Zircon and Cassiterite U-Pb Geochronology and Hf Isotopes of Kama Li-Nb-Ta Pegmatite Deposit and Its Geological Significance in Nasarawa, Central Nigeria
-
摘要: 尼日利亚中部纳萨拉瓦地区是典型的含锂铌钽稀有金属伟晶岩脉发育的地区.卡马花岗伟晶岩型稀有金属矿床位于尼日利亚锂铌钽锡多金属成矿带的中部,是新发现的以锂为主,伴生铌钽矿的大型矿床,为限定其成矿年龄,探讨其矿化过程的来源及演化,对含矿伟晶岩脉开展了岩石学、矿物学、锆石及锡石U-Pb年代学、锆石微量元素和Lu-Hf同位素等研究.锆石和锡石的U-Pb年代测定结果表明,锆石U-Pb定年为(577.3±2.5)Ma(n=18,MSWD=6.4),锡石U-Pb定年为(582.6±8.6)Ma(n=25,MSWD=0.72),推断马锂矿床伟晶岩形成于577~583 Ma,矿床成矿作用主要发生在新元古代晚期.微量地球化学研究表明,研究区伟晶岩在俯冲-碰撞作用中形成,其岩浆源区主要为变质沉积岩,起源自陆壳.岩浆演化过程可能经历了斜长石、磷灰石、锆石等矿物的分离结晶作用.岩浆的强烈分离结晶演化作用导致岩石具有高分异演化特征.伟晶岩的锆石、锡石和铌钽铁矿Hf同位素组成表明,锆石的εHf(t)值在-20.6和-19.0之间,TDM2值为2.7 Ga;锡石的εHf(t)值在-17.7和-14.9之间,TDM2值在2.4 Ga和2.6 Ga之间变化.铌钽铁矿的εHf(t)值在-15.9和-7.4之间,TDM2值在2.0 Ga和2.4 Ga之间变化,表明伟晶岩的母体熔体主要起源于新太古代-古元古代基底岩的重熔作用.尼日利亚稀有金属伟晶岩矿床成矿与冈瓦纳造山运动关系密切,与冈瓦纳形成造山运动的碰撞后伸展期相对应.Abstract: The Nasarawa region in central Nigeria is a typical area with developed lithium-niobium-tantalum rare metal pegmatite veins. The Kama granitic pegmatite-type rare metal deposit, located in the central part of the Nigerian lithium-niobium-tantalum-tin polymetallic metallogenic belt, is a newly discovered large deposit mainly containing lithium with associated niobium and tantalum ores. To define its metallogenic age and explore the sources and evolution of its mineralization process, this paper conducts a study of petrology, mineralogy, zircon and cassiterite U-Pb geochronology, zircon trace elements, and Lu-Hf isotopes on the ore-bearing pegmatite veins The zircon U-Pb dating yields the ages of (577.3±2.5) Ma (n=18, MSWD=6.4), and the cassiterite U-Pb dating yields the ages of (582.6±8.6) Ma (n=25, MSWD=0.72), therefore the pegmatite of the Kama deposit is inferred to have formed between 577 and 583 Ma, with the main mineralization occurring in the late Neoproterozoic. Trace elementsgeochemical analyses indicate that the pegmatites in the study area were formed during subduction-collision processes, with their magma source primarily being metamorphic sedimentary rocks, originating from the continental crust. The magma evolution process may have involved fractional crystallization of minerals such as plagioclase, apatite, and zircon. The intense fractional crystallization evolution of the magma results in rocks with highly differentiated evolutionary characteristics. The Hf isotopic compositions of zircon, cassiterite and columbite-tantalite in pegmatite show that the εHf(t) value of zircon is between -20.6 and -19.0, and the TDM2 value is 2.7 Ga; The εHf(t) value of cassiterite is between -17.7 and -14.9, and the TDM2 value varies between 2.4 Ga and 2.6 Ga. The εHf(t) value of Columbite-tantalite is between -15.9 and -7.4, and the TDM2 values are between 2.0 Ga and 2.4 Ga, indicating that the parent melt of pegmatite mainly originated from the remelting of Neoarchean-Proterozoic basement rocks. The mineralization of rare metal pegmatite deposits in Nigeria is closely related to Gondwana orogeny, which corresponds to the post-collision extension period of Gondwana orogeny.
-
Key words:
- zircon U-Pb dating /
- cassiterite U-Pb dating /
- Hf /
- isotopes /
- trace elements /
- pegmatite /
- metallogenic age /
- Nigeria /
- geochemistry
-
图 5 尼日利亚卡马锂矿床野外照片及镜下照片
a.含锂辉石伟晶岩脉与围岩侵入关系;b.含锂辉石矿脉;c.含锂辉石电气石化伟晶岩脉;d.锂辉石、绿帘石花岗伟晶岩;e.锂辉石化花岗伟晶岩;f.锂辉石、白云母、花岗伟晶岩;g.ZD2显微镜下照片(锂辉石、锂云母、钠长石、锡石、白云母、石英);h.ZD3显微镜下照片(锂辉石、钠长石、石英);i.ZD5显微镜下照片(锂辉石、锂云母、钠长石、锡石、白云母、石英);Cst.锡石;Spd.锂辉石;Lpd.锂云母;Ab.钠长石;Q.石英;Mus.白云母;Ep.绿帘石
Fig. 5. Field photos, hand specimens and polarizing microscope images of Kama lithium deposit in Nigeria
图 10 研究区锆石球粒陨石标准化稀土元素配分曲线和微量元素蛛网图(标准化值据Sun and McDonough, 1989)
Fig. 10. Chondrite-normalized REE patterns diagram and multi-elements spider diagram of zircon in the study area (normalization data from Sun and McDonough, 1989)
图 11 研究区锆石中Th-U比值图解(a)和锆石结晶温度与Hf含量关系(b)(Watson et al., 2006)
Fig. 11. Th vs.U diagram of zircon (a) and plots of the calculated crystalliation temperatures of the zircon samples against their Hf in the study area (b)(Watson et al., 2006)
图 14 研究区锆石成因判别图解(据Hoskin, 2005)
Fig. 14. Discriminant diagrams of zircons in the study area (after Hoskin, 2005)
表 1 研究区锂辉石伟晶岩样品ZD2锆石LA-ICP-MS锆石U-Pb同位素分析结果
Table 1. The LA-ICP-MS U-Pb ages results of zircons from the spodumene pegmatite sample ZD2 in the study area
测
点
号含量(10‒6) Th/U 同位素比值 同位素年龄(Ma) 谐和度(%) Th U Pb 207Pb/
206Pbσ 207Pb/
235Uσ 206Pb/
238Uσ 206Pb/
238Uσ 207Pb/
