• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    VOCs排放控制对SOA和O3的减缓作用

    马静 燕莹莹 孔少飞 王五科 童芷萱

    马静, 燕莹莹, 孔少飞, 王五科, 童芷萱, 2025. VOCs排放控制对SOA和O3的减缓作用. 地球科学, 50(9): 3454-3467. doi: 10.3799/dqkx.2024.090
    引用本文: 马静, 燕莹莹, 孔少飞, 王五科, 童芷萱, 2025. VOCs排放控制对SOA和O3的减缓作用. 地球科学, 50(9): 3454-3467. doi: 10.3799/dqkx.2024.090
    Ma Jing, Yan Yingying, Kong Shaofei, Wang Wuke, Tong Zhixuan, 2025. The Mitigation of SOA and O3 by VOCs Emission Reduction. Earth Science, 50(9): 3454-3467. doi: 10.3799/dqkx.2024.090
    Citation: Ma Jing, Yan Yingying, Kong Shaofei, Wang Wuke, Tong Zhixuan, 2025. The Mitigation of SOA and O3 by VOCs Emission Reduction. Earth Science, 50(9): 3454-3467. doi: 10.3799/dqkx.2024.090

    VOCs排放控制对SOA和O3的减缓作用

    doi: 10.3799/dqkx.2024.090
    基金项目: 

    国家自然科学基金面上项目 42475186

    详细信息
      作者简介:

      马静(1998-),男,博士研究生,主要研究方向大气环境、臭氧污染成因和来源. ORCID:0009-0002-0003-166X. E-mail:2426410516@qq.com

      通讯作者:

      燕莹莹, E-mail: yanyingying@cug.edu.cn

    • 中图分类号: P404

    The Mitigation of SOA and O3 by VOCs Emission Reduction

    • 摘要:

      挥发性有机物(VOCs)是臭氧(O3)和二次有机气溶胶(SOA)的重要前体物.然而,目前关于VOCs排放控制对SOA和O3缓解作用的研究仍然不足.本研究总结了四大排放源的精细化VOCs减排潜力,进一步利用WRF-Chem模型量化了中国主要大气污染区污染事件期间VOCs减排对SOA和O3缓解的效益.结果表明,通过精细化VOCs减排,华北、长三角、华中、珠三角和四川盆地的SOA浓度分别降低了89.2%、81.2%、74.5%、72.0%和77.3%.其中,工业VOCs减排是SOA缓解的主要贡献因素.然而,由于O3及其前体物的非线性光化学过程,这种VOCs减排只能使O3浓度降低不到10%.华北、长三角、华中、珠三角和四川盆地的O3浓度分别降低了7.55、9.05、7.29、4.31和3.15 μg/m3.减少工业、交通和居民VOCs排放分别使臭氧平均浓度降低了3.6%(3.48 μg/m3)、2.2%(2.07 μg/m3)和1.1%(0.98 μg/m3).

       

    • 图  1  2017年1月至3月五个主要区域的核心城市PM2.5平均观测值(a);2017年6月至8月五个主要区域的核心城市O3平均观测值(b)

      图中橙色、红色和紫色表示污染物超标

      Fig.  1.  The average observed values of PM2.5 in five urban areas from January to March 2017 (a); Average O3 observations for five urban areas from June to August 2017 (b)

      图  2  5个城市地区PM2.5(a~e)及O3(f~j)模拟结果与观测的相关性及平均偏差

      图a、f对应NCP地区,图b、g对应YRD地区,图c、h对应CC地区,图d、i对应PRD地区,图e、j对应SCB地区;(a~e)模拟时间段为2017年2月11日至17日,(f~j)模拟时间段为2017年6月1日至9日;图中横坐标是PM2.5和O3的观测浓度值,纵坐标是模拟浓度值,单位为μg/m3

      Fig.  2.  The correlation and average deviation between observation and simulation for PM2.5 (a-e) and O3 (f-j) in 5 urban areas

      图  3  CON和REAL实验SOA(a)、PM2.5(b)和O3(c)浓度的差异

      Fig.  3.  Difference in SOA (a), PM2.5 (b) and O3 (c) concentration of CON and REAL experimental

