Thaw Slump during 1997-2017 in the Qilian Mountains of the Northern Qinghai-Tibetan Plateau. Landslides, 17(5): 10511062. https://doi.org/10.1007/s10346-020-01344-3
      Murton, J. B., 2013.8. 14 Ground Ice and Cryostratigraphy. Treatise on Geomorphology. Elsevier, Amsterdam, 173-201. https://doi.org/10.1016/b978-0-12-374739-6.00206-2
      Murton, J. B., 2022. Ground Ice. In: Shroder, J., Haritashya, U., eds., Treatise on Geomorphology. Academic Press, San Diego, 428-457.
      Murton, J. B., French, H. M., 1994. Cryostructures in Permafrost, Tuktoyaktuk Coastlands, Western Arctic Canada. Canadian Journal of Earth Sciences, 31(4): 737-747. https://doi.org/10.1139/e94-067
      Murton, J. B., Goslar, T., Edwards, M. E., et al., 2015. Palaeoenvironmental Interpretation of Yedoma Silt (Ice Complex) Deposition as Cold-Climate Loess, Duvanny Yar, Northeast Siberia. Permafrost and Periglacial Processes, 26(3): 208-288. https://doi.org/10.1002/ppp.1843
      Murton, J. B., Waller, R. I., Hart, J. K., et al., 2004. Stratigraphy and Glaciotectonic Structures of Permafrost Deformed beneath the Northwest Margin of the Laurentide Ice Sheet, Tuktoyaktuk Coastlands, Canada. Journal of Glaciology, 50(170): 399-412. https://doi.org/10.3189/172756504781829927
      Mutter, E. Z., Phillips, M., 2012. Active Layer Characteristics at Ten Borehole Sites in Alpine Permafrost Terrain, Switzerland. Permafrost and Periglacial Processes, 23(2): 138-151. https://doi.org/10.1002/ppp.1738
      Niu, F. J., Luo, J., Lin, Z. J., et al., 2016. Thaw-Induced Slope Failures and Stability Analyses in Permafrost Regions of the Qinghai-Tibet Plateau, China. Landslides, 13(1): 55-65. https://doi.org/10.1007/s10346-014-0545-2
      O'Neill, H. B., Burn, C. R., 2012. Physical and Temporal Factors Controlling the Development of Near-Surface Ground Ice at Illisarvik, Western Arctic Coast, Canada. Canadian Journal of Earth Sciences, 49(9): 1096-1110. https://doi.org/10.1139/e2012-043
      O'Neill, H. B., Wolfe, S. A., Duchesne, C., 2019. New Ground Ice Maps for Canada Using a Paleogeographic Modelling Approach. The Cryosphere, 13(3): 753-773. https://doi.org/10.5194/tc-13-753-2019
      Pan, Z., Ma, R., Sun, Z. Y., et al., 2022. Integrated Hydrogeological and Hydrogeochemical Dataset of an Alpine Catchment in the Northern Qinghai-Tibet Plateau. Earth System Science Data, 14(5): 2147-2165. https://doi.org/10.5194/essd-14-2147-2022
      Paquette, M., Rudy, A. C. A., Fortier, D., et al., 2020. Multi-Scale Site Evaluation of a Relict Active Layer Detachment in a High Arctic Landscape. Geomorphology, 359: 107159. https://doi.org/10.1016/j.geomorph.2020.107159
      Paul, J. R., Kokelj, S. V., Baltzer, J. L., 2021. Spatial and Stratigraphic Variation of Near-Surface Ground Ice in Discontinuous Permafrost of the Taiga Shield. Permafrost and Periglacial Processes, 32(1): 3-18. https://doi.org/10.1002/ppp.2085
      Ping, C. L., Jastrow, J. D., Jorgenson, M. T., et al., 2015. Permafrost Soils and Carbon Cycling. Soil, 1(1): 147-171. https://doi.org/10.5194/soil-1-147-201
      Pollard, W. H., French, H. M., 1980. A First Approximation of the Volume of Ground Ice, Richards Island, Pleistocene Mackenzie Delta, Northwest Territories, Canada. Canadian Geotechnical Journal, 17(4): 509-516. https://doi.org/10.1139/t80-059
      Pruessner, L., Phillips, M., Farinotti, D., et al., 2018. Near-Surface Ventilation as a Key for Modeling the Thermal Regime of Coarse Blocky Rock Glaciers. Permafrost and Periglacial Processes, 29(3): 152-163. https://doi.org/10.1002/ppp.1978
      Qiu, G. Q., Liu, J. R., Liu, H. X., 1994. Dictionary of Geocryology. Science Press, Beijing (in Chinese).
      Ran, Y. H., Li, X., Cheng, G. D., et al., 2022. New High-Resolution Estimates of the Permafrost Thermal State and Hydrothermal Conditions over the Northern Hemisphere. Earth System Science Data, 14(2): 865-884. https://doi.org/10.5194/essd-14-865-2022
      Rantanen, M., Karpechko, A. Y., Lipponen, A., et al., 2022. The Arctic has Warmed nearly Four Times Faster than the Globe since 1979. Communications Earth & Environment, 3: 168. https://doi.org/10.1038/s43247-022-00498-3
      Romanovsky, N. N., 1973. Regularities in Formation of Frost-Fissures and Development of Frost-Fissure Polygons. Biuletyn Periglacjalny, 23: 237-277.