235Uσ 1 95.0 1 135 119 0.084 0.061 6 0.001 0 0.061 6 0.001 0 0.788 2 0.015 6 576 6.1 590 8.9 96 2 21.0 338 39.4 0.061 0.064 7 0.001 5 0.064 7 0.001 5 0.779 7 0.020 6 581 7.2 597 11.0 95 3 125 536 91.3 0.234 0.092 8 0.002 6 0.092 8 0.002 6 1.269 8 0.049 4 791 15.2 997 18.8 76 4 576 869 108 0.662 0.062 2 0.001 0 0.062 2 0.001 0 0.765 5 0.012 2 565 3.5 559 7.2 94 5 118 532 67.2 0.222 0.061 9 0.001 1 0.061 9 0.001 1 0.782 8 0.016 9 570 8.4 587 9.0 99 6 54.0 298 37.6 0.182 0.064 5 0.001 4 0.064 5 0.001 4 0.780 8 0.019 2 573 6.3 577 10.0 96 7 151 849 88.6 0.177 0.061 4 0.001 0 0.061 4 0.001 0 0.759 2 0.013 3 570 6.5 568 7.7 96 8 182 768 97.6 0.237 0.068 0 0.001 1 0.068 0 0.001 1 0.781 4 0.016 7 575 4.7 584 8.7 91 9 476 590 85.1 0.808 0.060 8 0.001 1 0.060 8 0.001 1 0.763 2 0.015 9 573 6.1 597 8.9 98 10 289 565 69.0 0.512 0.062 8 0.001 2 0.062 8 0.001 2 0.776 2 0.015 7 572 4.7 589 9.0 94 11 90.0 517 58.2 0.175 0.063 3 0.001 3 0.063 3 0.001 3 0.786 2 0.016 1 579 4.7 589 9.1 94 12 103 235 33.5 0.438 0.064 8 0.002 0 0.064 8 0.002 0 0.782 2 0.027 3 572 6.5 579 14.2 96 13 71.0 215 28.5 0.333 0.065 1 0.002 1 0.065 1 0.002 1 0.774 6 0.028 1 568 6.9 585 14.8 95 14 488 1 363 208 0.358 0.065 3 0.000 9 0.065 3 0.000 9 0.783 5 0.016 1 571 5.7 587 7.9 97 15 77.2 358 44.0 0.216 0.063 1 0.001 4 0.063 1 0.001 4 0.775 4 0.020 9 570 7.9 586 11.1 97 16 354 623 87.6 0.567 0.059 8 0.001 1 0.059 8 0.001 1 0.793 6 0.015 8 569 5.8 583 8.6 98 17 85.0 493 50.6 0.172 0.066 9 0.001 5 0.066 9 0.001 5 0.768 1 0.017 2 568 4.2 579 9.8 88 18 274 542 73.8 0.506 0.065 5 0.001 5 0.065 5 0.001 5 0.776 2 0.018 3 571 5.1 582 9.8 93 19 404 615 68.9 0.657 0.061 4 0.001 3 0.061 4 0.001 3 0.758 6 0.014 5 568 4.4 576 8.8 93 20 195 457 59.6 0.427 0.061 4 0.001 3 0.866 0 0.018 7 0.102 0 0.001 0 626 6.0 633 10.2 98 表 2 研究区锂辉石伟晶岩样品(ZD2)锡石LA-ICP-MS U-Pb同位素测年结果
Table 2. In-situ cassiterite LA-ICP-MS U-Pb dating results of the spodumene pegmatite sample(ZD2) in the study area
测点号 238U/206Pb Error(%) 207Pb/206Pb Error(%) 1 10.46 0.57 0.08 1.51 2 10.69 0.73 0.08 2.07 3 8.78 0.62 0.22 2.53 4 10.10 0.49 0.07 1.22 5 10.03 0.54 0.07 1.32 6 9.91 0.83 0.11 3.30 7 10.45 0.54 0.08 1.10 8 8.77 0.50 0.22 2.99 9 11.00 0.76 0.08 2.29 10 7.09 0.26 0.34 2.53 11 10.60 0.42 0.05 1.22 12 9.02 0.44 0.16 1.71 13 9.97 0.99 0.07 2.17 14 10.72 0.71 0.06 1.45 15 7.07 0.32 0.31 3.24 16 10.68 0.50 0.07 1.26 17 8.52 0.62 0.21 2.39 18 10.77 0.78 0.06 3.28 19 6.81 0.44 0.33 4.23 20 10.65 0.53 0.07 1.21 21 10.46 0.49 0.05 1.03 22 10.58 0.80 0.06 2.23 23 7.45 0.54 0.27 2.94 24 10.03 0.79 0.09 2.50 25 10.14 0.54 0.07 1.85 表 3 研究区锂辉石伟晶岩样品(ZD2)单颗粒锆石微量元素分析结果(10‒6)
Table 3. The LA-ICP-MS trace elemental results(10‒6)of zircons from the spodumene pegmatie sample ZD2 in the study area
测点 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 La 0.61 0.03 0.34 1.33 0.05 0.03 0.44 0.09 0.41 0.42 0.35 0.01 0.01 1.35 0.07 0.20 0.88 0.22 2.15 0.04 Ce 9.66 2.05 6.58 78.9 7.15 2.94 7.80 6.29 21.9 13.0 7.63 6.41 4.30 25.4 2.79 15.7 11.9 19.2 34.2 7.38 Pr 1.43 0.15 0.44 7.10 0.24 0.24 0.77 0.22 1.93 1.38 1.01 0.18 0.27 2.61 0.17 1.53 1.67 0.97 5.52 0.54 Nd 11.5 4.53 4.04 87.1 3.10 4.18 6.00 2.04 27.7 16.2 12.4 2.96 3.62 20.4 3.72 23.2 13.8 9.62 53.1 7.07 Sm 13.0 12.8 5.93 72.2 4.41 8.23 6.93 5.14 33.4 16.6 14.6 4.24 5.87 19.4 8.81 30.3 15.3 8.17 54.6 11.3 Eu 3.95 5.72 2.32 25.4 2.46 3.20 2.34 2.11 11.1 5.52 5.53 2.10 2.29 2.52 3.31 10.2 13.3 3.67 17.6 4.58 Gd 57.6 65.4 28.1 121 15.3 24.9 29.2 28.8 100 54.0 29.0 19.0 25.2 50.1 31.2 90.5 41.0 19.9 129 39.4 Tb 19.1 14.6 8.60 17.6 2.68 5.29 9.23 9.02 25.5 14.8 4.39 5.26 6.78 14.8 6.96 22.1 9.92 3.82 26.5 11.2 Dy 179 91.1 87.2 88.2 13.6 39.8 84.7 92.4 225 130 24.1 47.9 59.2 156 48.6 182 78.6 26.3 160 101 Ho 50.7 15.0 27.9 16.1 1.81 9.5 24.1 29.4 66.4 39.2 4.63 14.9 15.7 59.4 10.4 48.3 19.8 5.36 30.0 30.3 Er 168 35.5 107 40.5 3.01 27.2 80.5 111 242 140 13.2 50.0 49.0 271 26.6 162 65.5 13.8 71.4 105 Tm 32.1 5.78 21.4 6.81 0.33 4.42 14.7 23.1 49.0 27.7 2.69 8.76 8.15 63.5 4.18 30.8 14.9 2.38 10.6 20.4 Yb 251 50.2 175 55.6 1.79 33.2 118 200 412 232 24.1 66.1 54.9 589 30.8 248 139 17.6 69.8 167 Lu 46.4 11.6 33.0 12.0 0.22 5.59 19.7 37.7 78.2 42.8 5.77 11.0 8.48 126 4.84 46.2 26.5 2.98 10.7 31.2 Y 1 348 387 764 405 58.4 252 661 783 1 734 1 056 131 402 446 1 633 273 1 366 594 139 835 801 Ti 41.8 60.9 67.7 41.3 27.8 31.3 10.5 8.60 17.1 10.7 51.0 15.8 19.2 8.11 39.6 15.4 14.8 42.2 18.2 6.87 Hf 11 168 11 548 10 030 12 428 10 047 10 804 10 103 10 576 8 504 9 676 11 503 8 356 8 421 9 746 10 620 8 584 10 282 10 220 8 633 9 256 Th 95.2 20.7 125 575 118 54.4 151 182 476 289 