      图  4  敏感性试验与控制实验SOA浓度的空间差异;模拟时间段为2017年2月11日至17日

      Fig.  4.  Spatial difference of SOA concentration between sensitivity test and control experiment; The simulation period was February 11-17, 2017

      图  5  敏感性试验与控制实验O3浓度的空间差异;模拟时间段为2017年6月1日至9日

      Fig.  5.  Spatial difference of O3 concentration between sensitivity test and control experiment; The simulation period was June 1-9, 2017

      表  1  WRF-Chem物理和化学方案的配置

      Table  1.   Configuration of the WRF-Chem physical and chemical program

      参数方案 WRF-Chem具体选项 参考来源
      微物理 Lin微物理过程方案 Lin et al., 1983
      长波辐射 RRTM长波辐射方案 Gallus and Bresch, 2006
      短波辐射 Goddard短波辐射方案 Chou and Suarez, 1999
      地表参数化方案 MM5地表参数化方案 Jiménez et al., 2012
      陆面模型 Noah陆面模型 Ek et al., 2003
      边界层方案 YSU边界层方案 Noh et al., 2003
      积云参数化方案 Grell 3D积云参数化方案 Grell and Dévényi, 2002
      化学方案 CB05机制和SAPRC-99机制 Sarwar et al., 2008Carter, 1990
      下载: 导出CSV

      表  2  WRF-Chem模型敏感性试验的描述

      Table  2.   Description of sensitivity test of WRF-Chem model

      减排方案 描述
      CON 应用原始的排放情况
      C20 全国人为VOCs污染源排放量减少20%
      C40 全国人为VOCs污染源排放量减少40%
      C60 全国人为VOCs污染源排放量减少60%
      C80 全国人为VOCs污染源排放量减少80%
      C100 全国人为VOCs污染源排放量设置为零
      AGR 农业VOCs排放量设置为零
      IND 工业VOCs排放量设置为零
      POW 发电部门VOCs排放量设置为零
      TRA 交通运输VOCs排放量设置为零
      RES 居民住宅VOCs排放量设置为零
      REAL 根据实际文献和政策总结计算出的减排比例
      下载: 导出CSV

      表  3  各行业VOCs减排策略和减排潜力

      Table  3.   VOCs emission reduction strategies and emission reduction potential

      部门 行业 VOCs排放控制策略 VOCs减排潜力 参考文献
      工业 石油化工 对失控排放的有效控制(包括泄漏检测与修复系统(LDAR)、过程控制、源头排放控制) 40% Simayi et al., 2021Wang et al., 2023a
      溶剂 油漆 绿色涂料替代 70%~80% Shi et al., 2023
      工业粘合剂 实施更严格的VOCs排放限制 60% Gao et al., 2021b
      印刷 使用VOCs含量低的原材料 46%~66% You et al., 2023
      农药 吸附/冷凝分离/催化燃烧 70%~90% Zheng et al., 2017
      干洗 冷凝分离 70%~85% Zheng et al., 2017
      制药行业 使用LDAR技术 55%~72% Zhang et al., 2021
      交通运输 道路车辆 摩托车:安装排放控制装置 45%~88% Dhital et al., 2019
      乘用车:加强排放监测和执法,并结合车辆数量的监管限制 51% Wu et al., 2023
      非道路车辆 船舶:更换燃料 67% Wu et al., 2019
      居民住宅 固体燃料(煤、生物质燃料等) 清洁供暖技术 90% He et al., 2023Sun et al., 2019
      下载: 导出CSV

      表  4  气象因子模拟结果的对比结果,包括观测和模拟结果的平均偏差(MB)、平均归一化偏差(NMB)、平均误差(ME)和平均归一化误差(NME

      Table  4.   Detailed statistics of meteorological factors. Mean bias (MB), normalized mean bias (NMB), mean error (ME) and normalized mean error (NME) of observation and simulation results.