      Saito, K., Machiya, H., Iwahana, G., et al., 2020. Mapping Simulated Circum-Arctic Organic Carbon, Ground Ice, and Vulnerability of Ice-Rich Permafrost to Degradation. Progress in Earth and Planetary Science, 7(1): 31. https://doi.org/10.1186/s40645-020-00345-z
      Saito, K., Machiya, H., Iwahana, G., et al., 2021. Numerical Model to Simulate Long-Term Soil Organic Carbon and Ground Ice Budget with Permafrost and Ice Sheets (SOC-ICE-V1.0). Geoscientific Model Development, 14(1): 521-542. https://doi.org/10.5194/gmd-14-521-2021
      Scherler, M., Hauck, C., Hoelzle, M., et al., 2013. Modeled Sensitivity of Two Alpine Permafrost Sites to RCM-Based Climate Scenarios. Journal of Geophysical Research: Earth Surface, 118(2): 780-794. https://doi.org/10.1002/jgrf.20069
      Shur, Y., 1988. The Upper Horizon of Permafrost Soils. Proceedings of Fifth International Conference on Permafrost, 1: 867-871.
      Shur, Y., Hinkel, K. M., Nelson, F. E., 2005. The Transient Layer: Implications for Geocryology and Climate-Change Science. Permafrost and Periglacial Processes, 16(1): 5-17. https://doi.org/10.1002/ppp.518
      Shur, Y. L., Jorgenson, M. T., 2007. Patterns of Permafrost Formation and Degradation in Relation to Climate and Ecosystems. Permafrost and Periglacial Processes, 18(1): 7-19. https://doi.org/10.1002/ppp.582
      Staub, B., Marmy, A., Hauck, C., et al., 2015. Ground Temperature Variations in a Talus Slope Influenced by Permafrost: A Comparison of Field Observations and Model Simulations. Geographica Helvetica, 70(1): 45-62. https://doi.org/10.5194/gh-70-45-2015
      Steffen, W., Rockström, J., Richardson, K., et al., 2018. Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 115(33): 8252-8259. https://doi.org/10.1073/pnas.1810141115
      Strauss, J., Laboor, S., Schirrmeister, L., et al., 2021. Circum-Arctic Map of the Yedoma Permafrost Domain. Frontiers in Earth Science, 9: 1001. https://doi.org/10.3389/feart.2021.758360
      Streletskiy, D. A., Shiklomanov, N. I., Little, J. D., et al., 2017. Thaw Subsidence in Undisturbed Tundra Landscapes, Barrow, Alaska, 1962-2015. Permafrost and Periglacial Processes, 28(3): 566-572. https://doi.org/10.1002/ppp.1918
      Sumgin, M., Kachurin, S., Tolstkhin, N., et al., 1940. General Permafrostology. Akademiia Nauk SSSR, Leginggrad-Moscow.
      Wang, K., Jafarov, E., Overeem, I., 2020. Sensitivity Evaluation of the Kudryavtsev Permafrost Model. Science of the Total Environment, 720: 137538. https://doi.org/10.1016/j.scitotenv.2020.137538
      Wang, K., Jafarov, E., Overeem, I., et al., 2018a. A Synthesis Dataset of Permafrost-Affected Soil Thermal Conditions for Alaska, USA. Earth System Science Data, 10(4): 2311-2328. https://doi.org/10.5194/essd-10-2311-2018
      Wang, S. T., Sheng, Y., Li, J., et al., 2018b. An Estimation of Ground Ice Volumes in Permafrost Layers in Northeastern Qinghai-Tibet Plateau, China. Chinese Geographical Science, 28(1): 61-73. https://doi.org/10.1007/s11769-018-0932-z
      Wang, W. H., Wu, T. H., Zhao, L., et al., 2018c. Hydrochemical Characteristics of Ground Ice in Permafrost Regions of the Qinghai-Tibet Plateau. Science of the Total Environment, 626: 366-376. https://doi.org/10.1016/j.scitotenv.2018.01.097
      Wang, K., Zhang, T. J., Clow, G. D., 2023. Permafrost Thermal Responses to Asymmetrical Climate Changes: An Integrated Perspective. Geophysical Research Letters, 50(5): e2022GL100327. https://doi.org/10.1029/2022gl100327
      Williams, P. J., 1968. Ice Distribution in Permafrost Profiles. Canadian Journal of Earth Sciences, 5(6): 1381-1386. https://doi.org/10.1139/e68-136
      Wu, Q. B., Sheng, Y., Yu, Q. H., et al., 2020. Engineering in the Rugged Permafrost Terrain on the Roof of the World under a Warming Climate. Permafrost and Periglacial Processes, 31(3): 417-428. https://doi.org/10.1002/ppp.2059
      Wu, Q. B., Zhang, T. J., 2010. Changes in Active Layer Thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. Journal of Geophysical Research: Atmospheres, 115(D9): e2009jd012974. https://doi.org/10.1029/2009jd012974
      Xu, X. Z., Wang, J. C., Zhang, L. X., 2010. Frozen Soil Physics. Science Press, Beijing (in Chinese with English abstract).