90.4 103 71.4 488 77.2 354 85.0 274 404 195 U 1 135 338 536 869 532 298 849 768 589 565 517 235 215 1 363 358 623 493 542 615 457 Pb 119 39.4 91.3 108 67.2 37.6 88.6 97.6 85.1 69.0 58.2 33.5 28.5 208 44.0 87.6 50.6 73.8 68.9 59.6 Nb 10.3 3.79 4.69 11.8 2.72 1.52 10.6 6.75 3.40 12.3 8.04 1.49 1.51 4.49 2.13 4.31 3.43 3.77 30.9 2.36 Ta 1.82 1.11 7.18 19.5 0.47 2.87 28.1 9.21 0.91 8.70 8.37 0.58 0.64 1.48 1.28 1.50 0.81 21.9 55.9 1.09 Zr 618 497 632 688 627 924 624 678 637 256 628 166 626 335 634 998 631 350 630 790 630 046 635 097 633 185 625 859 626 207 628 376 628 480 634 884 634 669 635 331 ΣREE 845 314 508 630 56.3 169 404 547 995 735 149 239 244 902 182 911 452 134 676 536 LREE 40.1 25.3 19.7 272 17.4 18.8 24.3 15.9 96.5 53.1 41.5 15.9 16.5 71.6 18.9 81.2 56.8 41.8 167 30.9 HREE 805 289 488 358 38.8 150 380 531 899 682 108 223 227 830 163 830 395 92.2 509 505 Eu/Eu* 0.44 0.60 0.55 0.83 0.92 0.68 0.50 0.53 0.59 0.56 0.82 0.72 0.58 0.25 0.61 0.60 0.62 0.88 0.64 0.67 Ce/Ce* 2.54 7.51 4.19 6.30 16.4 8.55 3.27 20.9 6.04 4.19 3.16 40.0 27.0 3.32 6.26 7.04 42.4 30.2 2.43 22.8 TZr(℃) 859 905 919 858 813 826 716 699 762 718 883 755 774 694 853 752 748 860 768 680 表 4 研究区锂辉石伟晶岩样品(ZD5)单颗粒锆石微量元素分析结果(10‒6)
Table 4. The LA-ICP-MS trace element results(10‒6)of zircons from the spodumenepegmatie sample ZD5 in the study area
测点 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 La 0.25 0.12 0.34 0.04 0.03 0.01 0.61 0.03 0.00 0.81 0.03 0.03 0.02 2.54 1.06 0.21 0.28 0.91 0.03 Ce 35.2 5.37 89.4 2.01 5.11 5.30 11.2 2.59 4.02 11.2 6.28 7.36 4.68 15.1 3.71 5.64 0.44 6.12 7.33 Pr 0.11 0.31 0.57 0.03 0.16 0.11 0.83 0.05 0.11 1.42 0.19 0.32 0.15 2.74 0.40 0.42 0.04 1.13 0.40 Nd 1.60 3.05 8.23 1.24 2.81 1.58 9.17 0.96 2.23 12.3 3.74 5.33 2.73 15.1 1.07 2.96 0.28 4.47 6.74 Sm 3.14 5.00 9.80 4.27 5.75 4.22 9.84 1.97 3.85 9.86 6.26 9.05 4.97 13.3 2.20 4.04 0.95 8.51 11.0 Eu 1.40 1.71 3.37 0.23 1.95 1.57 3.77 0.70 1.70 2.96 2.77 3.63 1.93 1.05 0.09 1.36 0.07 0.68 4.21 Gd 19.2 23.6 32.4 41.0 25.2 21.4 53.1 8.09 21.8 35.1 37.5 45.0 25.6 22.3 4.61 18.1 11.4 20.0 47.1 Tb 6.81 6.99 9.49 20.9 6.39 5.82 14.9 2.18 6.37 9.22 9.84 12.2 7.83 7.58 2.30 5.30 10.8 9.42 12.4 Dy 81.0 68.9 101 308 57.4 54.0 126 18.8 57.2 79.4 85.2 98.7 71.6 49.8 15.5 41.2 71.8 49.3 106 Ho 34.3 24.2 37.9 134 15.7 15.3 32.7 4.56 16.0 20.9 21.6 23.1 19.7 10.9 3.49 10.3 6.26 5.43 27.8 Er 159 105 167 628 51.6 49.0 97.8 12.7 50.4 60.8 60.4 62.0 57.9 44.1 17.1 29.2 14.1 17.0 84.5 Tm 40.0 24.6 39.6 147 9.54 9.05 16.4 2.07 8.63 9.77 9.16 9.26 9.52 11.4 5.48 5.06 2.98 4.71 14.8 Yb 386 228 386 336 74.5 70.0 110 14.2 63.2 65.3 60.6 59.2 63.9 114 65.1 35.8 258 189 106 Lu 84.3 47.5 83.1 251 12.7 12.2 18.1 2.08 10.9 9.86 9.03 8.53 10.0 22.7 13.3 6.00 4.56 8.99 17.4 Y 934 695 1 034 3429 447 412 914 132 441 572 614 660 553 412 164 289 391 329 781 Ti 4.89 9.98 7.68 8.71 8.82 11.4 23.2 11.4 14.1 21.0 14.7 14.4 11.0 53.6 53.2 9.99 25.1 80.1 9.31 Hf 10 975 10 317 10 933 11 887 8 825 9 119 8 965 9 007 8 487 8 755 8 912 8 790 8 507 85 877 77 798 10 451 85 694 77 572 8 415 Th 562 118 2038 74.5 109 139 201 46.5 87.1 123 148 165 88.3 16.8 12.5 91.9 61.7 23.5 152 U 597 436 799 455 300 360 647 156 226 630 410 400 276 2 358 2 684 400 4 634 4 742 326 Pb 47.7 57.8 62.2 49.6 39.7 47.7 71.5 20.7 29.7 52.1 52.3 53.3 35.9 207 226 45.6 388 407 42.2 Nb 5.12 9.78 5.96 2.18 2.34 2.40 49.1 1.81 1.75 52.8 3.58 2.85 2.13 392 690 27.7 70.4 489 2.13 Ta 1.96 8.76 1.93 2.36 1.35 0.80 37.7 1.75 0.85 51.7 2.57 1.29 0.83 343 919 49.4 155 363 0.86 Zr 632 980 642 114 630 562 633 040 638 558 636 424 636 373 638 319 636 988 632 315 636 108 636 677 639 184 541 879 555 776 636 661 539 013 546 726 634 119 ΣREE 853 545 968 2 818 269 247 504 70.9 246 329 312 343 281 333 135 166 152 186 446 LREE 41.7 15.6 112 7.81 15.8 12.8 35.4 6.28 11.9 38.6 19.3 25.7 14.5 49.8 8.53 14.6 2.07 21.8 30.0 HREE 811 529 857 2810 253 235 468 64.6 234 290 293 317 266 283 127 151 150 165 416 Eu/Eu* 0.55 0.48 0.58 0.05 0.50 0.50 0.50 0.53 0.57 0.49 0.55 0.55 0.52 0.19 0.09 0.49 0.07 0.16 0.56 Ce/Ce* 50.8 6.67 49.7 13.8 19.8 46.7 3.84 17.9 48.7 2.57 20.8 18.9 20.0 31.4 31.4 34.6 21.1 31.5 15.7 TZr(℃) 652 712 689 700 701 724 794 724 744 783 748 746 720 889 888 712 802 842 706 注:Eu/Eu*=$ \frac{\mathrm{E}\mathrm{u}}{\sqrt[]{\mathrm{S}\mathrm{m}\times \mathrm{G}\mathrm{d}}} $;Ce/Ce*=$ \frac{\mathrm{C}\mathrm{e}}{\sqrt[]{\mathrm{L}\mathrm{a}\times \mathrm{P}\mathrm{r}}} $;T(锆石Ti温度计)=$ \frac{(4\mathrm{ }800\pm 86)}{\left(5.711\pm 0.072\right)-\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\left(\mathrm{T}\mathrm{i}\right)}-273.15 $. 表 5 研究区锂辉石伟晶岩样品单颗粒锡石微量元素分析结果(10‒6)