      R MB ME NMB(%) NME(%)
      PM2.5模拟时段(2017年2月11日至17日) U10 0.80 0.02(m/s) 0.82(m/s) 1.28 2.21
      V10 0.86 ‒0.45(m/s) 1.05(m/s) 0.78 0.80
      T2 0.95 0.90(K) 1.79(K) ‒0.002 0.007
      RH2 0.86 ‒5.18(%) 11.67(%) ‒0.06 0.21
      O3模拟时段(2017年6月1日至9日) U10 0.80 ‒0.28(m/s) 0.85(m/s) 0.31 ‒2.93
      V10 0.87 ‒0.02(m/s) 0.96(m/s) 2.19 ‒1.79
      T2 0.90 ‒0.15(K) 1.21(K) ‒0.000 6 0.004
      RH2 0.89 ‒2.52(%) 5.91(%) ‒0.04 0.08
      下载: 导出CSV
    • Azmi, S., Sharma, M., 2022. Preventing Biogenic Secondary Organic Aerosols Formation in India. Atmospheric Environment, 290: 119352. https://doi.org/10.1016/j.atmosenv.2022.119352
      Bai, X. X., Liu, W., Wu, B. B., et al., 2023. Emission Characteristics and Inventory of Volatile Organic Compounds from the Chinese Cement Industry Based on Field Measurements. Environmental Pollution, 316: 120600. https://doi.org/10.1016/j.envpol.2022.120600
      Batterman, S., Xu, L. Z., Chen, F., et al., 2016. Characteristics of PM2.5 Concentrations across Beijing during 2013-2015. Atmospheric Environment, 145: 104-114. https://doi.org/10.1016/j.atmosenv.2016.08.060
      Carter, W. P. L., 1990. A Detailed Mechanism for the Gas-Phase Atmospheric Reactions of Organic Compounds. Atmospheric Environment Part A General Topics, 24(3): 481-518. https://doi.org/10.1016/0960-1686(90)90005-8
      Chou, M. D., Suarez, M. J., 1999. A Solar Radiation Parameterization for Atmospheric Studies. NASA Technical Reports Server, 15: 104606.
      Dhital, N. B., Yang, H. H., Wang, L. C., et al., 2019. VOCs Emission Characteristics in Motorcycle Exhaust with Different Emission Control Devices. Atmospheric Pollution Research, 10(5): 1498-1506. https://doi.org/10.1016/j.apr.2019.04.007
      Duan, C. S., Liao, H., Wang, K. D., et al., 2023. The Research Hotspots and Trends of Volatile Organic Compound Emissions from Anthropogenic and Natural sources: A Systematic Quantitative Review. Environmental Research, 216: 114386. https://doi.org/10.1016/j.envres.2022.114386
      Ek, M. B., Mitchell, K. E., Lin, Y., et al., 2003. Implementation of Noah Land Surface Model Advances in the National Centers for Environmental Prediction Operational Mesoscale Eta Model. Journal of Geophysical Research: Atmospheres, 108(D22): 8851. https://doi.org/10.1029/2002JD003296
      Emery, C., Liu, Z., Russell, A. G., et al., 2017. Recommendations on Statistics and Benchmarks to Assess Photochemical Model Performance. Journal of the Air & Waste Management Association, 67(5): 582-598. https://doi.org/10.1080/10962247.2016.1265027
      Epping, R., Koch, M., 2023. On-Site Detection of Volatile Organic Compounds (VOCs). Molecules, 28(4): 1598. https://doi.org/10.3390/molecules28041598
      Gallus, W. A. Jr, Bresch, J. F., 2006. Comparison of Impacts of WRF Dynamic Core, Physics Package, and Initial Conditions on Warm Season Rainfall Forecasts. Monthly Weather Review, 134(9): 2632-2641. https://doi.org/10.1175/mwr3198.1
      Gao, L. B., Wang, T. J., Ren, X. J., et al., 2021a. Subseasonal Characteristics and Meteorological Causes of Surface O3 in Different East Asian Summer Monsoon Periods over the North China Plain during 2014-2019. Atmospheric Environment, 264: 118704. https://doi.org/10.1016/j.atmosenv.2021.118704
      Gao, M. P., Liu, W. W., Wang, H. L., et al., 2021b. Emission Factors and Characteristics of Volatile Organic Compounds (VOCs) from Adhesive Application in Indoor Decoration in China. Science of The Total Environment, 779: 145169. https://doi.org/10.1016/j.scitotenv.2021.145169
