• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    北太平洋急流对北美冬季温度偶极子的影响机制

    戈瑶 罗德海 巫明娜 陈亚楠

    戈瑶, 罗德海, 巫明娜, 陈亚楠, 2025. 北太平洋急流对北美冬季温度偶极子的影响机制. 地球科学, 50(9): 3369-3381. doi: 10.3799/dqkx.2024.117
    引用本文: 戈瑶, 罗德海, 巫明娜, 陈亚楠, 2025. 北太平洋急流对北美冬季温度偶极子的影响机制. 地球科学, 50(9): 3369-3381. doi: 10.3799/dqkx.2024.117
    Ge Yao, Luo Dehai, Wu Mingna, Chen Yanan, 2025. Mechanisms of North Pacific Jet on Winter North American Temperature Dipole. Earth Science, 50(9): 3369-3381. doi: 10.3799/dqkx.2024.117
    Citation: Ge Yao, Luo Dehai, Wu Mingna, Chen Yanan, 2025. Mechanisms of North Pacific Jet on Winter North American Temperature Dipole. Earth Science, 50(9): 3369-3381. doi: 10.3799/dqkx.2024.117

    北太平洋急流对北美冬季温度偶极子的影响机制

    doi: 10.3799/dqkx.2024.117
    基金项目: 

    国家自然科学基金项目 42305027

    重大天气复盘专项 FPZJ2024-073

    详细信息
      作者简介:

      戈瑶(1996-),女,博士,高级工程师,主要从事大气遥相关和极端天气分析研究. ORCID:0009-0001-6221-0260. E-mail:geyao19960114@163.com

    • 中图分类号: P402

    Mechanisms of North Pacific Jet on Winter North American Temperature Dipole

    • 摘要:

      为理解北美冬季“西暖‒东冷”温度偶极子的成因,基于再分析数据对影响北美温度的大气环流、西风急流和海温背景进行分析.结果表明,北美温度偶极子主要受正位相的太平洋北美遥相关(PNA+)环流影响,弱的西风急流下北美温度偶极子最强.此外,北太平洋海温通过调制急流变化,对PNA+期间的北美温度偶极子结构和强度产生影响.在正位相太平洋年代际振荡冬季,中纬度西风急流偏南,PNA+环流在北美地区呈经向结构,引起“西北暖‒东南冷”温度异常.而正位相维多利亚海温模态有利于中纬度西风急流减弱,导致PNA+在北美西部的高压系统向西移动,同时东部低压持续存在,形成水平波列结构,进而加剧“西暖‒东冷”温度偶极子异常.

       

    • 图  1  1950-2019冬季PNA和TWE指数标准化时间序列

      Fig.  1.  Time series of the normalized PNA and TWE index during 1950-2019 winters

      图  2  1950-2019冬季(120°E~120°W,10°N~60°N)北太平洋U500距平场前两个EOF模态空间分布和标准化的主成分序列

      等值线代表U500气候态;红色(蓝色)点代表大于(小于)0.5标准差

      Fig.  2.  Leading and second EOF (EOF1 and EOF2) modes (a, b) of the DJF-mean U500 anomaly over the North Pacific (120°E-120°W, 10°N‒60°N) and their corresponding (c) PC1 and (d) PC2 time series during 1950-2019 winters

      图  3  1950-2019年太平洋中纬度西风急流偏南(a、c)和偏北(b、d)冬季合成的U500异常场及PNA+期间时间平均的(Lag‒10~Lag 10天)SAT(填色,单位:K)和Z500(等值线,单位:gpm)异常场.PNA+的Lag‒10~Lag 10天40°N~65°N经向平均的Z500异常变化场(e, f)

      图e和f中蓝线代表最大值;打点区域表示合成结果通过0.05显著性水平的双边Student’s t检验

      Fig.  3.  Composite DJF-mean U500 anomalies and time-mean composite daily Z500 (contours, unit: gpm) and SAT (colored shading, unit: K) anomalies averaged from Lag‒10 to Lag 10 of PNA+ events for southward-shifted (a, c) and northward-shifted (b, d) North Pacific jet winters during 1950-2019. Time-longitude evolution (e, f) of the meridional mean (40°N‒65°N) Z500 anomalies from Lag‒10 to Lag 10 of PNA+

