• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    微区原位硫同位素新技术研究进展

    张文 胡远 卢山松 胡兆初 曾显丽 杨盛均 刘振严

    张文, 胡远, 卢山松, 胡兆初, 曾显丽, 杨盛均, 刘振严, 2024. 微区原位硫同位素新技术研究进展. 地球科学, 49(11): 3890-3903. doi: 10.3799/dqkx.2024.097
    引用本文: 张文, 胡远, 卢山松, 胡兆初, 曾显丽, 杨盛均, 刘振严, 2024. 微区原位硫同位素新技术研究进展. 地球科学, 49(11): 3890-3903. doi: 10.3799/dqkx.2024.097
    Zhang Wen, Hu Yuan, Lu Shansong, Hu Zhaochu, Zeng Xianli, Yang Shengjun, Liu Zhenyan, 2024. New Progresses in Analytical Methods of in situ S Isotope Measurement. Earth Science, 49(11): 3890-3903. doi: 10.3799/dqkx.2024.097
    Citation: Zhang Wen, Hu Yuan, Lu Shansong, Hu Zhaochu, Zeng Xianli, Yang Shengjun, Liu Zhenyan, 2024. New Progresses in Analytical Methods of in situ S Isotope Measurement. Earth Science, 49(11): 3890-3903. doi: 10.3799/dqkx.2024.097

    微区原位硫同位素新技术研究进展

    doi: 10.3799/dqkx.2024.097
    基金项目: 

    国家重点研发计划项目 2021YFC2903003

    详细信息
      作者简介:

      张文(1985-),男,副研究员,博士,从事分析地球化学和同位素地球化学研究.ORCID:0000⁃0001⁃5102⁃3868. E⁃mail:wenzhang@cug.edu.cn

      通讯作者:

      张文,ORCID:0000⁃0001⁃5102⁃3868. E⁃mail:tuyaken@hotmail.com

    • 中图分类号: P597

    New Progresses in Analytical Methods of in situ S Isotope Measurement

    • 摘要: 综述了十余年来激光剥蚀等离子体质谱(LA-MC-ICP-MS)和二次离子质谱(SIMS)测定硫化物硫同位素的新进展,着重介绍了质谱干扰和同位素质量分馏效应的关键技术难点和校正方案.LA-MC-ICP-MS和SIMS都可实现黄铁矿、黄铜矿、闪锌矿、方铅矿、磁黄铁矿、镍黄铁矿、辉钼矿的微区δ34S准确测定,测试准确度和传统的整体分析测试技术相当,测试精密度(重现性)在0.17‰~0.45‰.目前硫化物硫同位素标准物质主要是黄铁矿、黄铜矿、磁黄铁矿、闪锌矿等矿物,缺乏其他硫化物类型的标准物质.改进仪器设备硬件或关键部件,系统深入调查仪器中的同位素质量分馏和基体效应,开发新的高质量硫化物硫同位素标准物质将是未来微区原位硫化物硫同位素测试主要发展方向.

       

    • 图  1  不同微区技术(LA-MC-ICP-MS和SIMS)测定硫化物δ34S值与整体分析技术(IR-MS或者MC-ICP-MS)参考值之间的关系

      Fig.  1.   The relationship of determination of δ34S value in sulfide between micro-analysis (LA-MC-ICP-MS and SIMS) and bulk analysis (IR-MS and MC-ICP-MS)

      图  2   LA-MC-ICP-MS和SIMS测定硫化物标准物质δ34S值的重现性(不确定度,‰)

      Fig.  2.   The reproducibility of δ34S value (uncertainty, ‰) in sulfide reference materials determined by LA-MC-ICP-MS and SIMS

      表  1  硫同位素微区固体标准物质汇总

      Table  1.    Summary of solid reference materials for microanalysis of S isotope ratios