      Gao, M., Gao, J. H., Zhu, B., et al., 2020. Ozone Pollution over China and India: Seasonality and Sources. Atmospheric Chemistry and Physics, 20(7): 4399-4414. https://doi.org/10.5194/acp-20-4399-2020
      Grell, G. A., Dévényi, D., 2002. A Generalized Approach to Parameterizing Convection Combining Ensemble and Data Assimilation Techniques. Geophysical Research Letters, 29(14): 38-1-38-4. https://doi.org/10.1029/2002GL015311
      Guo, H., Ling, Z. H., Cheng, H. R., et al., 2017. Tropospheric Volatile Organic Compounds in China. Science of The Total Environment, 574: 1021-1043. https://doi.org/10.1016/j.scitotenv.2016.09.116
      Hallquist, M., Wenger, J. C., Baltensperger, U., et al., 2009. The Formation, Properties and Impact of Secondary Organic Aerosol: current and Emerging Issues. Atmospheric Chemistry and Physics, 9(14): 5155-5236. https://doi.org/10.5194/acp-9-5155-2009
      He, K., Fu, T., Zhang, B., et al., 2023. Examination of Long-Time Aging Process on Volatile Organic Compounds Emitted from Solid Fuel Combustion in a Rural Area of China. Chemosphere, 333: 138957. https://doi.org/10.1016/j.chemosphere.2023.138957
      Huang, R. J., Zhang, Y. L., Bozzetti, C., et al., 2014. High Secondary Aerosol Contribution to Particulate Pollution during Haze Events in China. Nature, 514(7521): 218-222. https://doi.org/10.1038/nature13774
      Huang, Y. S., Hsieh, C. C., 2019. Ambient Volatile Organic Compound Presence in the Highly Urbanized City: source Apportionment and Emission Position. Atmospheric Environment, 206: 45-59. https://doi.org/10.1016/j.atmosenv.2019.02.046
      Hui, L. R., Liu, X. G., Tan, Q. W., et al., 2020. VOC Characteristics, Chemical Reactivity and Sources in Urban Wuhan, Central China. Atmospheric Environment, 224: 117340. https://doi.org/10.1016/j.atmosenv.2020.117340
      Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., et al., 2009. Evolution of Organic Aerosols in the Atmosphere. Science, 326(5959): 1525-1529. https://doi.org/10.1126/science.1180353
      Jiménez, P. A., Dudhia, J., González-Rouco, J. F., et al., 2012. A Revised Scheme for the WRF Surface Layer Formulation. Monthly Weather Review, 140(3): 898-918. https://doi.org/10.1175/mwr-d-11-00056.1
      Jiménez-López, A. M., Hincapié-Llanos, G. A., 2022. Identification of Factors Affecting the Reduction of VOC Emissions in the Paint industry: Systematic Literature Review-SLR. Progress in Organic Coatings, 170: 106945. https://doi.org/10.1016/j.porgcoat.2022.106945
      Li, J. X., Wang, Z. X., Chen, L. L., et al., 2020. WRF-Chem Simulations of Ozone Pollution and Control Strategy in Petrochemical Industrialized and Heavily Polluted Lanzhou City, Northwestern China. Science of The Total Environment, 737: 139835. https://doi.org/10.1016/j.scitotenv.2020.139835
      Li, J., Han, Z. W., Wu, J., et al., 2022a. Secondary Organic Aerosol Formation and Source Contributions over East China in Summertime. Environmental Pollution, 306: 119383. https://doi.org/10.1016/j.envpol.2022.119383
      Li, M. M., Wang, T. J., Shu, L., et al., 2021. Rising Surface Ozone in China from 2013 to 2017: A Response to the Recent Atmospheric Warming or Pollutant Controls? Atmospheric Environment, 246: 118130. https://doi.org/10.1016/j.atmosenv.2020.118130
      Li, M., Liu, H., Geng, G. N., et al., 2017. Anthropogenic Emission Inventories in China: A Review. National Science Review, 4(6): 834-866. https://doi.org/10.1093/nsr/nwx150