Table 5. The LA-ICP-MS trace element results (10‒6) of cassiterites from the spodumenepegmatie sample ZD5 in the study area
点位 Al Sc Ti V Fe Ga Zr Nb Sb Hf Ta W Pb U ZD2 ZD2-1 237 0.80 671 1.40 8 534 8.08 881 3 462 0.67 1 221 72 655 2.87 0.36 1.03 ZD2-2 187 0.66 556 1.02 5 886 6.28 712 2 606 0.70 810 49 743 1.91 0.23 0.67 ZD2-3 132 0.68 618 0.72 3 563 4.55 560 2 117 0.71 386 29 049 1.24 0.31 0.74 ZD2-4 340 1.32 1 106 2.62 11 861 11.7 1 178 6 704 0.64 982 95 079 4.48 0.69 1.95 ZD2-5 284 1.20 965 2.32 10 906 9.72 1 127 5 270 0.80 1 124 90 308 3.62 0.61 1.74 ZD2-6 119 0.00 506 0.63 2 988 3.94 396 1 338 0.64 349 25 750 1.03 0.18 0.48 ZD2-7 339 1.01 1 212 2.38 12 178 11.9 1 477 5 932 0.63 1 362 98 790 3.69 0.76 2.22 ZD2-8 244 0.00 793 2.80 8 771 8.38 1 002 3 520 0.65 1 176 71 897 2.71 0.47 1.17 ZD2-9 161 0.00 622 0.67 4 498 5.63 526 2 193 0.62 445 38 307 2.01 0.20 0.60 ZD2-10 249 0.80 874 1.83 10 901 8.96 984 4 038 0.71 1 329 91 670 3.55 0.95 1.94 ZD2-11 326 1.42 1 052 2.10 11 550 11.7 1 212 6 533 0.55 984 90 358 3.54 0.66 2.00 ZD2-12 357 1.10 1 125 2.55 11 956 12.4 1 341 4 657 0.55 1 451 99 611 3.72 0.84 2.15 ZD2-13 189 0.62 740 3.24 5 998 6.90 741 2 548 0.58 676 49 469 1.78 0.32 0.97 ZD2-14 236 0.74 762 1.16 10 582 8.72 963 4 304 0.59 1 195 88 180 3.05 0.49 1.49 ZD2-15 191 0.00 466 1.44 7 918 6.54 873 3 107 0.70 1 344 66 053 2.16 0.55 1.11 ZD2-16 256 1.06 972 1.88 9 216 10.2 944 4 697 0.51 811 74 562 3.70 0.48 1.44 ZD2-17 259 0.00 759 2.10 11 219 10.7 1 016 4 382 0.63 1 437 91 070 3.44 0.72 1.71 ZD2-18 250 0.94 878 1.30 8 694 9.94 980 4 650 0.52 767 68 023 2.28 0.39 1.20 ZD2-19 202 0.83 616 1.40 7 271 8.17 846 2 939 0.62 1 091 59 407 2.00 0.59 1.11 ZD2-20 302 1.47 1 139 2.56 9 895 11.2 1 352 5 698 0.57 1 054 77 384 2.72 0.68 2.06 ZD2-21 370 0.82 1 166 2.86 15 261 13.5 1 355 6 165 0.58 1 427 124 898 4.54 0.90 2.66 ZD2-22 228 0.00 659 1.96 7 459 8.22 771 3 194 0.54 806 62 356 2.16 0.33 0.96 ZD2-23 176 0.66 521 0.95 6 025 6.71 773 2 424 0.59 1 042 49 648 1.74 0.52 1.07 ZD2-24 213 0.00 375 1.21 8 157 6.71 657 2 976 0.58 845 69 508 2.51 0.35 0.98 ZD2-25 163 1.01 1 200 6.04 8 514 9.03 788 3 701 0.63 890 66 798 2.18 0.38 1.09 ZD5 ZD5-1 93.0 11.4 2 069 62.3 2 849 3.67 544 1 658 0.74 418 25 146 0.99 0.41 0.91 ZD5-2 104 0.00 492 2.48 1 930 4.56 278 2 879 0.57 140 14 628 2.28 0.67 1.27 ZD5-3 21.7 48.7 76.8 0.00 4 003 0.81 611 3 568 3.61 737 8 196 30.1 14.1 42.3 ZD5-4 946 0.56 258 0.82 3 862 4.95 769 3 801 0.66 432 30 056 6.67 1.75 2.21 ZD5-5 9.86 42.3 74.4 0.00 3 382 0.64 555 2 848 3.01 697 6 441 22.4 11.9 39.9 ZD5-6 79.1 4.30 3 769 32.8 3 963 3.66 423 3 549 0.63 386 26 964 1.08 0.69 0.43 ZD5-7 219 44.2 92.1 0.00 3 044 0.46 541 3 797 6.08 675 8 947 69.7 17.6 30.39 ZD5-8 23.5 38.6 61.9 0.00 2 790 0.36 565 3 559 1.44 663 7 475 14.45 7.47 16.1 ZD5-9 129 12.1 2 065 50.3 3 124 4.65 516 1 966 0.81 358 24 662 1.62 8.78 1.88 ZD5-10 1 925 0.66 600 3.16 3 034 5.28 623 3 706 0.73 344 21 435 5.61 2.81 2.73 ZD5-11 13.3 83.8 53.5 0.00 6 436 0.76 743 11 155 2.46 865 19 968 54.6 13.2 44.5 ZD5-12 35.1 111 48.4 0.00 8 472 0.95 921 13 169 1.51 1 077 32 127 94.9 14.1 43.6 ZD5-13 119 4.64 2 654 99.9 3 316 3.86 811 1 659 0.75 661 26 781 4.37 6.64 5.68 ZD5-14 1 218 0.82 824 1.80 7 344 7.65 925 3 186 0.95 2 031 60 839 3.49 2.69 3.36 ZD5-15 2 641 0.61 367 0.65 2 076 6.26 495 1 558 0.75 460 16 119 4.03 4.14 2.50 ZD5-16 171 0.86 568 0.93 2 452 4.47 577 2 496 0.85 199 18 070 17.4 11.7 17.1 ZD5-17 171 1.39 1 115 10.4 4 998 5.75 840 2 601 0.70 582 39 059 6.68 4.49 6.53 ZD5-18 19.4 54.8 20.9 0.00 1 896 0.34 1 990 1 535 5.04 432 8 167 7.35 9.83 5.04 ZD5-19 79.1 1.95 2 282 24.8 3 528 2.85 388 1 908 0.89 286 24 275 3.40 3.68 2.95 ZD5-20 120 4.76 3 476 52.9 3 487 4.43 671 2 602 0.55 370 27 919 1.58 0.86 1.69 ZD5-21 61.3 77.3 60.1 0.00 5 642 0.95 813 5 257 2.40 968 15 558 33.2 18.1 43.7 ZD5-22 249 1.15 694 2.61 3 528 4.97 1 197 1 357 1.05 2 121 24 258 5.06 8.62 17.1 ZD5-23 104 77.5 119 0.00 6 292 1.13 760 6 400 2.26 883 11 201 57.5 26.3 77.3 ZD5-24 112 3.07 2 621 11.1 4 587 3.57 474 2 835 0.78 400 27 498 4.67 4.14 2.95 ZD5-25 115 4.54 1 914 26.0 1 622 1.83 638 885 1.72 315 11 312 18.3 10.3 7.85 表 6 研究区锂辉石伟晶岩锆石、锡石及铌钽铁矿Lu-Hf同位素分析结果
Table 6. Zircon, cassiterite and columbite-tantalite Lu-Hf isotopic compositions of the spodumene pegmatie in the study area