      IRMS/SN⁃MC LA⁃MC⁃ICP⁃MS SIMS 参考文献
      平均值 不确定度* 平均值 不确定度* 平均值 不确定度*
      Pyrite(黄铁矿)
      GAV-18 天然矿物 9.62 0.27 Craddock et al., 2008
      10th-1 PSPT 5.33 0.27 5.22 0.22 Feng et al., 2018
      PSPT-2 PSPT 32.48 0.29 32.65 0.26 Bao et al., 2017,
      GBW07267 RPP 3.46 0.18 3.56 0.43 Chen et al., 2022a
      PAS-Py600 PAS 18.22 0.07 18.06 0.25 Feng et al., 2022
      RPPY RPP 3.65 0.29 3.58 0.31 Lv et al., 2022
      Py1 天然矿物 ‒0.6 0.6 ‒1 1.2 Molnár et al., 2016
      Py2 天然矿物 ‒0.4 1 ‒0.4 0.4 Molnár et al., 2016
      IGGPy-1 天然矿物 17.09 0.09 17.05 0.15 17.01 0.15 Xie et al., 2024
      PPP-1 天然矿物 5.1 0.6 5.3 0.3 Gilbert et al., 2014
      UWPy-1 天然矿物 16.39 0.4 17.4 0.17 Kozdon et al., 2010
      Py-1117 天然矿物 0.3 0.02 0.2 0.4 Zhang et al., 2014
      CS01 天然矿物 4.6 0.08 4.3 0.4 Zhang et al., 2014
      Balmat 天然矿物 15.1 0.2 Crowe and Vaughan, 1996
      Ruttan 天然矿物 1.2 0.1 Crowe and Vaughan, 1996
      CAR 123 天然矿物 1.4 0.4 Mojzsis et al., 2003
      Sierra 天然矿物 2.17 0.28 0.25 LaFlamme et al., 2016
      NWU-Py PAS 3.39 0.07 3.48 0.26 Peng et al., 2024
      Chalcopyrite(黄铜矿)
      CCP 天然矿物 ‒0.7 1 ‒0.2 0.8 Molnár et al., 2016
      PSPT-1 PSPT ‒0.73 0.09 ‒0.9 0.41 Bao et al., 2017
      YN411-m Glass 0.37 0.24 0.6 0.3 Chen et al., 2017
      GC 天然矿物 ‒0.79 0.24 ‒0.7 0.2 Chen et al., 2017
      Cpy-1 天然矿物 4.12 0.23 4.4 0.3 Chen et al., 2017
      TC1725 天然矿物 12.78 0.16 12.74 0.38 Bao et al., 2021
      PAS-Cpy600 PAS 10.58 0.33 10.43 0.29 Feng et al., 2022
      GBW07268 RPP ‒0.57 0.24 ‒0.38 0.43 Chen et al., 2022a
      HTS4-6 天然矿物 0.63 0.16 0.58 0.38 Li et al., 2020
      CPY-1 天然矿物 1.4 0.4 1.4 0.93 Li et al., 2020
      GC-1 RPP ‒0.65 0.28 ‒0.68 0.32 Lv et al., 2022
      Norilsk 天然矿物 8 0.2 Crowe and Vaughan, 1996
      Trout Lake 天然矿物 0.3 0.2 Crowe and Vaughan, 1996
      IGSD 天然矿物 4.21 0.23 4.10 0.30 4.0 0.10 Chen, 2023
      Nifty-b 天然矿物 ‒3.58 0.44 0.23 LaFlamme et al., 2016
      Sphalerite(闪锌矿)
      NBS123 PPP 17.09 0.19 Pribil et al., 2015
      PSPT-3 PSPT 26.4 0.21 26.23 0.23 Bao et al., 2017
      PAS-GBW07270 PAS ‒5.44 0.15 ‒5.44 0.2 Nie et al., 2023
      SPH-1 RPP ‒7.13 0.41 ‒7.22 0.47 Lv et al., 2022
      BT-4 天然矿物 15.42 0.14 15.3 0.58 Kozdon et al., 2010
      JC-14 天然矿物 4.9 0.08 5 0.6 Zhang et al., 2014
      MY09-12 天然矿物 3.1 0.12 3.6 0.8 Zhang et al., 2014
      Balmat 天然矿物 14.3 0.2 Crowe and Vaughan, 1996
      Chisel 天然矿物 1.5 0.1 Crowe and Vaughan, 1996
      Galena(方铅矿)
      RPP-Gn RPP ‒0.94 0.36 ‒0.82 0.39 Chen et al., 2022a
      NWU-GN RPP 28.27 0.17 28.44 0.45 Lv et al., 2022
      UWGal-1 天然矿物 16.61 0.16 16.6 0.76 Kozdon et al., 2010
      Pyrrhotite(磁黄铁矿)
      Po-10 天然矿物 6.1 0.6 5.9 0.3 Gilbert et al., 2014
      Po 天然矿物 5.6 1.2 6.8 1 Molnár et al., 2016
      Anderson 天然矿物 1.4 0.2 Crowe and Vaughan, 1996
      Alexo 天然矿物 5.23 0.4 0.3 LaFlamme et al., 2016
      YP136 天然矿物 1.5 0.1 1.5 0.3 Li et al., 2019
      JC-Po 天然矿物 0.06 0.33 ‒0.09 0.27 Chen et al., 2021
      Pentlandite(镍黄铁矿)
      Norilsk 天然矿物 7.9 0.2 Crowe and Vaughan, 1996
      VMSo 天然矿物 3.22 0.51 0.33 LaFlamme et al., 2016
      JC-Pn 天然矿物 ‒0.09 0.15 0.19 Chen et al., 2021
      Arsenopyrite(毒砂)
      RPP-Apy RPP ‒1.05 0.15 ‒1.04 0.42 Chen et al., 2022a
      NWU-Apy PAS 18.17 0.16 18.19 0.32 Peng et al., 2024
      Bornite(斑铜矿)