      Li, X. B., Yuan, B., Wang, S. H., et al., 2022b. Variations and Sources of Volatile Organic Compounds (VOCs) in Urban Region: Insights from Measurements on a Tall Tower. Atmospheric Chemistry & Physics, 22(16): 10567-10587. https://doi.org/10.5194/acp-22-10567-2022
      Li, Y. F., Wu, Z. H., Ji, Y. Y., et al., 2024. Comparison of the Ozone Formation Mechanisms and VOCs Apportionment in Different Ozone Pollution Episodes in Urban Beijing in 2019 and 2020: Insights for Ozone Pollution Control Strategies. Science of The Total Environment, 908: 168332. https://doi.org/10.1016/j.scitotenv.2023.168332
      Lin, Y. L., Farley, R. D., Orville, H. D., 1983. Bulk Parameterization of the Snow Field in a Cloud Model. Journal of Climate and Applied Meteorology, 22(6): 1065-1092. https://doi.org/10.1175/1520-0450(1983)0221065:bpotsf>2.0.co;2 doi: 10.1175/1520-0450(1983)0221065:bpotsf>2.0.co;2
      Liu, J. W., Li, X., Tan, Z. F., et al., 2021. Assessing the Ratios of Formaldehyde and Glyoxal to NO2 as Indicators of O3-NOx-VOC Sensitivity. Environmental Science & Technology, 55(16): 10935-10945. https://doi.org/10.1021/acs.est.0c07506
      Liu, Y. M., Hong, Y. Y., Fan, Q., et al., 2017. Source-Receptor Relationships for PM2.5 during Typical Pollution Episodes in the Pearl River Delta City Cluster, China. Science of The Total Environment, 596: 194-206. https://doi.org/10.1016/j.scitotenv.2017.03.255
      Ma, W., Feng, Z. M., Zhan, J. L., et al., 2022. Influence of Photochemical Loss of Volatile Organic Compounds on Understanding Ozone Formation Mechanism. Atmospheric Chemistry and Physics, 22(7): 4841-4851. https://doi.org/10.5194/acp-22-4841-2022
      Mo, Z. W., Shao, M., Lu, S. H., 2016. Compilation of a Source Profile Database for Hydrocarbon and OVOC Emissions in China. Atmospheric Environment, 143: 209-217. https://doi.org/10.1016/j.atmosenv.2016.08.025
      Moeller, D., 2004. The Tropospheric Ozone Problem. Archives of Industrial Hygiene and Toxicology, 55(1): 11-23.
      Noh, Y., Cheon, W. G., Hong, S. Y., et al., 2003. Improvement of the K-Profile Model for the Planetary Boundary Layer Based on Large Eddy Simulation Data. Boundary-Layer Meteorology, 107(2): 401-427. https://doi.org/10.1023/A:1022146015946
      Pan, R. X., Wang, F. T., Zhao, X. Y., et al., 2024. Modeling Study on Ozone Pollution Event Control Pathways in a Typical Industrial City. Acta Scientiae Circumstantiae, 44(9): 21-31 (in Chinese with English abstract).
      Pan, W. J., Gong, S. L., Lu, K. D., et al., 2023. Multi-Scale Analysis of the Impacts of Meteorology and Emissions on PM2.5 and O3 Trends at Various Regions in China from 2013 to 2020 3. Mechanism Assessment of O3 Trends by a Model. Science of The Total Environment, 857: 159592. https://doi.org/10.1016/j.scitotenv.2022.159592
      Qi, S. H., Sheng, G. Y., Fu, J. M., et al., 2001. PAHs in Aerosols at Dinghushan Natural Protection Zone. Earth Science, 26(1): 83-87 (in Chinese with English abstract).
      Sarwar, G., Luecken, D., Yarwood, G., et al., 2008. Impact of an Updated Carbon Bond Mechanism on Predictions from the CMAQ Modeling System: Preliminary Assessment. Journal of Applied Meteorology and Climatology, 47(1): 3-14. doi: 10.1175/2007JAMC1393.1
      Sharma, S., Chatani, S., Mahtta, R., et al., 2016. Sensitivity Analysis of Ground Level Ozone in India Using WRF-CMAQ Models. Atmospheric Environment, 131: 29-40. https://doi.org/10.1016/j.atmosenv.2016.01.036
