• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    晚三叠世诺利期极端温室期地质事件

    江海水 陈龑

    江海水, 陈龑, 2025. 晚三叠世诺利期极端温室期地质事件. 地球科学, 50(3): 1037-1047. doi: 10.3799/dqkx.2024.118
    引用本文: 江海水, 陈龑, 2025. 晚三叠世诺利期极端温室期地质事件. 地球科学, 50(3): 1037-1047. doi: 10.3799/dqkx.2024.118
    Jiang Haishui, Chen Yan, 2025. Geological Events during the Extreme Greenhouse Interval of Norian, Late Triassic. Earth Science, 50(3): 1037-1047. doi: 10.3799/dqkx.2024.118
    Citation: Jiang Haishui, Chen Yan, 2025. Geological Events during the Extreme Greenhouse Interval of Norian, Late Triassic. Earth Science, 50(3): 1037-1047. doi: 10.3799/dqkx.2024.118

    晚三叠世诺利期极端温室期地质事件

    doi: 10.3799/dqkx.2024.118
    基金项目: 

    国家自然科学基金项目 42372005

    详细信息
      作者简介:

      江海水(1975-),男,教授,博士,主要从事地球生物学研究.ORCID:0000-0001-9636-0307. E-mail:jiangliuis@163.comjiangliuis@163.com

    • 中图分类号: P532

    Geological Events during the Extreme Greenhouse Interval of Norian, Late Triassic

    • 摘要: 晚三叠世诺利期存在一个极端温室期,从中诺利期延续到晚诺利期早期,低纬度地区海水表层最高温度曾高达35 ℃,极高温期发生在牙形石Mockina bidentata带下部所代表的时限.诺利期极端温室期海洋和陆地上伴随着重要的生物演化事件,干湿气候的变化在不同地区表现并不完全一致.该时期发生了全球板块运动、火成岩省活动、火流星、地球化学指标显著变化等众多事件.这些事件的全球意义、潜在的因果关系以及在东特提斯的响应等亟需研究.我国发育有良好的诺利期地层序列,是东特提斯地区研究这一极端温室期气候变化与生物演化的理想区域.

       

    • 图  1  晚三叠世诺利期全球古地理图

      图修改自Boucot et al.2013)、Scotese(2021);五角星代表古海水温度重建研究区,红色代表Trotter et al.2015)研究的西特提斯区域,橙色代表Sun et al.2020)研究的北美地区,黄色是Chen et al.2024)研究东特提斯保山地区

      Fig.  1.  Global paleogeographic map of the Late Triassic Norian

      图  2  诺利期极端温室期重要环境地质事件时间坐标

      地质年代表来自Ogg et al.2020);碳同位素来自Cramer and Jarvis(2020);CNBE:Carnian-Norian Boundary Event,卡尼阶‒诺利阶界线附近碳同位素偏转事件;ENE:Early Norian Event,早诺利期碳同位素偏转事件;MNE:Middle Norian Event,中诺利期碳同位素偏转事件;LNE:Late Norian Event,晚诺利期碳同位素偏转事件;NRBE:Norian-Rhaetian Boundary Event,诺利‒瑞替阶界线附近碳同位素偏转事件;Manicouagan小行星撞击年龄来自Ramezani et al.2005);牙形石磷灰石氧同位素以及海表水温(SST,Sea surface temperature)重建来自Trotter et al.2015)、Sun et al.2020)、Du et al.2021)、Chen et al.2024);Angayucham大火成岩省年龄来自Prokoph et al.2013);大气二氧化碳含量(pCO2)来自Knobbe and Schaller(2018);虚线方框指示极端温室气候区间

      Fig.  2.  Time coordinates of important environmental geological events during the extreme greenhouse of the Norian