      N-11 天然矿物 ‒4.4 0.6 Gilbert et al., 2014
      Barite(重晶石)
      NWU-Brt 天然矿物 14.17 0.42 14.27 0.23 Lv et al., 2024
      Molybdenite(辉钼矿)
      Mo-H8 HTHP ‒0.22 0.1 Tian et al., 2024
      Mo-P RHP ‒0.22 0.1 Tian et al., 2024
      Stibnite(辉锑矿)
      BJ-Snt 天然矿物 ‒0.71 0.32 ‒0.78 0.36 Dai et al., 2024
      Gypsum(石膏)
      NWU-Gy PAS ‒0.20 0.05 ‒0.19 0.32 Peng et al., 2024
      下载: 导出CSV
    • Agatemor, C., Beauchemin, D., 2011. Matrix Effects in Inductively Coupled Plasma Mass Spectrometry: A Review. Analytica Chimica Acta, 706(1): 66-83. https://doi.org/10.1016/j.aca.2011.08.027
      Amrani, A., Deev, A., Sessions, A. L., et al., 2012. The Sulfur⁃Isotopic Compositions of Benzothiophenes and Dibenzothiophenes as a Proxy for Thermochemical Sulfate Reduction. Geochimica et Cosmochimica Acta, 84: 152-164. https://doi.org/10.1016/j.gca.2012.01.023
      Bao, Z. A., Chen, K. Y., Zong, C. L., et al., 2021. TC1725: A Proposed Chalcopyrite Reference Material for LA⁃MC⁃ICP⁃MS Sulfur Isotope Determination. Journal of Analytical Atomic Spectrometry, 36(8): 1657-1665. https://doi.org/10.1039/D1JA00168J
      Bao, Z. A., Chen, L., Zong, C. L., et al., 2017. Development of Pressed Sulfide Powder Tablets for in Situ Sulfur and Lead Isotope Measurement Using LA⁃MC⁃ICP⁃MS. International Journal of Mass Spectrometry, 421: 255-262. https://doi.org/10.1016/j.ijms.2017.07.015
      Bendall, C., Lahaye, Y., Fiebig, J., et al., 2006. In Situ Sulfur Isotope Analysis by Laser Ablation MC⁃ICPMS. Applied Geochemistry, 21(5): 782-787. https://doi.org/10.1016/j.apgeochem.2006.02.012
      Bleiner, D., Lienemann, P., Vonmont, H., 2005. Laser⁃ Induced Particulate as Carrier of Analytical Information in LA⁃ICP⁃MS Direct Solid Microanalysis. Talanta, 65(5): 1286-1294. https://doi.org/10.1016/j.talanta.2004.09.004
      Bontognali, T. R. R., Sessions, A. L., Allwood, A. C., et al., 2012. Sulfur Isotopes of Organic Matter Preserved in 3.45⁃Billion⁃Year⁃Old Stromatolites Reveal Microbial Metabolism. Proceedings of the National Academy of Sciences of the United States of America, 109(38): 15146-15151. https://doi.org/10.1073/pnas.1207491109
      Bühn, B., Santos, R. V., Dardenne, M. A., et al., 2012. Mass⁃Dependent and Mass⁃Independent Sulfur Isotope Fractionation (δ34S and δ33S) from Brazilian Archean and Proterozoic Sulfide Deposits by Laser Ablation Multi⁃Collector ICP⁃MS. Chemical Geology, 312: 163-176. https://doi.org/10.1016/j.chemgeo.2012.04.003
      Canfield, D. E., Teske, A., 1996. Late Proterozoic Rise in Atmospheric Oxygen Concentration Inferred from Phylogenetic and Sulphur⁃Isotope Studies. Nature, 382(6587): 127-132. https://doi.org/10.1038/382127a0
      Cao, H. L., Li, W., Su, C. L., et al., 2023. Indication of Hydrochemistry and δ34S⁃SO42‒ on Sulfate Pollution of Groundwater in Daye Mining Area. Earth Science, 48(9): 3432-3443.
      Cheatham, M. M., Sangrey, W. F., White, W. M., 1993. Sources of Error in External Calibration ICP⁃MS Analysis of Geological Samples and an Improved Non⁃Linear Drift Correction Procedure. Spectrochimica Acta Part B: Atomic Spectroscopy, 48(3): 487-506. https://doi.org/10.1016/0584⁃8547(93)80054⁃X