      Shen, L. J., Hu, W. Y., Zhao, T. L., et al., 2021. Changes in the Distribution Pattern of PM2.5 Pollution over Central China. Remote Sensing, 13(23): 4855. https://doi.org/10.3390/rs13234855
      Shi, Y. Q., Xi, Z. Y., Lyu, D. Q., et al., 2023. Sector-Based Volatile Organic Compound Emission Characteristics and Reduction Perspectives for Coating Materials Manufacturing in China. Journal of Cleaner Production, 394: 136407. https://doi.org/10.1016/j.jclepro.2023.136407
      Simayi, M., Hao, Y. F., Li, J., et al., 2021. Historical Volatile Organic Compounds Emission Performance and Reduction Potentials in China's Petroleum Refining Industry. Journal of Cleaner Production, 292: 125810. https://doi.org/10.1016/j.jclepro.2021.125810
      Simayi, M., Shi, Y. Q., Xi, Z. Y., et al., 2022. Emission Trends of Industrial VOCs in China since the Clean Air Action and Future Reduction Perspectives. Science of The Total Environment, 826: 153994. https://doi.org/10.1016/j.scitotenv.2022.153994
      Stevenson, D. S., Dentener, F. J., Schultz, M. G., et al., 2006. Multimodel Ensemble Simulations of Present-Day and Near-Future Tropospheric Ozone. Journal of Geophysical Research: Atmospheres, 111(D8): D08301. https://doi.org/10.1029/2005JD006338
      Sun, J., Shen, Z. X., Zhang, L. M., et al., 2019. Volatile Organic Compounds Emissions from Traditional and Clean Domestic Heating Appliances in Guanzhong Plain, China: Emission Factors, Source Profiles, and Effects on Regional Air Quality. Environment International, 133: 105252. https://doi.org/10.1016/j.envint.2019.105252
      Veld, M. I., Seco, R., Reche, C., et al., 2024. Identification of Volatile Organic Compounds and Their Sources Driving Ozone and Secondary Organic Aerosol Formation in NE Spain. Science of The Total Environment, 906: 167159. https://doi.org/10.1016/j.scitotenv.2023.167159
      Wang, H. L., Sun, S. M., Nie, L., et al., 2023a. A Review of Whole-Process Control of Industrial Volatile Organic Compounds in China. Journal of Environmental Sciences, 123: 127-139. https://doi.org/10.1016/j.jes.2022.02.037
      Wang, J. Y., Gao, A. F., Li, S. R., et al., 2023b. Regional Joint PM2.5-O3 Control Policy Benefits Further Air Quality Improvement and Human Health Protection in Beijing-Tianjin-Hebei and Its Surrounding Areas. Journal of Environmental Sciences, 130: 75-84. https://doi.org/10.1016/j.jes.2022.06.036
      Wang, P. F., Qiao, X., Zhang, H. L., 2020. Modeling PM2.5 and O3 with Aerosol Feedbacks Using WRF/Chem over the Sichuan Basin, Southwestern China. Chemosphere, 254: 126735. https://doi.org/10.1016/j.chemosphere.2020.126735
      Wang, R. P., Wang, X. Q., Cheng, S. Y., et al., 2022. Emission Characteristics and Reactivity of Volatile Organic Compounds from Typical High-Energy-Consuming Industries in North China. Science of The Total Environment, 809: 151134. https://doi.org/10.1016/j.scitotenv.2021.151134
      Wang, R. Y., Wang, L. L., Xue, M., et al., 2023c. New Insight into Formation Mechanism, Source and Control Strategy of Severe O3 pollution: The Case from Photochemical Simulation in the Wuhan Metropolitan Area, Central China. Atmospheric Research, 284: 106605. https://doi.org/10.1016/j.atmosres.2023.106605
      Wang, T., Xue, L. K., Brimblecombe, P., et al., 2017. Ozone Pollution in China: A Review of Concentrations, Meteorological Influences, Chemical Precursors, and Effects. Science of The Total Environment, 575: 1582-1596. https://doi.org/10.1016/j.scitotenv.2016.10.081