    • Ahlberg, A., Arndorff, L., Guy-Ohlson, D., 2002. Onshore Climate Change during the Late Triassic Marine Inundation of the Central European Basin. Terra Nova, 14(4): 241-248. https://doi.org/10.1046/j.1365-3121.2002.00416.x
      Bahr, A., Kolber, G., Kaboth-Bahr, S., et al., 2020. Mega-Monsoon Variability during the Late Triassic: Re-Assessing the Role of Orbital Forcing in the Deposition of Playa Sediments in the Germanic Basin. Sedimentology, 67(2): 951-970. https://doi.org/10.1111/sed.12668
      Baranyi, V., Reichgelt, T., Olsen, P. E., et al., 2018. Norian Vegetation History and Related Environmental Changes: New Data from the Chinle Formation, Petrified Forest National Park (Arizona, SW USA). GSA Bulletin, 130(5-6): 775-795. https://doi.org/10.1130/b31673.1
      Berra, F., Jadoul, F., Anelli, A., 2010. Environmental Control on the End of the Dolomia Principale/Hauptdolomit Depositional System in the Central Alps: Coupling Sea-Level and Climate Changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1-4): 138-150. https://doi.org/10.1016/j.palaeo.2009.06.037
      Bottjer, D. J., 2004. The Beginning of the Mesozoic: 70 Million Years of Environmental Stress and Extinction. In: Taylor, P. D., ed., Extinctions in the History of Life. Cambridge University Press, Cambridge, 99-118. https://doi.org/10.1017/CBO9780511607370.005
      Boucot, A. J., Xu, C., Scotese, C. R., et al., 2013. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. SEPM Society for Sedimentary Geology, Claremore. https://doi.org/10.2110/sepmcsp.11
      Callegaro, S., Rigo, M., Chiaradia, M., Marzoli, A., 2012. Latest Triassic marine Sr Isotopic Variations, Possible Causes and Implications. Terra Nova, 24(2): 130-135. https://doi.org/10.1111/j.1365-3121.2011.01046.x
      Chen, Y., Zeng, W., Joachimski, M. M., et al., 2024. Late Triassic (Norian) Strontium and Oxygen Isotopes from the Baoshan Block, Southwestern China: Possible Causes and Implications for Climate Change. Palaeogeography, Palaeoclimatology, Palaeoecology, 650: 112378. https://doi.org/10.1016/j.palaeo.2024.112378
      Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction. Nature Geoscience, 5(6): 375-383. https://doi.org/10.1038/ngeo1475
      Clutson, M. J., Brown, D. E., Tanner, L. H., 2018. Distal Processes and Effects of Multiple Late Triassic Terrestrial Bolide Impacts: Insights from the Norian Manicouagan Event, Northeastern Quebec, Canada. In: Tanner, L. H., ed., The Late Triassic World: Earth in a Time of Transition. Springer, Berlin. https://doi.org/10.1007/978-3-319-68009-5_5
      Cramer, B. D., Jarvis, I., 2020. Chapter 11-Carbon Isotope Stratigraphy. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., eds., Geologic Time Scale 2020. Elsevier, New York. https://doi.org/10.1016/B978-0-12-824360-2.00011-5
      Dal Corso, J., Bernardi, M., Sun, Y. D., et al., 2020. Extinction and Dawn of the Modern World in the Carnian (Late Triassic). Science Advances, 6(38): eaba0099. https://doi.org/10.1126/sciadv.aba0099
      Dal Corso, J., Mills, B. J. W., Chu, D. L., et al., 2022. Background Earth System State Amplified Carnian (Late Triassic) Environmental Changes. Earth and Planetary Science Letters, 578: 117321. https://doi.org/10.1016/j.epsl.2021.117321
      Davies, J. H. F. L., Marzoli, A., Bertrand, H., et al., 2017. End-Triassic Mass Extinction Started by Intrusive CAMP Activity. Nature Communications, 8: 15596. https://doi.org/10.1038/ncomms15596
      Demangel, I., Kovács, Z., Richoz, S., et al., 2020. Development of Early Calcareous Nannoplankton in the Late Triassic (Northern Calcareous Alps, Austria). Global and Planetary Change, 193: 103254. https://doi.org/10.1016/j.gloplacha.2020.103254