      Chen, K. Y., Bao, Z. A., Liang, P., et al., 2022a. Preparation of Sulfur⁃Bearing Reference Materials for in Situ Sulfur Isotope Measurements Using Laser Ablation Multicollector Inductively Coupled Plasma⁃Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 188: 106344. https://doi.org/10.1016/j.sab.2021.106344
      Chen, Y. W., Xie, Z. J., Dong, S. H., et al., 2022b. High Spatial Resolution and Precision NanoSIMS for Sulfur Isotope Analysis. Journal of Analytical Atomic Spectrometry, 37(12): 2529-2536. https://doi.org/10.1039/D2JA00248E
      Chen, L., Chen, K. Y., Bao, Z. A., et al., 2017. Preparation of Standards for in situ Sulfur Isotope Measurement in Sulfides Using Femtosecond Laser Ablation MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 32(1): 107-116. https://doi.org/10.1039/C6JA00270F
      Chen, L., Liu, Y., Li, Y., et al., 2021. New Potential Pyrrhotite and Pentlandite Reference Materials for Sulfur and Iron Isotope Microanalysis. Journal of Analytical Atomic Spectrometry, 36(7): 1431-1440. https://doi.org/10.1039/D1JA00029B
      Chen, Y. W., 2023. A Quantity Chalcopyrite Reference Material for in Situ Sulfur Isotope Analysis. Atomic Spectroscopy, 44(3): 131-141. https://doi.org/10.46770/as.2023.141
      Craddock, P. R., Rouxel, O. J., Ball, L. A., et al., 2008. Sulfur Isotope Measurement of Sulfate and Sulfide by High⁃Resolution MC⁃ICP⁃MS. Chemical Geology, 253(3-4): 102-113. https://doi.org/10.1016/j.chemgeo.2008.04.017
      Crowe, D. E., Valley, J. W., Baker, K. L., 1990. Micro⁃Analysis of Sulfur⁃Isotope Ratios and Zonation by Laser Microprobe. Geochimica et Cosmochimica Acta, 54(7): 2075-2092. https://doi.org/10.1016/0016⁃7037(90)90272⁃M
      Crowe, D. E., Vaughan, R. G., 1996. Characterization and Use of Isotopically Homogeneous Standards for in Situ Laser Microprobe Analysis of 34 Ratios. American Mineralogist, 81(1-2): 187-193. https://doi.org/10.2138/am⁃1996⁃1⁃223
      Dai, Z. H., Fu, S. L., Liu, Y. F., et al., 2024. A Potential Stibnite Reference Material for Sulfur Isotope Determination by LA⁃MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 39(1): 216-226. https://doi.org/10.1039/d3ja00308f
      Ding, T. P., Bai, R. M., Li, Y. H., et al., 1998. The Absolute Ratio of 32S/34S of IAEA⁃S⁃1 Reference Material and V⁃CDT Sulfur Isotope Standard. Scientia Sinica (Terrae), 28(6): 546-551 (in Chinese).
      Ding, T. P., Valkiers, S, Wang, D. F., et al., 2001. The δ33S and δ34S Values and Absolute 32S/33S and 32S/34S Ratios of IAEA and Chinese Sulfur Isotope Reference Materials. Bulletin of Meneralogy, Petrology and Geochemistry, 4: 425-427 (in Chinese).
      Eiler, J. M., Graham, C., Valley, J. W., 1997. SIMS Analysis of Oxygen Isotopes: Matrix Effects in Complex Minerals and Glasses. Chemical Geology, 138(3-4): 221-244. https://doi.org/10.1016/S0009⁃2541(97)00015⁃6
      Farquhar, J., Bao, H. M., Thiemens, M., 2000. Atmospheric Influence of Earth's Earliest Sulfur Cycle. Science, 289(5480): 756-758. https://doi.org/10.1126/science.289.5480.756
      Farquhar, J., Peters, M., Johnston, D. T., et al., 2007. Isotopic Evidence for Mesoarchaean Anoxia and Changing Atmospheric Sulphur Chemistry. Nature, 449(7163): 706-709. https://doi.org/10.1038/nature06202
      Feng, Y. T., Zhang, W., Hu, Z. C., et al., 2018. Development of Sulfide Reference Materials for in situ Platinum Group Elements and S⁃Pb Isotope Analyses by LA⁃(MC)⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 33(12): 2172-2183. https://doi.org/10.1039/c8ja00305j