      Wei, J., Li, Z. Q., Li, K., et al., 2022a. Full-Coverage Mapping and Spatiotemporal Variations of Ground-Level Ozone (O3) Pollution from 2013 to 2020 across China. Remote Sensing of Environment, 270: 112775. https://doi.org/10.1016/j.rse.2021.112775
      Wei, W., Li, Y., Ren, Y. T., et al., 2019. Sensitivity of Summer Ozone to Precursor Emission Change over Beijing during 2010-2015: A WRF-Chem Modeling Study. Atmospheric Environment, 218: 116984. https://doi.org/10.1016/j.atmosenv.2019.116984
      Wei, W., Lv, Z. F., Li, Y., et al., 2018. A WRF-Chem Model Study of the Impact of VOCs Emission of a Huge Petro-Chemical Industrial Zone on the Summertime Ozone in Beijing, China. Atmospheric Environment, 175: 44-53. https://doi.org/10.1016/j.atmosenv.2017.11.058
      Wei, W., Wang, S. X., Hao, J. M., et al., 2011. Projection of Anthropogenic Volatile Organic Compounds (VOCs) Emissions in China for the Period 2010-2020. Atmospheric Environment, 45(38): 6863-6871. https://doi.org/10.1016/j.atmosenv.2011.01.013
      Wei, W., Wang, X. F., Wang, X. Q., et al., 2022b. Attenuated Sensitivity of Ozone to Precursors in Beijing-Tianjin-Hebei Region with the Continuous NOx Reduction within 2014-2018. Science of The Total Environment, 813: 152589. https://doi.org/10.1016/j.scitotenv.2021.152589
      Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., et al., 2011. The Fire Inventory from Ncar (Finn): A High Resolution Global Model to Estimate the Emissions from Open Burning. Geoscientific Model Development, 4(3): 625-641. doi: 10.5194/gmd-4-625-2011
      Wu, D., Ding, X., Li, Q., et al., 2019. Pollutants Emitted from Typical Chinese Vessels: Potential Contributions to Ozone and Secondary Organic Aerosols. Journal of Cleaner Production, 238: 117862. https://doi.org/10.1016/j.jclepro.2019.117862
      Wu, T. R., Cui, Y. Y., Lian, A. P., et al., 2023. Vehicle Emissions of Primary Air Pollutants from 2009 to 2019 and Projection for the 14th Five-Year Plan Period in Beijing, China. Journal of Environmental Sciences, 124: 513-521. https://doi.org/10.1016/j.jes.2021.11.038
      Wu, W. J., Zhao, B., Wang, S. X., et al., 2017. Ozone and Secondary Organic Aerosol Formation Potential from Anthropogenic Volatile Organic Compounds Emissions in China. Journal of Environmental Sciences, 53: 224-237. https://doi.org/10.1016/j.jes.2016.03.025
      Xuan, L. C., Ma, Y. N., Xing, Y. F., et al., 2021. Source, Temporal Variation and Health Risk of Volatile Organic Compounds (VOCs) from Urban Traffic in Harbin, China. Environmental Pollution, 270: 116074. https://doi.org/10.1016/j.envpol.2020.116074
      Xue, Y. F., Tian, H. Z., Yan, J., et al., 2016. Temporal Trends and Spatial Variation Characteristics of Primary Air Pollutants Emissions from Coal-Fired Industrial Boilers in Beijing, China. Environmental Pollution, 213: 717-726. https://doi.org/10.1016/j.envpol.2016.03.047
      Yang, J. H., Kang, S. C., Ji, Z. M., et al., 2020. Investigation of Variations, Causes and Component Distributions of PM2.5 Mass in China Using a Coupled Regional Climate-Chemistry Model. Atmospheric Pollution Research, 11(2): 319-331. https://doi.org/10.1016/j.apr.2019.11.005
      Yin, D. J., Song, Q., Guo, Y. X., et al., 2025. Regional Transport Characteristics of PM2.5 Pollution Events in Beijing during 2018-2021. Journal of Environmental Sciences, 152: 503-515. https://doi.org/10.1016/j.jes.2024.05.044