      Dong, Z. Z., Wang, W., 2006. Yunnan Conodont Fauna: A Study on Related Biostratigraphy and Biogeography. Yunnan Science and Technology Press, Kunming (in Chinese).
      Du, Y. X., Bertinelli, A., Jin, X., et al., 2020. Integrated Conodont and Radiolarian Biostratigraphy of the Upper Norian in Baoshan Block, Southwestern China. Lethaia, 53(4): 533-545. https://doi.org/10.1111/let.12374
      Du, Y. X., Onoue, T., Karádi, V., et al., 2021. Evolutionary Process from Mockina Bidentata to Parvigondolella Andrusovi: Evidence from the Pizzo Mondello Section, Sicily, Italy. Journal of Earth Science, 32(3): 667-676. https://doi.org/10.1007/s12583-020-1362-2
      Dunne, E. M., Farnsworth, A., Greene, S. E., et al., 2021. Climatic Drivers of Latitudinal Variation in Late Triassic Tetrapod Diversity. Palaeontology, 64(1): 101-117. https://doi.org/10.1111/pala.12514
      Erwin, D. H., 1993. The Great Paleozoic Crisis: Life and Death in the Permian. Columbia University Press, New York.
      Fijałkowska-Mader, A., 2015. A Record of Climatic Changes in the Triassic Palynological Spectra from Poland. Geological Quarterly, 59(4): 615-653. https://doi.org/10.7306/gq.1239
      Fu, X. G., Wang, J., Tan, F. W., et al., 2010. The Late Triassic Rift-Related Volcanic Rocks from Eastern Qiangtang, Northern Tibet (China): Age and Tectonic Implications. Gondwana Research, 17(1): 135-144. https://doi.org/10.1016/j.gr.2009.04.010
      Fu, X. G., Wang, J., Zeng, Y. H., et al., 2020. Oceanic Anoxic Events in the Mesozoic Qiangtang Basin and Global Comparison. Geological Review, 66(5): 1130-1142 (in Chinese with English abstract).
      Goddéris, Y., Donnadieu, Y., de Vargas, C., et al., 2008. Causal or Casual Link between the Rise of Nannoplankton Calcification and a Tectonically-Driven Massive Decrease in Late Triassic Atmospheric CO2? Earth and Planetary Science Letters, 267(1-2): 247-255. https://doi.org/10.1016/j.epsl.2007.11.051
      Golonka, J., 2007. Late Triassic and Early Jurassic Palaeogeography of the World. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1-4): 297-307. https://doi.org/10.1016/j.palaeo.2006.06.041
      Golonka, J., Embry, A., Krobicki, M., 2018. Late Triassic Global Plate Tectonics. In: Tanner, L. H., ed., The Late Triassic World: Earth in a Time of Transition. Springer, Berlin. https://doi.org/10.1007/978-3-319-68009-5_2
      Greene, A. R., Scoates, J. S., Weis, D., et al., 2010. The Architecture of Oceanic Plateaus Revealed by the Volcanic Stratigraphy of the Accreted Wrangellia Oceanic Plateau. Geosphere, 6(1): 47-73. https://doi.org/10.1130/ges00212.1
      Grossman, E. L., Joachimski, M. M., 2022. Ocean Temperatures through the Phanerozoic Reassessed. Scientific Reports, 12(1): 8938. https://doi.org/10.1038/s41598-022-11493-1
      Haas, J., Budai, T., Raucsik, B., 2012. Climatic Controls on Sedimentary Environments in the Triassic of the Transdanubian Range (Western Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology, 353: 31-44. https://doi.org/10.1016/j.palaeo.2012.06.031
      Haas, J., Hips, K., Budai, T., et al., 2017. Processes and Controlling Factors of Polygenetic Dolomite Formation in the Transdanubian Range, Hungary: A Synopsis. International Journal of Earth Sciences, 106(3): 991-1021. https://doi.org/10.1007/s00531-016-1347-7
      Hayes, R. F., Puggioni, G., Parker, W. G., et al., 2020. Modeling the Dynamics of a Late Triassic Vertebrate Extinction: The Adamanian/Revueltian Faunal Turnover, Petrified Forest National Park, Arizona, USA. Geology, 48(4): 318-322. https://doi.org/10.1130/g47037.1
      Hornung, T., 2005. Palaeoclimate Background and Stratigraphic Evidence of Late Norian / Early Rhaetian Polyphase Synsedimentary Tectonics in the Hallstatt Limestones of Berchtesgaden (Rappoltstein, Southern Germany). Austrian Journal of Earth Science, 98: 106-119.