      Feng, Y. T., Zhang, W., Hu, Z. C., et al., 2022. A New Synthesis Scheme of Pyrite and Chalcopyrite Reference Materials for in situ Iron and Sulfur Isotope Analysis Using LA⁃MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 37(3): 551-562. https://doi.org/10.1039/d1ja00392e
      Fietzke, J., Frische, M., 2016. Experimental Evaluation of Elemental Behavior during LA⁃ICP⁃MS: Influences of Plasma Conditions and Limits of Plasma Robustness. Journal of Analytical Atomic Spectrometry, 31(1): 234-244. https://doi.org/10.1039/c5ja00253b
      Fontboté, L., Kouzmanov, K., Chiaradia, M., et al., 2017. Sulfide Minerals in Hydrothermal Deposits. Elements, 13(2): 97-103. https://doi.org/10.2113/gselements.13.2.97
      Fu, J. L., Hu, Z. C., Li, J. W., et al., 2017. Accurate Determination of Sulfur Isotopes (δ33S and δ34S) in Sulfides and Elemental Sulfur by Femtosecond Laser Ablation MC⁃ICP⁃MS with Non⁃Matrix Matched Calibration. Journal of Analytical Atomic Spectrometry, 32(12): 2341-2351. https://doi.org/10.1039/c7ja00282c
      Fu, J. L., Hu, Z. C., Zhang, W., et al., 2016. In Situ Sulfur Isotopes (δ34S and δ33S) Analyses in Sulfides and Elemental Sulfur Using High Sensitivity Cones Combined with the Addition of Nitrogen by Laser Ablation MC⁃ICP⁃MS. Analytica Chimica Acta, 911: 14-26. https://doi.org/10.1016/j.aca.2016.01.026
      Gilbert, S. E., Danyushevsky, L. V., Rodemann, T., et al., 2014. Optimisation of Laser Parameters for the Analysis of Sulphur Isotopes in Sulphide Minerals by Laser Ablation ICP⁃MS. Journal of Analytical Atomic Spectrometry, 29(6): 1042-1051. https://doi.org/10.1039/C4JA00011K
      Hao, J. L., Zhang, L. P., Yang, W., et al., 2023. NanoSIMS Sulfur Isotopic Analysis at 100 nm Scale by Imaging Technique. Frontiers in Chemistry, 11: 1120092. https://doi.org/10.3389/fchem.2023.1120092
      Hauri, E. H., Papineau, D., Wang, J. H., et al., 2016. High⁃Precision Analysis of Multiple Sulfur Isotopes Using NanoSIMS. Chemical Geology, 420: 148-161. https://doi.org/10.1016/j.chemgeo.2015.11.013
      Horn, I., von Blanckenburg, F., 2007. Investigation on Elemental and Isotopic Fractionation during 196 nm Femtosecond Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 62(4): 410-422. https://doi.org/10.1016/j.sab.2007.03.034
      Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008. Signal Enhancement in Laser Ablation ICP⁃MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093-1101. https://doi.org/10.1039/B804760J
      Hulston, J. R., Thode, H. G., 1965. Variations in the S33, S34, and S36 Contents of Meteorites and Their Relation to Chemical and Nuclear Effects. Journal of Geophysical Research, 70(14): 3475-3484. https://doi.org/10.1029/jz070i014p03475
      Ireland, T. R., Schram, N., Holden, P., et al., 2014. Charge⁃Mode Electrometer Measurements of S⁃Isotopic Compositions on SHRIMP⁃SI. International Journal of Mass Spectrometry, 359: 26-37. https://doi.org/10.1016/j.ijms.2013.12.020
      Johnston, D. T., 2011. Multiple Sulfur Isotopes and the Evolution of Earth's Surface Sulfur Cycle. Earth⁃Science Reviews, 106(1/2): 161-183. https://doi.org/10.1016/j.earscirev.2011.02.003