      You, G. Y., Liu, H. F., Sun, R., et al., 2023. Characterizing VOCs Emissions of Five Packaging and Printing Enterprises in China and the Emission Reduction Potential of This Industry. Journal of Cleaner Production, 420: 138445. https://doi.org/10.1016/j.jclepro.2023.138445
      Young, P. J., Archibald, A. T., Bowman, K. W., et al., 2013. Pre-Industrial to End 21st Century Projections of Tropospheric Ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 13(4): 2063-2090. https://doi.org/10.5194/acp-13-2063-2013
      Zhai, S. X., Jacob, D. J., Wang, X., et al., 2019. Fine Particulate Matter (PM2.5) Trends in China, 2013-2018: separating Contributions from Anthropogenic Emissions and Meteorology. Atmospheric Chemistry and Physics, 19(16): 11031-11041. https://doi.org/10.5194/acp-19-11031-2019
      Zhang, G. F., Fei, B., Xiu, G. L., 2021. Characteristics of Volatile Organic Compound Leaks from Equipment Components: A Study of the Pharmaceutical Industry in China. Sustainability, 13(11): 6274. https://doi.org/10.3390/su13116274
      Zhang, X. Y., Wang, X. Q., Wang, C. D., et al., 2023. Ozone Sensitivity and Precursor Emission Reduction Scheme in Baoding City in Summer. China Environmental Science, 43(6): 2703-2713 (in Chinese with English abstract).
      Zheng, B., Tong, D., Li, M., et al., 2018. Trends in China's Anthropogenic Emissions since 2010 as the Consequence of Clean Air Actions. Atmospheric Chemistry & Physics, 18(19): 14095-14111. https://doi.org/10.5194/acp-18-14095-2018
      Zheng, C. H., Shen, J. L., Zhang, Y. X., et al., 2017. Quantitative Assessment of Industrial VOC Emissions in China: Historical Trend, Spatial Distribution, Uncertainties, and Projection. Atmospheric Environment, 150: 116-125. https://doi.org/10.1016/j.atmosenv.2016.11.023
      Zhou, D. R., Liu, Y., Gao, J., et al., 2023. Assessment of Ozone Sensitivity and Emission Reduction Scenarios in Typical Pollution Processes in Eastern China. Transactions of Atmospheric Sciences, 46(5): 667-678 (in Chinese with English abstract).
      Zhu, B., Han, Y., Wang, C., et al., 2019. Understanding Primary and Secondary Sources of Ambient Oxygenated Volatile Organic Compounds in Shenzhen Utilizing Photochemical Age-Based Parameterization Method. Journal of Environmental Sciences, 75: 105-114. https://doi.org/10.1016/j.jes.2018.03.008
      Zhu, J. L., Penner, J. E., Lin, G. X., et al., 2017. Mechanism of SOA Formation Determines Magnitude of Radiative Effects. Proceedings of the National Academy of Sciences of the United States of America, 114(48): 12685-12690. https://doi.org/10.1073/pnas.1712273114
      Ziemann, P. J., Atkinson, R., 2012. Kinetics, Products, and Mechanisms of Secondary Organic Aerosol Formation. Chemical Society Reviews, 41(19): 6582-6605. https://doi.org/10.1039/C2CS35122F
      潘瑞欣, 王芳婷, 赵秀颖, 等, 2024. 典型工业城市臭氧污染事件调控路径模拟研究. 环境科学学报, 44(9): 21-31.
      祁士华, 盛国英, 傅家谟, 等, 2001. 鼎湖山自然保护区大气气溶胶中的PAHs. 地球科学, 26(1): 83-87. http://www.earth-science.net/article/id/814
      张新宇, 王晓琦, 王传达, 等, 2023. 保定市夏季臭氧生成敏感性及前体物减排方案. 中国环境科学, 43(6): 2703-2713.
      周德荣, 刘祎, 高健, 等, 2023. 中国东部地区典型臭氧污染过程防控敏感性及减排情景研究. 大气科学学报, 46(5): 667-678.
    • 加载中
    图(5) / 表(4)
    计量
    • 文章访问数:  5
    • HTML全文浏览量:  7
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-07-29
    • 网络出版日期:  2025-10-10
    • 刊出日期:  2025-09-25

    目录

      /

      返回文章
      返回