      Huang, B. C., Yan, Y. G., Piper, J. D. A., et al., 2018. Paleomagnetic Constraints on the Paleogeography of the East Asian Blocks during Late Paleozoic and Early Mesozoic Times. Earth-Science Reviews, 186: 8-36. https://doi.org/10.1016/j.earscirev.2018.02.004
      Jia, E. H., Preto, N., Corso, J. D., et al., 2024. Dwarfing of Calcareous Nannofossils during the Norian Warming Event in the Palaeo-Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 648: 112305. https://doi.org/10.1016/j.palaeo.2024.112305
      Jin, X., Du, Y. X., Bertinelli, A., et al., 2022a. Carbon-Isotope Excursions in the Norian Stage (Upper Triassic) of the Baoshan Terrane, Western Yunnan, China. Journal of Asian Earth Sciences, 230: 105215. https://doi.org/10.1016/j.jseaes.2022.105215
      Jin, X., Ogg, J. G., Lu, S., et al., 2022b. Terrestrial Record of Carbon-Isotope Shifts across the Norian/Rhaetian Boundary: A High-Resolution Study from Northwestern Sichuan Basin, South China. Global and Planetary Change, 210: 103754. https://doi.org/10.1016/j.gloplacha.2022.103754
      Karádi, V., Virág, A., Kolar-Jurkovšek, T., et al., 2020. Stress-Related Evolution in Triassic Conodonts and the Middle Norian Juvenile Mortality. In: Guex, J., Torday, J. S., Miller, W. B., eds., Morphogenesis, Environmental Stress and Reverse Evolution. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-47279-5_4
      Kent, D. V., Clemmensen, L. B., 2021. Northward Dispersal of Dinosaurs from Gondwana to Greenland at the Mid-Norian (215-212 Ma, Late Triassic) Dip in Atmospheric pCO2 Proceedings of the National Academy of Sciences of the United States of America, 118(8): e2020778118. https://doi.org/10.1073/pnas.2020778118
      Kent, D. V., Olsen, P. E., 2000. Magnetic Polarity Stratigraphy and Paleolatitude of the Triassic-Jurassic Blomidon Formation in the Fundy Basin (Canada): Implications for Early Mesozoic Tropical Climate Gradients. Earth and Planetary Science Letters, 179(2): 311-324. https://doi.org/10.1016/S0012-821X(00)00117-5
      Kent, D. V., Olsen, P. E., Lepre, C., et al., 2019. Magnetochronology of the Entire Chinle Formation (Norian Age) in a Scientific Drill Core from Petrified Forest National Park (Arizona, USA) and Implications for Regional and Global Correlations in the Late Triassic. Geochemistry, Geophysics, Geosystems, 20(11): 4654-4664. https://doi.org/10.1029/2019GC008474
      Knobbe, T. K., Schaller, M. F., 2018. A Tight Coupling between Atmospheric pCO2 and Sea-Surface Temperature in the Late Triassic. Geology, 46(1): 43-46. https://doi.org/10.1130/g39405.1
      Kuroda, J., Hori, R. S., Suzuki, K., et al., 2010. Marine Osmium Isotope Record across the Triassic-Jurassic Boundary from a Pacific Pelagic Site. Geology, 38(12): 1095-1098. https://doi.org/10.1130/g31223.1
      Lepre, C. J., Olsen, P. E., 2021. Hematite Reconstruction of Late Triassic Hydroclimate over the Colorado Plateau. Proceedings of the National Academy of Sciences, 118(7): e2004343118. https://doi.org/10.1073/pnas.2004343118
      Lucas, S. G., 2018a. Late Triassic Ammonoids: Distribution, Biostratigraphy and Biotic Events. In: Tanner, L. H., ed., Topics in Geobiology. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-68009-5_7
      Lucas, S. G., 2018b. Late Triassic Terrestrial Tetrapods: Biostratigraphy, Biochronology and Biotic Events. In: Tanner, L. H., ed., Topics in Geobiology. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-68009-5_10
      Lucas, S. G., Tanner, L. H., 2004. Late Triassic Extinction Events. Albertiana, (31): 31-40.