      Kita, N. T., Huberty, J. M., Kozdon, R., et al., 2011. High⁃Precision SIMS Oxygen, Sulfur and Iron Stable Isotope Analyses of Geological Materials: Accuracy, Surface Topography and Crystal Orientation. Surface and Interface Analysis, 43(1/2): 427-431. https://doi.org/10.1002/sia.3424
      Kita, N. T., Ushikubo, T., Fu, B., et al., 2009. High Precision SIMS Oxygen Isotope Analysis and the Effect of Sample Topography. Chemical Geology, 264(1-4): 43-57. https://doi.org/10.1016/j.chemgeo.2009.02.012
      Kozdon, R., Kita, N. T., Huberty, J. M., et al., 2010. In Situ Sulfur Isotope Analysis of Sulfide Minerals by SIMS: Precision and Accuracy, with Application to Thermometry of ~3.5 Ga Pilbara Cherts. Chemical Geology, 275(3/4): 243-253. https://doi.org/10.1016/j.chemgeo.2010.05.015
      LaFlamme, C., Martin, L., Jeon, H., et al., 2016. In Situ Multiple Sulfur Isotope Analysis by SIMS of Pyrite, Chalcopyrite, Pyrrhotite, and Pentlandite to Refine Magmatic Ore Genetic Models. Chemical Geology, 444: 1-15. https://doi.org/10.1016/j.chemgeo.2016.09.032
      Li, R. C., Wang, X. L., Guan, Y., et al., 2023. The Feasibility of Using a Pyrite Standard to Calibrate the Sulfur Isotope Ratio of Marcasite during SIMS Analysis. Journal of Analytical Atomic Spectrometry, 38(5): 1016-1020. https://doi.org/10.1039/D3JA00009E
      Li, R. C., Xia, X. P., Chen, H. Y., et al., 2020. A Potential New Chalcopyrite Reference Material for Secondary Ion Mass Spectrometry Sulfur Isotope Ratio Analysis. Geostandards and Geoanalytical Research, 44(3): 485-500. https://doi.org/10.1111/ggr.12330
      Li, R. C., Xia, X. P., Yang, S. H., et al., 2019. Off⁃Mount Calibration and One New Potential Pyrrhotite Reference Material for Sulfur Isotope Measurement by Secondary Ion Mass Spectrometry. Geostandards and Geoanalytical Research, 43(1): 177-187. https://doi.org/10.1111/ggr.12244
      Lu, J., Chen, W., 2020. In⁃Situ Sulfur Isotopic Analysis of Sulfate by Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA⁃MC⁃ICP⁃MS). Atomic Spectroscopy, 41(6): 223-233. https://doi.org/10.46770/as.2020.208
      Lv, N., Bao, Z. A., Chen, K. Y., et al., 2022. New Potential Sphalerite, Chalcopyrite, Galena and Pyrite Reference Materials for Sulfur Isotope Determination by Laser Ablation⁃MC⁃ICP⁃MS. Geostandards and Geoanalytical Research, 46(3): 451-463. https://doi.org/10.1111/ggr.12440
      Lv, N., Bao, Z. A., Nie, X. J., et al., 2024. Development of a Matrix⁃Matched Barite Reference Material (NWU⁃Brt) for Calibration of in situ S Isotope Measurements by Laser Ablation Multi⁃Collector Inductively Coupled Plasma⁃Mass Spectrometry. Geostandards and Geoanalytical Research, 48(2): 411-421. https://doi.org/10.1111/ggr.12544
      Mandeville, C. W., 2010. Sulfur: A Ubiquitous and Useful Tracer in Earth and Planetary Sciences. Elements, 6(2): 75-80. https://doi.org/10.2113/gselements.6.2.75
      Mason, P. R. D., Košler, J., de Hoog, J. C. M., et al., 2006. In situ Determination of Sulfur Isotopes in Sulfur⁃Rich Materials by Laser Ablation Multiple⁃Collector Inductively Coupled Plasma Mass Spectrometry (LA⁃MC⁃ICP⁃MS). Journal of Analytical Atomic Spectrometry, 21(2): 177-186. https://doi.org/10.1039/B510883G