测点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(t) 1σ tDM1(Ma) tDM2(Ma) fLu/Hf ZD2 锆石 ZD2-1 576 0.001 691 0.000 019 0.281 833 0.000 009 ‒20.6 0.24 1 944 2 825 ‒1.00 ZD2-2 581 0.000 049 0.000 001 0.281 866 0.000 001 ‒19.3 0.22 1 899 2 749 ‒1.00 ZD2-3 573 0.001 261 0.000 015 0.281 874 0.000 008 ‒19.2 0.21 1 888 2 737 ‒1.00 ZD2-4 565 0.000 524 0.000 006 0.281 873 0.000 005 ‒19.4 0.22 1 889 2 743 ‒1.00 ZD2-5 570 0.001 138 0.000 012 0.281 876 0.000 023 ‒19.2 0.23 1 886 2 734 ‒1.00 ZD2-6 573 0.000 857 0.000 010 0.281 879 0.000 005 ‒19.0 0.24 1 881 2 726 ‒1.00 ZD2-7 570 0.000 373 0.000 004 0.281 877 0.000 007 ‒19.1 0.24 1 884 2 732 ‒1.00 ZD2-8 575 0.001 162 0.000 013 0.281 878 0.000 019 ‒19.0 0.24 1 883 2 727 ‒1.00 锡石 ZD2-1 583 0.000 035 0.000 001 0.281 944 0.000 016 ‒16.5 0.36 1 793 2 576 ‒1.00 ZD2-2 583 0.000 075 0.000 002 0.281 910 0.000 017 ‒17.7 0.29 1 839 2 652 ‒1.00 ZD2-3 583 0.000 054 0.000 002 0.281 920 0.000 012 ‒17.3 0.26 1 826 2 629 ‒1.00 ZD2-4 583 0.000 022 0.000 001 0.281 947 0.000 014 ‒16.4 0.24 1 789 2 570 ‒1.00 ZD2-5 583 0.000 020 0.000 001 0.281 929 0.000 008 ‒17.0 0.54 1 814 2 610 ‒1.00 ZD2-6 583 0.000 050 0.000 002 0.281 957 0.000 018 ‒16.0 0.59 1 776 2 548 ‒1.00 ZD2-7 583 0.000 025 0.000 001 0.281 938 0.000 013 ‒16.7 0.43 1 801 2 590 ‒1.00 ZD2-8 583 0.000 022 0.000 001 0.281 951 0.000 013 ‒16.2 0.50 1 784 2 561 ‒1.00 ZD2-9 583 0.000 021 0.000 001 0.281 990 0.000 023 ‒14.9 0.29 1 731 2 475 ‒1.00 ZD2-10 583 0.000 033 0.000 001 0.281 938 0.000 011 ‒16.7 0.64 1 801 2 590 ‒1.00 铌钽铁矿 ZD2-1 583 0.001 561 0.000 021 0.282 099 0.000 021 ‒11.0 0.36 1 584 2 233 ‒1.00 ZD2-2 583 0.002 324 0.000 032 0.282 142 0.000 023 ‒9.5 0.29 1 526 2 138 ‒1.00 ZD2-3 583 0.001 856 0.000 036 0.282 118 0.000 014 ‒10.3 0.26 1 559 2 192 ‒1.00 ZD2-4 583 0.001 401 0.000 030 0.282 130 0.000 017 ‒9.9 0.24 1 543 2 165 ‒1.00 ZD2-5 583 0.000 827 0.000 016 0.282 026 0.000 008 ‒13.6 0.54 1 683 2 395 ‒1.00 ZD2-6 583 0.004 293 0.000 049 0.282 133 0.000 042 ‒9.8 0.59 1 539 2 159 ‒1.00 ZD2-7 583 0.001 903 0.000 032 0.282 131 0.000 026 ‒9.9 0.43 1 541 2 163 ‒1.00 ZD2-8 583 0.001 783 0.000 036 0.282 106 0.000 018 ‒10.8 0.50 1 576 2 218 ‒1.00 ZD2-9 583 0.001 952 0.000 037 0.282 168 0.000 014 ‒8.6 0.29 1 491 2 081 ‒1.00 ZD2-10 583 0.001 940 0.000 037 0.282 200 0.000 014 ‒7.4 0.64 1 448 2 009 ‒1.00 ZD5 铌钽铁矿 ZD5-1 583 0.001 200 0.000021 0.281 995 0.000 031 ‒14.7 0.36 1 725 2 464 ‒1.00 ZD5-2 583 0.001 884 0.000 026 0.282 043 0.000 041 ‒13.0 0.29 1 661 2 358 ‒1.00 ZD5-3 583 0.001 242 0.000 020 0.282 081 0.000 136 ‒11.6 0.26 1 609 2 274 ‒1.00 ZD5-4 583 0.000 632 0.000 025 0.282 111 0.000 065 ‒10.6 0.24 1 568 2 207 ‒1.00 ZD5-5 583 0.002 198 0.000 029 0.282 047 0.000 070 ‒12.8 0.54 1 655 2 349 ‒1.00 ZD5-6 583 0.000 067 0.000 002 0.282 038 0.000 010 ‒13.2 0.59 1 666 2 369 ‒1.00 ZD5-7 583 0.001 645 0.000 023 0.281 962 0.000 028 ‒15.9 0.43 1 770 2 537 ‒1.00 ZD5-8 583 0.009 607 0.000 281 0.282 055 0.000 052 ‒12.7 0.50 1 655 2 338 ‒0.99 ZD5-9 583 0.000 130 0.000 008 0.282 124 0.000 036 ‒10.1 0.29 1 550 2 178 ‒1.00 ZD5-10 583 0.000 112 0.000 006 0.282 112 0.000 017 ‒10.5 0.64 1 566 2 204 ‒1.00 -
Abdallah, N., Liégeois, J. P., De Waele, B., et al., 2007. The Temaguessine Fe-Cordierite Orbicular Granite (Central Hoggar, Algeria): U-Pb SHRIMP Age, Petrology, Origin and Geodynamical Consequences for the Late Pan-African Magmatism of the Tuareg Shield. Journal of African Earth Sciences, 49(4/5): 153-178. https://doi.org/10.1016/j.jafrearsci.2007.08.005 Adetunji, A., Olarewaju, V. O., Ocan, O. O., et al., 2018. Geochemistry and U-Pb Zircon Geochronology of Iwo Quartz Potassic Syenite, Southwestern Nigeria: Constraints on Petrogenesis, Timing of Deformation and Terrane Amalgamation. Precambrian Research, 307: 125-136. https://doi.org/10.1016/j.precamres.2018.01.015 Ajibade, A. C., Wright, J. B., 1989. The Togo-Benin-Nigeria Shield: Evidence of Crustal Aggregation in the Pan-African Belt. Tectonophysics, 165(1/2/3/4): 125-129. https://doi.org/10.1016/0040-1951(89)90041-3 Akintola, A, A. I., 2012. Compositional Features of Precambrian Pegmatites of Ago-Iwoye Area South Western, Nigeria. Journal of Ecology and the Natural Environment, 4(3): 71-87. https://doi.org/10.5897/jene11.112 Ananaba, S. E., Ajakaiye, D. E., 1987. Evidence of Tectonic Control of Mineralization in Nigeria from Lineament Density Analysis a Landsat-Study. International Journal of Remote Sensing, 8(10): 1445-1453. https://doi.org/10.1080/01431168708954788 Black, R., Latouche, L., Liégeois, J. P., et al., 1994. Pan-African Displaced Terranes in the Tuareg Shield (Central