      Martínez-Pérez, C., Plasencia, P., Cascales-Miñana, B., et al., 2014. New Insights into the Diversity Dynamics of Triassic Conodonts. Historical Biology, 26(5): 591-602. https://doi.org/10.1080/08912963.2013.808632
      Marzoli, A., Callegaro, S., Dal Corso, J., et al., 2018. The Central Atlantic Magmatic Province (CAMP): A Review. In: Tanner, L. H., ed., The Late Triassic World: Earth in a Time of Transition. Springer, Berlin. https://doi.org/10.1007/978-3-319-68009-5_4
      Marzoli, A., Jourdan, F., Puffer, J. H., et al., 2011. Timing and Duration of the Central Atlantic Magmatic Province in the Newark and Culpeper Basins, Eastern U. S. A. Lithos, 122(3-4): 175-188. https://doi.org/10.1016/j.lithos.2010.12.013
      Marzoli, A., Renne, P. R., Piccirillo, E. M., et al., 1999. Extensive 200-Million-Year-Old Continental Flood Basalts of the Central Atlantic Magmatic Province. Science, 284(5414): 616-618. https://doi.org/10.1126/science.284.5414.616
      McRoberts, C. A., 2007. Diversity Dynamics and Evolutionary Ecology of Middle and Late Triassic Halobiid and Monotid Bivalves. New Mexico Museum of Natural History and Science Bulletin, 41: 272.
      McRoberts, C. A., 2010. Biochronology of Triassic Bivalves. Geological Society, London, Special Publications, 334(1): 201-219. https://doi.org/10.1144/sp334.9
      Metcalfe, I., 2021. Multiple Tethyan Ocean Basins and Orogenic Belts in Asia. Gondwana Research, 100: 87-130. https://doi.org/10.1016/j.gr.2021.01.012
      Nordt, L., Atchley, S., Dworkin, S., 2015. Collapse of the Late Triassic Megamonsoon in Western Equatorial Pangea, Present-Day American Southwest. Geological Society of America Bulletin, 127(11/12): 1798-1815. https://doi.org/10.1130/B31186.1
      O'Dogherty, L., Carter, E. S., Goričan, Š., et al., 2010. Triassic Radiolarian Biostratigraphy. Geological Society, London, Special Publications, 334(1): 163-200. https://doi.org/10.1144/sp334.8
      Ogg, J. G., Chen, Z. Q., Orchard, M. J., et al., 2020. The Triassic Period. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., eds., Geologic Time Scale 2020. Elsevier, New York. https://doi.org/10.1016/B978-0-12-824360-2.00025-5
      Onoue, T., Sato, H., Nakamura, T., et al., 2012. Deep-Sea Record of Impact Apparently Unrelated to Mass Extinction in the Late Triassic. Proceedings of the National Academy of Sciences of the United States of America, 109(47): 19134-19139. https://doi.org/10.1073/pnas.1209486109
      Onoue, T., Sato, H., Yamashita, D., et al., 2016. Bolide Impact Triggered the Late Triassic Extinction Event in Equatorial Panthalassa. Scientific Reports, 6: 29609. https://doi.org/10.1038/srep29609
      Onoue, T., Yamashita, K., Fukuda, C., et al., 2018. Sr Isotope Variations in the Upper Triassic Succession at Pizzo Mondello, Sicily: Constraints on the Timing of the Cimmerian Orogeny. Palaeogeography, Palaeoclimatology, Palaeoecology, 499: 131-137. https://doi.org/10.1016/j.palaeo.2018.03.025
      Payne, J. L., Lehrmann, D. J., Wei, J. Y., et al., 2004. Large Perturbations of the Carbon Cycle during Recovery from the End-Permian Extinction. Science, 305(5683): 506-509. https://doi.org/10.1126/science.1097023
      Preto, N., Agnini, C., Rigo, M., et al., 2013. The Calcareous Nannofossil Prinsiosphaera Achieved Rock-Forming Abundances in the Latest Triassic of Western Tethys: Consequences for the δ13C of Bulk Carbonate. Biogeosciences, 10(9): 6053-6068. https://doi.org/10.5194/bg-10-6053-2013
      Preto, N., Kustatscher, E., Wignall, P. B., 2010. Triassic Climates—State of the Art and Perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1-4): 1-10. https://doi.org/10.1016/j.palaeo.2010.03.015
      Prokoph, A., El Bilali, H., Ernst, R., 2013. Periodicities in the Emplacement of Large Igneous Provinces through the Phanerozoic: Relations to Ocean Chemistry and Marine Biodiversity Evolution. Geoscience Frontiers, 4(3): 263-276. https://doi.org/10.1016/j.gsf.2012.08.001