      Mojzsis, S. J., Coath, C. D., Greenwood, J. P., et al., 2003. Mass⁃Independent Isotope Effects in Archean (2.5 to 3.8 Ga) Sedimentary Sulfides Determined by Ion Microprobe Analysis. Geochimica et Cosmochimica Acta, 67(9): 1635-1658. https://doi.org/10.1016/S0016⁃7037(03)00059⁃0
      Molnár, F., Mänttäri, I., O'Brien, H., et al., 2016. Boron, Sulphur and Copper Isotope Systematics in the Orogenic Gold Deposits of the Archaean Hattu Schist Belt, Eastern Finland. Ore Geology Reviews, 77: 133-162. https://doi.org/10.1016/j.oregeorev.2016.02.012
      Nie, X. J., Bao, Z. A., Zong, C. L., et al., 2023. A Newly Synthesized Reference Material for in situ Sulfur Isotope Measurement of Sphalerite Using Laser Ablation MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 38(5): 1065-1075. https://doi.org/10.1039/D2JA00394E
      Ohmoto, H., Watanabe, Y., Ikemi, H., et al., 2006. Sulphur Isotope Evidence for an Oxic Archaean Atmosphere. Nature, 442(7105): 908-911. https://doi.org/10.1038/nature05044
      Othmane, G., Hull, S., Fayek, M., et al., 2015. Hydrogen and Copper Isotope Analysis of Turquoise by SIMS: Calibration and Matrix Effects. Chemical Geology, 395: 41-49. https://doi.org/10.1016/j.chemgeo.2014.11.024
      Peng, D. Y., Bao, Z. A., Chen, K. Y., et al., 2024. Three New Potential Sulfur Reference Materials (Pyrite, Gypsum, and Arsenopyrite) for in situ Sulfur Isotope Analysis by Laser Ablation MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 39(9): 2235-2244. https://doi.org/10.1039/D4JA00200H
      Pribil, M. J., Ridley, W. I., Emsbo, P., 2015. Sulfate and Sulfide Sulfur Isotopes (δ34S and δ33S) Measured by Solution and Laser Ablation MC⁃ICP⁃MS: An Enhanced Approach Using External Correction. Chemical Geology, 412: 99-106. https://doi.org/10.1016/j.chemgeo.2015.07.014
      Riciputi, L. R., Paterson, B. A., Ripperdan, R. L., 1998. Measurement of Light Stable Isotope Ratios by SIMS: Matrix Effects for Oxygen, Carbon, and Sulfur Isotopes in Minerals. International Journal of Mass Spectrometry, 178(1-2): 81-112. https://doi.org/10.1016/S1387⁃3806(98)14088⁃5
      Robinson, B. W., Kusakabe, M., 1975. Quantitative Preparation of Sulfur Dioxide, for Sulfur⁃34/Sulfur⁃32 Analyses, from Sulfides by Combustion with Cuprous Oxide. Analytical Chemistry, 47(7): 1179-1181. https://doi.org/10.1021/ac60357a026
      Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633-677. https://doi.org/10.2138/rmg.2006.61.12
      Stern, R. A., Fletcher, I. R., Rasmussen, B., et al., 2005. Ion Microprobe (NanoSIMS 50) Pb⁃Isotope Geochronology at < 5 μm Scale. International Journal of Mass Spectrometry, 244(2-3): 125-134. https://doi.org/10.1016/j.ijms.2005.05.005
      Thode, H. G., Monster, J., Dunford, H. B., 1961. Sulphur Isotope Geochemistry. Geochimica et Cosmochimica Acta, 25(3): 159-174. https://doi.org/10.1016/0016⁃7037(61)90074⁃6
      Tian, J., Bao, Z. A., Chen, K. Y., et al., 2024. Synthesis of Molybdenite Reference Materials for in situ Molybdenum and Sulfur Isotope Measurement Using Laser Ablation MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 39(6): 1503-1513. https://doi.org/10.1039/D4JA00008K
      Ushikubo, T., Williford, K. H., Farquhar, J., et al., 2014. Development of in Situ Sulfur Four⁃Isotope Analysis with Multiple Faraday Cup Detectors by SIMS and Application to Pyrite Grains in a Paleoproterozoic Glaciogenic Sandstone. Chemical Geology, 383: 86-99. https://doi.org/10.1016/j.chemgeo.2014.06.006