      Yang, S. Z., Jin, H. J., 2010. Hydrogen and Oxygen Isotope Records of Ice Wedge in Ituri River Area of Daxing'anling Mountains and Their Paleotemperature Changes. Scientia Sinica (Terrae), 40(12): 1710-1717 (in Chinese). doi: 10.1360/zd2010-40-12-1710
      Yanovsky, V., 1933. Expedition to Pechora River to Determine the Position of the Southern Permafrost Boundary. Reports of the Committee for Permafrost Investigations, 5: 65-149.
      Yi, S. H., Woo, M. K., Arain, M. A., 2007. Impacts of Peat and Vegetation on Permafrost Degradation under Climate Warming. Geophysical Research Letters, 34(16): L16504. https://doi.org/10.1029/2007gl030550
      Zhang, T., Barry, R. G., Knowles, K., et al., 2008. Statistics and Characteristics of Permafrost and Ground-Ice Distribution in the Northern Hemisphere. Polar Geography, 31(1-2): 47-68. https://doi.org/10.1080/10889370802175895
      Zhang, Z. Q., Li, M., Wang, J., et al., 2023. A Calculation Model for the Spatial Distribution and Reserves of Ground Ice: A Case Study of the Northeast China Permafrost Area. Engineering Geology, 315: 107022. https://doi.org/10.1016/j.enggeo.2023.107022
      Zhao, L., Ding, Y. J., Liu, G. Y., et al., 2010. Estimates of the Reserves of Ground Ice in Permafrost Regions on the Tibetan Plateau. Journal of Glaciology and Geocryology, 32(1): 1-9 (in Chinese with English abstract).
      Zhao, L., Jin, H. J., Li, C. C., et al., 2014. The Extent of Permafrost in China during the Local last Glacial Maximum (LLGM). Boreas, 43(3): 688-698. https://doi.org/10.1111/bor.12049
      Zhou, Y. W., Qiu, G. Q., Guo, D. X., et al., 2000. Geocryology in China. Science Press, Beijing (in Chinese with English abstract).
      Zou, D. F., Pang, Q. Q., Zhao, L., et al., 2024. Estimation of Permafrost Ground Ice to 10 m Depth on the Qinghai-Tibet Plateau. Permafrost and Periglacial Processes, 35(3): 423-434. https://doi.org/10.1002/ppp.2226
      Zwieback, S., Meyer, F. J., 2021. Top-of-Permafrost Ground Ice Indicated by Remotely Sensed Late-Season Subsidence. The Cryosphere, 15(4): 2041-2055. https://doi.org/10.5194/tc-15-2041-2021
      常启昕, 孙自永, 潘钊, 等, 2022. 高寒山区河道径流的形成与水文调节机制研究进展. 地球科学, 47(11): 4196-4209. doi: 10.3799/dqkx.2022.093
      程国栋, 1981. 季节冻结和融化层中未冻水的单向积聚效应. 科学通报, 26(23): 1448-1451.
      程国栋, 1982. 厚层地下冰的形成过程. 中国科学(B辑: 化学), (3): 281-288.
      程国栋, 1984. 我国高海拔多年冻土地带性规律之探讨. 地理学报, 39(2): 185-193. doi: 10.3321/j.issn:0375-5444.1984.02.006
      程国栋, 赵林, 李韧, 等, 2019. 青藏高原多年冻土特征、变化及影响. 科学通报, 64(27): 2783-2795.
      程捷, 张绪教, 田明中, 等, 2006. 黄河源区冰楔假型群的发育及其古气候意义. 第四纪研究, 26(1): 92-98. doi: 10.3321/j.issn:1001-7410.2006.01.012
      罗栋梁, 金会军, 吴青柏, 等, 2023. 天然状态下多年冻土区活动层厚度研究进展与展望. 冰川冻土, 45(2): 558-574.
      马丽娟, 效存德, 康世昌, 2022. 全球主要山地气候变化特征和异同-IPCC AR6 WGI报告和SROCC综合解读. 气候变化研究进展, 18(5): 605-621.
      邱国庆, 刘经仁, 刘鸿绪, 1994. 冻土学词典. 北京: 科学出版社.
      徐斅祖, 王家澄, 张立新, 2010. 冻土物理学. 北京: 科学出版社.
      杨思忠, 金会军, 2010. 大兴安岭伊图里河地区的冰楔冰氢、氧同位素记录及其反映的古温度变化. 中国科学(D辑: 地球科学), 40(12): 1710-1717.
      赵林, 丁永建, 刘广岳, 2010. 青藏高原多年冻土层中地下冰储量估算及评价. 冰川冻土, 32(1): 1-9.
      周幼吾, 邱国庆, 郭东信, 等, 2000. 中国冻土. 北京: 科学出版社.
    • 加载中
    图(6)
    计量
    • 文章访问数:  479
    • HTML全文浏览量:  263
    • PDF下载量:  90
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-07-27
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回