      图  4  图 3,但为太平洋中纬度西风急流偏弱(a、c、e)和偏强(b、d、f)的冬季

      Fig.  4.  Same as Fig. 3, but for the weak (a, c, e) and strong (b, d, f) mid-latitude North Pacific jet winters

      图  5  偏南、偏北、偏弱和偏强的北太平洋中纬度西风急流在1950-2019年冬季发生的PNA+事件期间TWE(a)、Tw(b)和TE(c)指数(单位:K)随时间变化

      圆点表示指数通过0.05显著性水平的双边Student’s t检验

      Fig.  5.  Temporal evolution of the composite daily TWE (a), TW (b), and TE (c) index (unit: K) of PNA+ events for the southward-shifted, northward-shifted, weak and strong mid-latitude North Pacific jet winters during 1950-2019

      图  6  1950-2019年冬季北太平洋地区U500异常前两个EOF时间系数回归得到的SST异常场(单位:K)

      Fig.  6.  Regressed DJF-mean SST anomalies (unit: K) against the DJF-mean U500 PC1 and PC2 time series during 1950-2019

      图  7  1950-2019冬季PDO(9年低通滤波)(a)和VM的标准化时间序列(b);PDO+和VM+冬季合成的SST(单位:K)(c,d)和U500(单位:m/s)异常场(e,f)

      Fig.  7.  Time series of the normalized DJF-mean PDO (9-yr low pass filter) (a) and VM indices (b) during 1950-2019; DJF-mean SST anomalies (unit: K) (c, d) and U500 (unit: m/s) anomalies (e, f) for the PDO+ and VM+ winters

      图  8  PDO+(a)和VM+(b)冬季发生的PNA+事件期间逐日Z500(等值线)和SAT(填色,单位:K)异常的演变场

      Fig.  8.  The variation of daily Z500 (contours) and SAT (color shading, unit: K) anomalies from Lag‒8 to Lag 8 days of the PNA+ events and for the PDO+ (a) and VM+ (b) winters

      图  9  PDO+冬季(红线)、VM+冬季(蓝线)和全部冬季(虚线)的PNA+事件期间TWE指数(单位:K)变化曲线

      灰色区域代表红线和蓝线之间的差通过0.05显著性水平的MC检验

      Fig.  9.  Temporal evolution of the compo site daily TWE index (unit: K) of PNA+ events for the PDO+ (red line) and VM+ (blue line) patterns

      图  10  PDO+和VM-,PDO-和VM+冬季下,DJF平均的SST异常场(单位:K)(a~c)及PNA+事件期间(Lag‒10~Lag 10)时间平均的Z500(等值线,单位:gpm)和SAT(填色,单位:℃)异常场(d~f)

      Fig.  10.  (a‒c) Composite DJF-mean SST anomalies (unit: K) and (d‒f) time-mean fields of composite daily Z500 (contours, unit: gpm) and SAT (color shading, unit: K) anomalies averaged from Lag‒10 to Lag 10 days of PNA+ events for PDO+ and VM+ combination, PDO- and VM+ combination and their difference

      表  1  1950―2019年冬季北太平洋地区U500异常前两个EOF时间系数(PC1,PC2)与PDO、9年低通滤波PDO、VM之间的相关系数

      Table  1.   Correlation coefficient (Corr.) of the DJF-mean U500 PC1 and PC2 time series and oceanic variabilities (PDO, 9-yr low-pass PDO, VM) during 1950-2019

