• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    琼东南盆地深水区第四系超浅层大型气藏盖层类型及封盖机理

    裴健翔 王宇

    裴健翔, 王宇, 2025. 琼东南盆地深水区第四系超浅层大型气藏盖层类型及封盖机理. 地球科学, 50(1): 144-157. doi: 10.3799/dqkx.2024.080
    引用本文: 裴健翔, 王宇, 2025. 琼东南盆地深水区第四系超浅层大型气藏盖层类型及封盖机理. 地球科学, 50(1): 144-157. doi: 10.3799/dqkx.2024.080
    Pei Jianxiang, Wang Yu, 2025. Caprock Type and Sealing Mechanism of Quaternary Ultra Shallow Large Gas Reservoir in Deep Water Area of Qiongdongnan Basin, China. Earth Science, 50(1): 144-157. doi: 10.3799/dqkx.2024.080
    Citation: Pei Jianxiang, Wang Yu, 2025. Caprock Type and Sealing Mechanism of Quaternary Ultra Shallow Large Gas Reservoir in Deep Water Area of Qiongdongnan Basin, China. Earth Science, 50(1): 144-157. doi: 10.3799/dqkx.2024.080

    琼东南盆地深水区第四系超浅层大型气藏盖层类型及封盖机理

    doi: 10.3799/dqkx.2024.080
    基金项目: 

    海南省重点研发项目 ZDYF2024GXJS031

    详细信息
      作者简介:

      裴健翔(1970-),男,教授级高工,主要从事南海油气勘探研究. ORCID:0000-0002-0053-3005. E-mail:peijx001@163.com

    • 中图分类号: P618.13

    Caprock Type and Sealing Mechanism of Quaternary Ultra Shallow Large Gas Reservoir in Deep Water Area of Qiongdongnan Basin, China

    • 摘要: 盖层是决定油气能否成藏的重要因素,目前盖层研究多关注中深层固结岩石的封盖能力,而围绕浅层疏松未固结盖层的研究较少,对于深水浅埋地层中的盖层评价则更为少见.基于琼东南盆地深水区三维地震解释、三轴应力实验、测井评价、圆锥触探试验等研究成果,明确了L36区第四系乐东组浅埋气藏盖层的发育类型及封堵能力,总结了研究区盖层封盖机理.结果表明:(1)深水区乐东组发育深海泥、块体流、含水合物地层3类盖层,三者均可起到有效封盖作用;(2)综合地震‒地质解释及实验成果,明确了3类盖层封盖能力从小到大依次为深海泥、块体流、含水合物地层,其中深海泥在海底埋深200 m处可封盖59 m天然气,为研究区主要目的层盖层封堵下限.(3)深水浅埋盖层封堵机理占主导作用的是毛细管封闭、水力封闭,低温高压环境下饱和盐水封堵机制发挥了特色性增封作用.以上认识得到近两年钻探的验证,这不仅为琼东南盆地乐东组的后续勘探开发提供了理论依据,也可为其他深水浅埋地区的天然气勘探提供有益借鉴.

       

    • 图  1  琼东南盆地构造区划(a)、地层综合柱状图(b)

      Fig.  1.  Structural division (a) and stratigraphic comprehensive histogram (b) of Qiongdongnan Basin

      图  2  琼东南盆地超深水浅埋盖层发育类型及地震相特征(3口井位置见图 1

      Fig.  2.  The types and seismic facies characteristics of ultra-deep water shallow cap rocks in Qiongdongnan Basin (see Fig.1 for the locations of 3 wells)

      图  3  浅海泥、深海泥岩样对比

      Fig.  3.  Comparison of shallow sea mud and deep sea mud

      图  4  琼东南盆地西北方向块体流地震剖面及弧长属性

      Fig.  4.  Seismic profile and arc length attribute of MTDs from northwest direction in Qiongdongnan Basin

      图  5  琼东南盆地西南方向块体流地震剖面(a)及振幅属性(b)

      Fig.  5.  Seismic profile (a) and amplitude attribute (b) of MTDs from southwest direction in Qiongdongnan Basin

      图  6  L36-1a井乐三段泥岩盖层排替压力与盖层孔隙度、埋深、泥岩厚度的关系

      Fig.  6.  The relationship between the displacement pressure of mudstone caprock and the porosity, buried depth and mudstone thickness of the third member of Ledong Formation in Well L36-1a

      图  7  基于CPT原位测试分析含水合物地层封盖能力

      Fig.  7.  Analysis of sealing ability of hydrate-bearing strata based on CPT in-situ test

      图  8  毛细管失效(a)与水力破裂(b)模式

      Fig.  8.  Patterns of capillary failure (a) and hydraulic fracture (b)