Sahara). Geology, 22(7): 641. https://doi.org/10.1130/0091-7613(1994)0220641: padtit>2.3.co;2 doi: 10.1130/0091-7613(1994)0220641:padtit>2.3.co;2 Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243-258. https://doi.org/10.1016/S0012-821X(97)00040-X Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1/2): 48-57. https://doi.org/10.1016/j.epsl.2008.06.010 Caby, R., 1989. Precambrian Terranes of Benin-Nigeria and Northeast Brazil and the Late Proterozoic South Atlantic Fit. Special Paper of the Geological Society of America, 230: 145-158. https://doi.org/10.1130/SPE230-p145 Cao, L., Cui, S., Hu, P., et al., 2022. Development Status and Investment Environment of Mineral Resources in Nigeria. Geological Bulletin of China, 41(1): 167-183 (in Chinese with English abstract). Cao, L., Wang, L. X., Zhu, Y. X., et al., 2024. Termination of Anorogenic Alkaline Magmatism in Nigerian Younger Granite Province: Insights from Afu A-Type Granite Complex. International Journal of Earth Sciences, 113: 1029-1052. https://doi.org/10.1007/s00531-024-02401-1 Černý, P., Ercit, T. S., 2005. The Classification of Granitic Pegmatites revisited. Canadian Mineralogist, 43: 2005-2026. https://doi.org/10.2113/gscanmin.43.6.2005 Černý, P., London, D., Novak, M., et al., 2012. Granitic Pegmatites as Reflections of their Sources. Elements, 8(4): 289-294. https://doi.org/10.2113/gselements.8.4.289 Černý, P., Meintzer, R. E., Anderson, A. J., 1985. Extreme Fractionation in Rare-Element Granitic Pegmatites; Selected Examples of Data and Mechanisms. Canadian Mineralogist, 23: 381-421. Choubey, P. K., Kim, M., Srivastava, R. R., et al., 2016. Advance Review on the Exploitation of the Prominent Energy-Storage Element: Lithium. Part I: From Mineral and Brine Resources. Minerals Engineering, 89: 119-137. https://doi.org/10.1016/j.mineng.2016.01.010 Dada, S. S., 1998. Crust-Forming Ages and Proterozoic Crustal Evoluton in Nigeria: A Reappraisal of Current Interpretations. Precambrian Research, 87: 65-74. https://doi.org/10.1016/S0301-9268(97)00054-5 Ferré, E. C., Caby, R., 2007. Granulite Facies Metamorphism and Chamockite Plutonism: Examples from the Neoproterozoic Belt of Northerm Nigeria. Proc. Gool. Soc. Lond, 118(1): 47-54. https://doi.org/10.1016/S0016-7878(07)80046-0 Ferré, E. C., Gleizes, G., Caby, R., 2002. Obliquely Convergent Tectonics and Granite Emplacement in the Trans-Saharan Belt of Eastern Nigeria: A Synthesis. Precambriam Research, 114: 199-219. https://doi.org/10.1016/S0301-9268(01)00226-1 Ganade, C. E., Cordani, U. G., Agbossoumounde, Y., et al., 2016. Tightening-up NE Brazil and NW Africa Connections: New U-Pb/Lu-Hf Zircon Data of a Complete Plate Tectonic Cycle in the Dahomey Belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276: 24-42. https://doi.org/10.1016/j.precamres.2016.01.032 Goodenough, K. M., Lusty, P. A. J., Roberts, N. M. W., et al., 2014. Post-Collisional Pan-African Granitoids and Rare Metal Pegmatites in Western Nigeria: Age, Petrogenesis, and the 'Pegmatite Conundrum'. Lithos, 200-201: 22-34. https://doi.org/10.1016/j.lithos.2014.04.006 Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643-646. https://doi.org/10.1007/s00410-007-0201-0 Grimes, C. B., Wooden, J. L., Cheadle, M. J, et al., 2015. "Fingerprinting"Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5): 46. https://doi.org/10.1007/s00410-015-1199-3 Han, J., Hanchar, J. M., Pan, Y., et al., 2023. Hydrothermal Alteration, not Metamictization, is the Main Trigger for Modifying Zircon in Highly Evolved Granites. GSA Bulletin. 136(5-6): 1878-1888. https://doi.org/10.1130/B36996.1 Hoskin, P. W. O., 2005. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648. https://doi.org/10.1016/j.gca.2004.07.006 Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027 Jahns, R. H., Burnham, C. W., 1969. Experimental Studies of Pegmatite Genesis; l, A Model for the Derivation and Crystallization of Granitic Pegmatites. Economic Geology, 64: 843-864. https://doi.org/10.2113/gsecongeo.64.8.843 Jiang, S. Y., Wang, R. C., Xu, X. S., et al., 2005. Mobility of High Field Strength Elements (HFSE) in Magmatic-, Metamorphic-, and Submarine-Hydrothermal Systems. Physics and Chemistry of the Earth, Parts A/B/C, 30: 1020-1029. https://doi.org/10.1016/j.pce.2004.11.004 Jiang, S. Y., Yu, J. M., Lu, J. J., 2004. Trace and Rare-Earth Element Geochemistry in Tourmaline and Cassiterite from the YunLong Tin Deposit, Yunnan, China: Implication for Migmatitic-Hydrothermal Fluid Evolution and Ore Genesis. Chemical Geology, 209(3-4): 193-213. https://doi.org/10.1016/j.chemgeo.2004.04.021 Jochum, K. P., Weis, U., Stoll, B., et al., 2011. Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines. Geostandards and Geoanalytical Research, 35(4): 397-429. https://doi.org/10.1111/j.1751-908x.2011.00120.x Jolliff, B. L., Papike, J. J., Shearer, C. K., 1992. Petrogenetic Relationships between Pegmatite and Granite Based on Geochemistry of Muscovite in Pegmatite Wall Zones, Black Hills, South Dakota, USA. Geochimica et Cosmochimica Acta, 56: 1915-1939. https://doi.org/10.1016/0016-7037(92)90320-I Kavanagh, L., Keohane, J., Cabellos, G. G., et al., 2018. Resources Global Lithium Sources-Industrial Use and Future in the Electric Vehicle Industry: A Review. Resources, 7(3): 57. https://doi.org/10.3390/resources7030057 Kendall, L. L. A., Kemp, A. I. S., Grigson, J. L., et al., 2020. U-Pb and Reconnaissance Lu-Hf Isotope Analysis of Cassiterite and Columbite Group Minerals from Archean Li-Cs-Ta Type Pegmatites of Western Australia. Lithos, 352-353: 105231. https://doi.org/10.1016/j.lithos.2019.105231 Li, J. K., Liu, X. F., Wang, D. H., 2014. The Metallogenetic Regularity of Lithium Deposit in China. Acta Geologica Sinica, 88(12): 2269-2283 (in Chinese with English abstract). Li, L. G., Wang, L. X., Zhu, Y. X., et al., 2023. Metallogenic Age and Process of Rare Metal-Bearing Pegmatites from the Northern Margin of Mufushan Complex, South China. Earth Science, 48(9): 3221-3244 (in Chinese with English abstract). Liégeois, J. P., Latouche, L., Boughrara, M., et al., 2003. The LATEA Metacraton (Central Hoggar, Tuareg Shield, Algeria): Behaviour of an Old Passive Margin during the Pan-African Orogeny. Journal of African Earth Sciences, 37: 161-190. https://doi.org/10.1016/j.jafrearsci.2003.05.004 Lima, M. M. C., Ferreira, V. P., Silva, T. R., et al., 2021. Crustal Growth during Western Gondwana Amalgamation and Onset of the Brasiliano Orogeny: Insights from Geochemistry and Pb-Sr-Nd-O Isotopes from Granites in Northeastern Brazil. Lithos 396: 10. https://doi.org/10.1016/j.lithos.2021.106223 Liu, Y. P., Li, Z. X., Li, H. M., et al., 2007. U-Pb Geochronology of Casiterite and Zircon from the DuLong Sn-Zn Deposit: Evidence for Cretaceous Large-Scale Granitic Magmatism and Mineralization Events in Southeastern Yunnan Province China. Acta Petrologica Sinica, 23(5): 967-976 (in Chinese with English abstract). Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In-Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 London, D., 1992. The Application of Experimental Petrology to the Genesis and Crystallization of Granitic Pegmatites. Canadian Mineralogist, 30: 499-540. https://doi.org/10.1016/0169-1368(92)90013-B London, D., 2018. Ore Foming Proceses wihin Granais Pegmatites. Ore Geology Reviews, 101: 349-383. https://doi.org/10.1016/j.oregeorev.2018.04.020 Lorenzo, M., Judith, A. K., Jérémie L., et al., 2015. Role of Crustal Contribution in the Early Stage of the Damara Orogen, Namibia: New Constraints from Combined U-Pb and Lu-Hf Isotopes from the Goas Magmatic Complex. Gondwana Research, 28: 961-986. http://doi.org/10.1016/j.gr.2014.08.007 Mccauley, A., Bradley, D. C., 2014. The Global Age Distribution of Granitic Pegmatites. Canadian Mineralogist, 52: 183-190. https://doi.org/10.3749/canmin.52.2.183 McNaughton, N. J., Pollard, P. J., Gulson, B. L., et al., 1993. Cassiterite: Potential for Direct Dating of Mineral Deposits and a Precise Age for the Bushveld Complex Granites: Comment and Reply. Geology, 21(3): 285-286. https://doi.org/10.1130/0091-7613(1993)0212.3.CO;2 Paton, C., Hellstrom, J., Paul, B., et al., 2011. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. Journal of Analytical Atomic Spectrometry, 26(12): 2508-2518. https://doi.org/10.1039/c1ja10172b Roda-Robles, E., Pesquera, A., Gil-Crespo, P. P., et al., 2018. Geology and Mineralogy of Li Mineralization in the Central Iberian Zone (Spainand Portugal). Mineralogical Magazine, 80(1): 103-126. https://doi.org/10.1180/minmag.2016.080.049 Safiyanu, M. E., Li, H., Zheng, H., et al., 2022. Cryogenian Crustal Evolution in Western Nigeria Shield: Whole-Rock Geochemistry, Sr-Nd and Zircon U-Pb-Hf Isotopic Evidence from Bakoshi-Gadanya Granites. International Geology Review, 64: 2626-2652. https://doi.org/10.1080/00206814.2021.1998799 Saleh, I. B., Yang, X. Y., Cao, J. Y., et al., 2020. Origin and Tectonic Implications of Ferroan Alkali-Calcic Granitoids from the Hawal Massif, East-Eastern Nigeria Terrane: Clues from Geochemistry and Zircon U-Pb-Hf Isotopes. International Geology Review, 62(2): 129-152. https://doi.org/10.1080/00206814.2019.1593250 Simons, B., Andersen, J. C. O., Shail, R. K., et al., 2017. Fractionationof Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the Peraluminous Early Permian Variscan Granites of the Cornubian Batholith: Precursor Processes to Magmatic-Hydrothermal Mineralisation. Lithos, 278-281: 491-512. http://doi.org/10.1016/j.lithos.2017.02.007 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society London Special Publications, 42(1): 528-548. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Tabelin, C. B., Dallas, J., Casanova, S., et al., 2021. Towards a Low-Carbon Society: A Review of Lithium Resource Availability, Challenges and Innovations in Mining, Extraction and Recycling, and Future Perspectives. Minerals Engineering, 163: 1-4. https://doi.org/10.1016/j.mineng.2020.106743 Tapster, S., Bright, J. W. G., 2020. High-Precision ID-TIMS Cassiterite U-Pb Systematics Using a Low-Contamination Hydrothermal Decomposition: Implications for LA-ICP-MS and Ore Deposit Geochronology. Geochronology, 2(2): 425-441. https://doi.org/10.5194/gchron-2-425-2020 Tchouankoue, J. P., Li, X. H., Belnoun, R. N. N., et al., 2016. Timing and Tectonic Implications of the Pan-African Bangangte Syenomonzonite, West Cameroon: Constraints from In-Situ Zircon U-Pb Age and Hf-O Isotopes. Journal of African Earth Sciences, 124: 94-103. https://doi.org/10.1016/jjafrearsci.2016.09.009 Thirlwall, M., Anczkiewicz, R., 2004. Multidynamic Isotope Ratio Analysis Using MC-ICP-MS and the Causes of Secular Drift in Hf, Nd and Pb Isotope Ratios. International Journal of Mass Spectrometry, 235: 59-81. https://doi.org/10.1016/j.ijms.2004.04.002 Turner, D. C., 1983. Upper Proterozoic Schist Belts in the Nigerian Sector of the Pan-African Province of West Africa. Precambrian Research, 21(1-2): 55-79. https://doi.org/10.1016/0301-9268(83)90005-0 Van, L. M., Holtz, F., Dziony, W., et al., 2011. Incorporation Mechanisms of Ta and Nb in Zircon and Implications for Pegmatitic Systems. American Mineralogist, 96(7): 1079-1089. https://doi.org/10.2138/am.2011.3650 Van, L. M., Melcher, F., Wirth, R., 2009. Magmatic vs. Hydrothermal Origins for Zircon Associated with Tantalum Mineralization in the Tanco Pegmatite, Manitoba, Canada. American Mineralogist, 94(4): 439-450. https://doi.org/10.2138/am.2009.2952 Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001 Wang, Q., Zhu, D. C., Zhao, Z. D., et al., 2012. Magmatic Zircons from I-S and A-Type Granitoids in Tibet: Trace Element Characteristics and Their Application to Detrital Zircon Provenance Study. Journal of Asian Earth Sciences, 53: 59-66. https://doi.org/10.1016/j.jseaes.2011.07.027 Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5 Yan, Q. H., Wang, H., Chi, G. X., et al., 2022. Recognition of a 600-Km-Long Late Triassic Rare Metal (Li-Rb-Be-Nb-Ta) Pegmatite Belt in the Western KunLun Orogenic Belt, Western China. Economic Geology, 117: 213-236. https://doi.org/10.5382/econgeo.4858 Yuan, S. D, Peng, J., Hao, S., et al., 2011. In Situ LA- MC-ICP-MS and ID-TIMS U-Pb Geochronology of Cassiterite in the Giant Furong Tin Deposit, Hunan Province, South China: New Constraints on the Timing of Tin-Polymetallic Mineralization. Ore Geology Reviews, 43(1): 235-242. https://doi.org/10.1016/j.oregeorev.2011.08.002 Yuan, S. D., Peng, J. T., Hu, R. Z., et al., 2008. A Precise U-Pb Age on Cassiterite from the Xianghualing Tin-Polymetallic Deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382. https://doi.org/10.1007/s00126-007-0166-y Zhang, D. L., Peng, J. T., Hu, R. Z., et al., 2011. The Closure of U-Pb Isotope System in Cassiteriteand Its Reliability for Dating. Geological Review, 57(4): 549-554 (in Chinese with English abstract). Zhang, H., Li, Z. H., Tang Y., 2021. A Review of LCT Pegmatite and Its Lithium Ore Genesis. Acta Geologica Sinic, 95(10): 2955-2970 (in Chinese with English abstract). 曹亮, 崔森, 胡鹏, 等, 2022. 尼日利亚矿产资源开发现状及投资环境. 地质通报, 41(1): 167-183. 李建康, 刘喜方, 王登红, 2014. 中国锂矿成矿规律概要. 地质学报, 88(12): 2269-2283. 李乐广, 王连训, 朱煜翔, 等, 2023. 华南幕阜山北缘含稀有金属伟晶岩成矿时代及成矿过程. 地球科学, 48(9): 3221-3244. 刘玉平, 李正祥, 李惠民, 等, 2007. 都龙锡锌矿床锡石和锆石U-Pb年代学: 滇东南白垩纪大规模花岗岩成岩-成矿事件. 岩石学报, 23(5): 967-976. 张东亮, 彭建堂, 胡瑞忠, 等, 2011. 锡石U-Pb同位素体系的封闭性及其测年的可靠性分析. 地质论评, 57(4): 549-554. 张辉, 吕正航, 唐勇, 2021. LCT型伟晶岩及其锂矿床成因概述. 地质学报, 95(10): 2955-2970. -