      Corr. PDO PDO (9年低通滤波) VM
      U500 PC1 0.45** 0.34** 0.35**
      U500 PC2 ‒0.44** ‒0.13 0.68**
      注:**代表相关系数通过0.05显著性水平的双边Student’s t检验.
      下载: 导出CSV
    • Baxter, S., Nigam, S., 2015. Key Role of the North Pacific Oscillation-West Pacific Pattern in Generating the Extreme 2013/14 North American Winter. Journal of Climate, 28(20): 8109-8117. https://doi.org/10.1175/JCLI-D-14-00726.1
      Ding, R., Li, J., Tseng, Y. H., et al., 2015. The Victoria Mode in the North Pacific Linking Extratropical Sea Level Pressure Variations to ENSO. Journal of Geophysical Research: Atmospheres, 120(1): 27-45. https://doi.org/10.1002/2014JD022221
      Franzke, C., Feldstein, S. B., 2005. The Continuum and Dynamics of Northern Hemisphere Teleconnection Patterns. Journal of the Atmospheric Sciences, 62(9): 3250-3267. https://doi.org/10.1175/jas3536.1
      Franzke, C., Feldstein, S. B., Lee, S., 2011. Synoptic Analysis of the Pacific-North American Teleconnection Pattern. Quarterly Journal of the Royal Meteorological Society, 137(655): 329-346. https://doi.org/10.1002/qj.768
      Ge, Y., Luo, D. H., 2023. Impacts of the Different Types of El Niño and PDO on the Winter Sub-Seasonal North American Zonal Temperature Dipole via the Variability of Positive PNA Events. Climate Dynamics, 60(5): 1397-1413. https://doi.org/10.1007/s00382-022-06393-z
      Harnik, N., Messori, G., Caballero, R., et al., 2016. The Circumglobal North American Wave Pattern and Its Relation to Cold Events in Eastern North America. Geophysical Research Letters, 43(20): 11015-11023. https://doi.org/10.1002/2016GL070760
      Hartmann, D. L., 2015. Pacific Sea Surface Temperature and the Winter of 2014. Geophysical Research Letters, 42(6): 1894-1902. https://doi.org/10.1002/2015GL063083
      Higgins, R. W., Leetmaa, A., Kousky, V. E., 2002. Relationships between Climate Variability and Winter Temperature Extremes in the United States. Journal of Climate, 15(13): 1555-1572. https://doi.org/10.1175/1520-0442(2002)0151555:rbcvaw>2.0.co;2 doi: 10.1175/1520-0442(2002)0151555:rbcvaw>2.0.co;2
      Huang, R. H., 1986. Physical Mechanisms of the impact of Winter Low-Latitude Heat Source Anomalies on Northern Hemisphere Atmospheric Circulation. Science in China Series B-Chemistry Life Sciences & Earth Sciences, 16(1): 91-103 (in Chinese).
      Jin, J. M., Miller, N. L., Sorooshian, S., et al., 2006. Relationship between Atmospheric Circulation and Snowpack in the Western USA. Hydrological Processes, 20(4): 753-767. https://doi.org/10.1002/hyp.6126
      Kalnay, E., Kanamitsu, M., Kistler, R., et al., 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77(3): 437-472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
      Lee, M. Y., Hong, C. C., Hsu, H. H., 2015. Compounding Effects of Warm Sea Surface Temperature and Reduced Sea Ice on the Extreme Circulation over the Extratropical North Pacific and North America during the 2013-2014 Boreal Winter. Geophysical Research Letters, 42(5): 1612-1618. https://doi.org/10.1002/2014GL062956
      Li, C. Y., Zhang, Q., 1991. Global Atmospheric Low-Frequency Teleconnection. 1(4): 330-334 (in Chinese).
      Lin, H., 2015. Subseasonal Variability of North American Wintertime Surface Air Temperature. Climate Dynamics, 45(5): 1137-1155. https://doi.org/10.1007/s00382-014-2363-6
      Liu, H., Gong, X., 2024. Revisiting North Pacific Intermediate Water in the Modern Ocean. Earth Science, 49(8): 2914-2924 (in Chinese with English abstract).
      Liu, Z. F., Jian, Z. M., Yoshimura, K., et al., 2015. Recent Contrasting Winter Temperature Changes over North America Linked to Enhanced Positive Pacific-North American Pattern. Geophysical Research Letters, 42(18): 7750-7757. https://doi.org/10.1002/2015GL065656
      Luo, D. H., Ge, Y., Zhang, W. Q., et al., 2020. A Unified Nonlinear Multiscale Interaction Model of Pacific-North American Teleconnection Patterns. Journal of the Atmospheric Sciences, 77(4): 1387-1414. https://doi.org/10.1175/JAS-D-19-0312.1