      图  9  琼东南地区深水浅埋盖层封盖机理

      Fig.  9.  Sealing mechanism of deep-water shallow-buried caprock in Qiongdongnan area

      图  10  不同温度条件下盖层表面张力(a)、变温‒变压条件下天然气密度(b)

      Fig.  10.  Caprock surface tension (a) under different temperature conditions, natural gas density (b) under variable temperature and pressure conditions

      图  11  深水井LS17-2(a)、浅水井DF-X(b)海底埋深30 m圆锥静力触探实验对比

      Fig.  11.  Deep water Well LS17-2 (a), shallow water Well DF-X (b) seabed buried depth of 30 m cone static cone penetration test comparison

      表  1  L36-1a井盖层排替压力及其可封堵最大气柱高度

      Table  1.   The displacement pressure of Well L36-1a caprock and the maximum height of gas column that can be sealed

      顶深(m) 底深(m) 厚度(m) 孔隙度(%) 排替压力(MPa) 可封最大气柱高度(m)
      1 770 1 782 12 22 0.9 116
      1 795 1 822 27 20 1.1 144
      1 827 1 829 2 15 1.9 246
      1 843 1 858 15 25 0.7 84
      1 860 1 874 14 20.5 1.1 136
      1 878 1 889 11 20 1.1 144
      1 894 1 896 2 20 1.1 144
      1 897 1 899 2 25 0.7 84
      1 914 1 921 7 17 1.6 198
      1 924 1 943 19 16 1.7 221
      1 948 1 992 44 18 1.4 178
      2 011 2 053 42 19 1.3 160
      下载: 导出CSV

      表  2  块体流与深海泥测井参数(Sun and Alves, 2020)

      Table  2.   Logging parameters of MTDs and deepsea mud (Sun and Alves, 2020)