      Wang, W., Hu, Y. L., Muscente, A. D., et al., 2021. Revisiting Ediacaran Sulfur Isotope Chemostratigraphy with in Situ nanoSIMS Analysis of Sedimentary Pyrite. Geology, 49(6): 611-616. https://doi.org/10.1130/G48262.1
      Whitehouse, M. J., 2013. Multiple Sulfur Isotope Determination by SIMS: Evaluation of Reference Sulfides for Δ33S with Observations and a Case Study on the Determination of Δ36S. Geostandards and Geoanalytical Research, 37(1): 19-33. https://doi.org/10.1111/j.1751⁃908x.2012.00188.x
      Williford, K. H., van Kranendonk, M. J., Ushikubo, T., et al., 2011. Constraining Atmospheric Oxygen and Seawater Sulfate Concentrations during Paleoproterozoic Glaciation: In Situ Sulfur Three⁃Isotope Microanalysis of Pyrite from the Turee Creek Group, Western Australia. Geochimica et Cosmochimica Acta, 75(19): 5686-5705. https://doi.org/10.1016/j.gca.2011.07.010
      Winterholler, B., Hoppe, P., Andreae, M. O., et al., 2006. Measurement of Sulfur Isotope Ratios in Micrometer⁃Sized Samples by NanoSIMS. Applied Surface Science, 252(19): 7128-7131. https://doi.org/10.1016/j.apsusc.2006.02.150
      Winterholler, B., Hoppe, P., Foley, S., et al., 2008. Sulfur Isotope Ratio Measurements of Individual Sulfate Particles by NanoSIMS. International Journal of Mass Spectrometry, 272(1): 63-77. https://doi.org/10.1016/j.ijms.2008.01.003
      Xie, L. W., Wang, X. J., Yu, H. M., et al., 2024. A Study on a Natural Pyrite Sample as a Potential Reference Material for Simultaneous Measurement of Sulfur and Iron Isotopes Using Fs⁃LA⁃MC⁃ICP⁃MSs. Journal of Analytical Atomic Spectrometry, 39(3): 723-734. https://doi.org/10.1039/D3JA00351E
      Xie, Y. H., Wu, G., Xian, W. D., et al., 2023. Sulfur Isotope Fractionation Mediated by Microbial Anoxygenic Photosynthetic Sulfur Oxidation Processes and Its Geological Implications. Earth Science, 48(8): 2837-2850.
      Yang, W., Hu, S., Zhang, J. C., et al., 2015. NanoSIMS Analytical Technique and Its Applications in Earth Sciences. Science China Earth Sciences, 58(10): 1758-1767. https://doi.org/10.1007/s11430⁃015⁃5106⁃6
      Zhang, J. C., Lin, Y. T., Yan, J., et al., 2017. Simultaneous Determination of Sulfur Isotopes and Trace Elements in Pyrite with a NanoSIMS 50L. Analytical Methods, 9(47): 6653-6661. https://doi.org/10.1039/C7AY01440F
      Zhang, J. C., Lin, Y. T., Yang, W., et al., 2014. Improved Precision and Spatial Resolution of Sulfur Isotope Analysis Using NanoSIMS. Journal of Analytical Atomic Spectrometry, 29(10): 1934-1943. https://doi.org/10.1039/C4JA00140K
      Zhu, Z. Y., Jiang, S. Y., Ciobanu, C. L., et al., 2017. Sulfur Isotope Fractionation in Pyrite during Laser Ablation: Implications for Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry Mapping. Chemical Geology, 450: 223-234. https://doi.org/10.1016/j.chemgeo.2016.12.037
      丁悌平, 白瑞梅, 李延河, 等, 1998. IAEA⁃S⁃1参考物质及V⁃CDT硫同位素标准的32S/34S绝对比值. 中国科学(D辑: 地球科学), 28(6): 546-551.
      丁悌平, Valkiers, S., 万德芳, 等, 2001. IAEA和中国的硫同位素参考物质的δ33S、δ34S值与32S/33S、32S/34S绝对比值. 矿物岩石地球化学通报, 4: 425-427.
    • 加载中
    图(2) / 表(1)
    计量
    • 文章访问数:  688
    • HTML全文浏览量:  259
    • PDF下载量:  172
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-10-21
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回