      Meehl, G. A., Arblaster, J. M., Branstator, G., 2012. Mechanisms Contributing to the Warming Hole and the Consequent U. S. East-West Differential of Heat Extremes. Journal of Climate, 25(18): 6394-6408. https://doi.org/10.1175/jcli-d-11-00655.1
      Mori, M., Watanabe, M., Shiogama, H., et al., 2014. Robust Arctic Sea-Ice Influence on the Frequent Eurasian Cold Winters in Past Decades. Nature Geoscience, 7(12): 869-873. https://doi.org/10.1038/ngeo2277
      Peng, P. T., Kumar, A., Chen, M. Y., et al., 2019. Was the North American Extreme Climate in Winter 2013/14 a SST Forced Response? Climate Dynamics, 52(5): 3099-3110. https://doi.org/10.1007/s00382-018-4314-0
      Rayner, N. A., Parker, D. E., Horton, E. B., et al., 2003. Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century. Journal of Geophysical Research: Atmospheres, 108(D14): 4407. https://doi.org/10.1029/2002JD002670
      Singh, D., Swain, D. L., Mankin, J. S., et al., 2016. Recent Amplification of the North American Winter Temperature Dipole. Journal of Geophysical Research: Atmospheres, 121(17): 9911-9928. https://doi.org/10.1002/2016JD025116
      Swain, D. L., Tsiang, M., Haugen, M., et al., 2014. The Extraordinary California Drought of 2013/2014: Character, Context, and the Role of Climate Change. Bulletin of the American Meteorological Society, 95(9): S3-S7.
      Vigaud, N., Robertson, A. W., Tippett, M. K., 2018. Predictability of Recurrent Weather Regimes over North America during Winter from Submonthly Reforecasts. Monthly Weather Review, 146(8): 2559-2577. https://doi.org/10.1175/mwr-d-18-0058.1
      Wallace, J. M., Gutzler, D. S., 1981. Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Monthly Weather Review, 109(4): 784-812. https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2 doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
      Wang, S. S., Huang, W. R., Yoon, J. H., 2015. The North American Winter 'Dipole' and Extremes Activity: A CMIP5 Assessment. Atmospheric Science Letters, 16(3): 338-345. https://doi.org/10.1002/asl2.565
      Wang, S. Y., Hipps, L., Gillies, R. R., et al., 2014. Probable Causes of the Abnormal Ridge Accompanying the 2013-2014 California drought: ENSO Precursor and Anthropogenic Warming Footprint. Geophysical Research Letters, 41(9): 3220-3226. https://doi.org/10.1002/2014GL059748
      Wu, B. Y., 2018. Progresses in the Impact Study of Arctic Sea Ice Loss on Wintertime Weather and Climate Variability over East Asia and Key Academic Disputes. Chinese Journal of Atmospheric Sciences, 42(4): 786-805 (in Chinese with English abstract).
      Xie, J. B., Zhang, M. H., 2017. Role of Internal Atmospheric Variability in the 2015 Extreme Winter Climate over the North American Continent. Geophysical Research Letters, 44(5): 2464-2471. https://doi.org/10.1002/2017GL072772
      Yao, Y., Luo, D. H., Dai, A. G., et al., 2017. Increased Quasi Stationarity and Persistence of Winter Ural Blocking and Eurasian Extreme Cold Events in Response to Arctic Warming. Part Ⅰ: Insights from Observational Analyses. Journal of Climate, 30(10): 3549-3568. https://doi.org/10.1175/jcli-d-16-0261.1
      Yu, B., Zhang, X. B., 2015. A Physical Analysis of the Severe 2013/2014 Cold Winter in North America. Journal of Geophysical Research: Atmospheres, 120(19): 10149-10165. https://doi.org/10.1002/2015JD023116
      Yu, B., Zwiers, F. W., 2007. The Impact of Combined ENSO and PDO on the PNA Climate: A 1, 000-Year Climate Modeling Study. Climate Dynamics, 29(7): 837-851. https://doi.org/10.1007/s00382-007-0267-4
      黄荣辉, 1986. 冬季低纬度热源异常对北半球大气环流影响的物理机制. 中国科学(B辑, 化学、生物学、农学、医学), 16(1): 91-103.
      李崇银, 张勤, 1991. 全球大气低频遥相关. 自然科学进展, 1(4): 330-334.
      刘辉, 宫勋, 2024. 现代北太平洋中层水研究进展综述. 地球科学, 49(8): 2914-2924. doi: 10.3799/dqkx.2024.036
      武炳义, 2018. 北极海冰融化影响东亚冬季天气和气候的研究进展以及学术争论焦点问题. 大气科学, 42(4): 786-805.
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  13
    • HTML全文浏览量:  9
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-08-16
    • 网络出版日期:  2025-10-10
    • 刊出日期:  2025-09-25

    目录

      /

      返回文章
      返回