      测井参数 块体流 深海泥
      体积密度(g/cm3) 1.8 1.7
      孔隙度(%) 42 50
      电阻率(Ω·m) 2 1.5
      声波时差(µs/ft) 160 177
      含水饱和度(wt%) 22 25
      下载: 导出CSV
    • Algar, S., Milton, C., Upshall, H., et al., 2011. Mass-Transport Deposits of the Deepwater Northwestern Borneo Margin—Characterization from Seismic-Reflection, Borehole, and Core Data with Implications for Hydrocarbon Exploration and Exploitation. In: Shipp, R. C., Weimer, P., Posamentier, H. W., eds., Mass-Transport Deposits in Deepwater Settings. SEPM (Society for Sedimentary Geology), Tulsa, 351-366. https://doi.org/10.2110/sepmsp.096.351
      Amy, L. A., 2019. A Review of Producing Fields Inferred to have Upslope Stratigraphically Trapped Turbidite Reservoirs: Trapping Styles (Pure and Combined), Pinch-out Formation, and Depositional Setting. Bulletin of the American Association of Petroleum Geologists, 103(12): 2861-2889. https://doi.org/10.1306/02251917408
      Baur, F., Scheirer, A. H., Peters, K. E., 2018. Past, Present, and Future of Basin and Petroleum System Modeling. AAPG Bulletin, 102(4): 549-561. https://doi.org/10.1306/08281717049
      Bhatnagar, P., Verma, S., Bianco, R., 2019. Characterization of Mass Transport Deposits Using Seismic Attributes: Upper Leonard Formation, Permian Basin. Interpretation, 7(4): SK19-SK32. https://doi.org/10.1190/int-2019-0036.1
      Bull, S., Cartwright, J., Huuse, M., 2009. A Review of Kinematic Indicators from Mass-Transport Complexes Using 3D Seismic Data. Marine and Petroleum Geology, 26(7): 1132-1151. https://doi.org/10.1016/j.marpetgeo.2008.09.011
      Byerlee, J., 1978. Friction of Rocks. Pure and Applied Geophysics, 116: 615-626. https://doi.org/10.1007/BF00876528
      Cardona, S., Kobayashi, H., Wood, L., et al., 2022. Assessing the Sealing Quality of Submarine Mass Transport Complexes and Deposits. Marine and Petroleum Geology, 143: 105748. https://doi.org/10.1016/j.marpetgeo.2022.105748
      Cardona, S., Wood, L. J., Day-Stirrat, R. J., et al., 2016. Fabric Development and Pore-Throat Reduction in a Mass-Transport Deposit in the Jubilee Gas Field, Eastern Gulf of Mexico: Consequences for the Sealing Capacity of MTDs. In: Lamarche, G., Mountjoy, J., Bull, S., et al., eds., Advances in Natural and Technological Hazards Research. Springer International Publishing, Cham, 27-37. https://doi.org/10.1007/978-3-319-20979-1_3
      Cartwright, J., Huuse, M., Aplin, A., 2007. Seal Bypass Systems. AAPG Bulletin, 91: 1141-1166. https://doi.org/10.1306/04090705181
      Castillo, D. A., Bishop, D. J., Donaldson, I., et al., 2000. Trap Integrity in the Lam in Aria High-Nancar Trough Region, Timor Sea: Prediction of Fault Seal Failure Using well-Constrained Stress Tensors and Fault Surfaces Interpreted from 3D Seismic. The APPEA Journal, 40(1): 151. https://doi.org/10.1071/aj99009
      Downey, M. W., 1984. Evaluating Seals for Hydrocarbon Accumulations. AAPG Bulletin, 68: 1752-1763. https://doi.org/10.1306/ad461994-16f7-11d7-8645000102c1865d
      Fryer, R. C., Jobe, Z. R., 2019. Quantification of the Bed-Scale Architecture of Submarine Depositional Environments. The Depositional Record, 5(2): 192-211. https://doi.org/10.1002/dep2.70
      Godo, T. J., 2006. Identification of Stratigraphic Traps with Subtle Seismic Amplitude Effects in Miocene Channel/Levee Sand Systems, NE Gulf of Mexico. Geological Society, London, Special Publications, 254(1): 127-151. https://doi.org/10.1144/gsl.sp.2006.254.01.07
      Jackson, A., Stright, L., Hubbard, S. M., et al., 2019. Static Connectivity of Stacked Deep-Water Channel Elements Constrained by High-Resolution Digital Outcrop Models. AAPG Bulletin, 103(12): 2943-2973. https://doi.org/10.1306/03061917346
      Jia, R., 2018. Integrity of Caprock in Yingqiong Basin and Its Relationship with Natural Gas Accumulation (Dissertation). Northeast Petroleum University, Daqing (in Chinese with English abstract).
      Jiang, Y. L., 1998. Discussion on the Relationship between the Thickness of Caprock and the Height of Hydrocarbon Column Covered by It. Natural Gas Industry, 18(2): 20-23 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0976.1998.02.007
      Johnson, R. C., Birdwell, J., Brownfield, M., et al., 2015. Mass-Movement Deposits in the Lacustrine Eocene Green River Formation, Piceance Basin, Western Colorado. U. S. Geological Survey, Reston, Virginia. https://doi.org/10.3133/ofr20151044. Reston
      Kessler, F., Jong, J., 2018. Hydrocarbon Retention in Clastic Reservoirs of NW Borneo-Examples of Hydrocarbon Trap, Reservoir, Seal and Implications on Hydrocarbon Column Length. Berita Sedimentologi, 40: 6-44.
      Li, F. J., 1982. Discussion on the Problem of Wellbore Stability. Oil Drilling & Production Technology, (7): 1-8 (in Chinese).
      Li, J., Yan, Q. T., Zhang, Y., et al., 2007. Particularity of Sealing Mechanism of Quaternary Biogas Caprock in Sanhu Area of Qaidam Basin. Scientia Sinica Terrae, 37(S2): 36-42 (in Chinese).
      Liu, Q. H., Li, Z. Y., Chen, H. H., et al., 2024. Current Geological Issues and Future Perspectives in Deep-Time Source-to-Sink Systems of Continental Rift Basins. Journal of Earth Science, 35(5): 1758-1764. https://doi.org/10.1007/s12583-024-0028-x
      Meckel, L. D., 2011. Reservoir Characteristics and Classification of Sand-Prone Submarine Mass-Transport Deposits. In: Shipp, R. C., Weimer, P., Posamentier, H. W., eds., Mass-Transport Deposits in Deepwater Settings. SEPM (Society for Sedimentary Geology), Tulsa, 423-452. https://doi.org/10.2110/sepmsp.096.423
      Pei, J. X., Song, P., Guo, M. G., et al., 2023. Sedimentary Evolution and Hydrocarbon Exploration Prospect of the Quaternary Central Canyon System in the Qiongdongnan Basin. Earth Science, 48(2): 451-464 (in Chinese with English abstract).
      Rayeva, N., Kosnazarova, N., Arykbayeva, Z., et al., 2014. Petroleum Systems Modeling and Exploration Risk Assessment for the Eastern Margin of the Precaspian Basin (Russian) In: SPE Annual Caspian Technical Conference and Exhibition. Society of Petroleum Engineers, Astana. https://doi.org/10.2118/172332-ru
      Rudolph, K. W., Goulding, F. J., 2017. Benchmarking Exploration Predictions and Performance Using 20+ Yr of Drilling Results: One Company's Experience. AAPG Bulletin, 101(2): 161-176. https://doi.org/10.1306/06281616060
      Schmatz, J., Vrolijk, P. J., Urai, J. L., 2010. Clay Smear in Normal Fault Zones-The Effect of Multilayers and Clay Cementation in Water-Saturated Model Experiments. Journal of Structural Geology, 32(11): 1834-1849. https://doi.org/10.1016/j.jsg.2009.12.006
      Sha, Z. B., Liang, J. Q., Zhang, G. X., et al., 2015. A Seepage Gas Hydrate System in Northern South China Sea: Seismic and Well Log Interpretations. Marine Geology, 366: 69-78. https://doi.org/10.1016/j.margeo.2015.04.006
      Shanmugam, G., Shrivastava, S. K., Das, B., 2009. Sandy Debrites and Tidalites of Pliocene Reservoir Sands in Upper-Slope Canyon Environments, Offshore Krishna-Godavari Basin (India): Implications. Journal of Sedimentary Research, 79(9): 736-756. https://doi.org/10.2110/jsr.2009.076
      Sun, Q. L., Alves, T. M., 2020. Petrophysics of Fine-Grained Mass-Transport Deposits: A Critical Review. Journal of Asian Earth Sciences, 192: 104291. https://doi.org/10.1016/j.jseaes.2020.104291
      Tänavsuu-Milkeviciene, K., Sarg, J. F., 2012. Evolution of an Organic-Rich Lake Basin-Stratigraphy, Climate and Tectonics: Piceance Creek Basin, Eocene Green River Formation. Sedimentology, 59(6): 1735-1768. https://doi.org/10.1111/j.1365-3091.2012.01324.x
      Wang, Y., Pei, J. X., Liu, Y., 2016. Caprock Sealing Mechanism of High-Temperature and Overpressure Gas Reservoirs in the Dongfang Block, Yinggehai Basin, South China. Geology and Minerals Resources South China, 32(4): 397-405 (in Chinese with English abstract).
      Watts, N. L., 1987. Theoretical Aspects of Cap-Rock and Fault Seals for Single- and Two-Phase Hydrocarbon Columns. Marine and Petroleum Geology, 4(4): 274-307. https://doi.org/10.1016/0264-8172(87)90008-0
      Welbon, A. I. F., Brockbank, P. J., Brunsden, D., et al., 2007. Characterizing and Producing from Reservoirs in Landslides: Challenges and Opportunities. Geological Society, London, Special Publications, 292(1): 49-74. https://doi.org/10.1144/sp292.3
      Xie, Y. H., 2019. Quantitative Evaluation of Sealing Capacity of High Temperature and Pressure Caprocks in Yinggehai Basin. Earth Science, 44(8): 2579-2589 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201908001.htm
      Yang, J. X., Davies, R. J., Huuse, M., 2013. Gas Migration below Gas Hydrates Controlled by Mass Transport Complexes, Offshore Mauritania. Marine and Petroleum Geology, 48: 366-378. https://doi.org/10.1016/j.marpetgeo.2013.09.003
      Zou, C. N., Yang, Z., Zhang, G. S., et al., 2023. Theory, Technology and Practice of Unconventional Petroleum Geology. Journal of Earth Science, 34(4): 951-965. https://doi.org/10.1007/s12583-023-2000-8
      贾茹, 2018. 莺琼盆地盖层完整性及与天然气成藏(博士学位论文). 大庆: 东北石油大学.
      蒋有录, 1998. 油气藏盖层厚度与所封盖烃柱高度关系问题探讨. 天然气工业, 18(2): 20-23. doi: 10.3321/j.issn:1000-0976.1998.02.007
      李凤九, 1982. 井壁稳定问题的探讨. 石油钻采工艺, (7): 1-8.
      李剑, 严启团, 张英, 等, 2007. 柴达木盆地三湖地区第四系生物气盖层封闭机理的特殊性. 中国科学: 地球科学, 37(S2): 36-42.
      裴健翔, 宋鹏, 郭明刚, 等, 2023. 琼东南盆地第四纪中央峡谷体系沉积演化与油气前景. 地球科学, 48(2): 451-464. doi: 10.3799/dqkx.2022.487
      汪洋, 裴健翔, 刘亿, 2016. 莺歌海盆地东方区高温超压气藏盖层封盖机制. 华南地质与矿产, 32(4): 397-405. doi: 10.3969/j.issn.1007-3701.2016.04.010
      谢玉洪, 2019. 莺歌海盆地高温高压盖层封盖能力定量评价. 地球科学, 44(8): 2579-2589. doi: 10.3799/dqkx.2019.095
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  262
    • HTML全文浏览量:  108
    • PDF下载量:  53
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-06-29
    • 网络出版日期:  2025-02-10
    • 刊出日期:  2025-01-25

    目录

      /

      返回文章
      返回