      Racki, G., Lucas, S. G., 2020. Timing of Dicynodont Extinction in Light of an Unusual Late Triassic Polish Fauna and Cuvier's Approach to Extinction. Historical Biology, 32(4): 452-461. https://doi.org/10.1080/08912963.2018.1499734
      Ramezani, J., Bowring, S. A., Pringle, M. S., et al., 2005. The Manicouagan impact melt rock: A Proposed Standard for the Intercalibration of U-Pb and 40Ar/39Ar Isotopic Systems. 2005 Goldschmidt Conference, Moscow.
      Rigo, M., Onoue, T., Tanner, L. H., et al., 2020. The Late Triassic Extinction at the Norian/Rhaetian Boundary: Biotic Evidence and Geochemical Signature. Earth-Science Reviews, 204: 103180. https://doi.org/10.1016/j.earscirev.2020.103180
      Sato, H., Nozaki, T., Onoue, T., et al., 2023. Rhenium-Osmium Isotope Evidence for the Onset of Volcanism in the Central Panthalassa Ocean during the Norian "Chaotic Carbon Episode". Global and Planetary Change, 229: 104239. https://doi.org/10.1016/j.gloplacha.2023.104239
      Sato, H., Takaya, Y., Yasukawa, K., et al., 2020. Biotic and Environmental Changes in the Panthalassa Ocean across the Norian (Late Triassic) Impact Event. Progress in Earth and Planetary Science, 7(1): 61. https://doi.org/10.1186/s40645-020-00371-x
      Schoepfer, S. D., Algeo, T. J., van de Schootbrugge, B., et al., 2022. The Triassic-Jurassic Transition: A Review of Environmental Change at the Dawn of Modern Life. Earth-Science Reviews, 232: 104099. https://doi.org/10.1016/j.earscirev.2022.104099
      Scotese, C. R., 2021. An Atlas of Phanerozoic Paleogeographic Maps: The Seas Come in and the Seas Go out. Annual Review of Earth and Planetary Sciences, 49: 679-728. https://doi.org/10.1146/annurev-earth-081320-064052
      Şengör, A. M. C., Altıner, D., Zabcı, C., et al., 2023. On the Nature of the Cimmerian Continent. Earth-Science Reviews, 247: 104520. https://doi.org/10.1016/j.earscirev.2023.104520
      Simms, M. J., Ruffell, A. H., 1990. Climatic and Biotic Change in the Late Triassic. Journal of the Geological Society, 147(2): 321-327. https://doi.org/10.1144/gsjgs.147.2.0321
      Song, H. J., Wignall, P. B., Song, H. Y., et al., 2019. Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. Journal of Earth Science, 30(2): 236-243. https://doi.org/10.1007/s12583-018-1002-2
      Spielmann, J. A., Lucas, S. G., Hunt, A. P., 2013. The First Norian (Revueltian) Rhynchosaur: Bull Canyon Formation, New Mexico, USA. New Mexico Museum of Natural History and Science Bulletin, 61: 562-566.
      Spray, J. G., Thompson, L. M., Biren, M. B., et al., 2010. The Manicouagan Impact Structure as a Terrestrial Analogue Site for Lunar and Martian Planetary Science. Planetary and Space Science, 58(4): 538-551. https://doi.org/10.1016/j.pss.2009.09.010
      Stampfli, G. M., Hochard, C., Vérard, C., et al., 2013. The Formation of Pangea. Tectonophysics, 593: 1-19. https://doi.org/10.1016/J.TECTO.2013.02.037
      Sun, Y. D., Orchard, M. J., Kocsis, Á. T., et al., 2020. Carnian-Norian (Late Triassic) Climate Change: Evidence from Conodont Oxygen Isotope Thermometry with Implications for Reef Development and Wrangellian Tectonics. Earth and Planetary Science Letters, 534: 116082. https://doi.org/10.1016/j.epsl.2020.116082
      Sun, Y. D., Wignall, P. B., Joachimski, M. M., et al., 2016. Climate Warming, Euxinia and Carbon Isotope Perturbations during the Carnian (Triassic) Crisis in South China. Earth and Planetary Science Letters, 444: 88-100. https://doi.org/10.1016/j.epsl.2016.03.037
      Tanner, L. H., 2018. Climates of the Late Triassic: perspectives, proxies and problems. In: Tanner, L. H., ed., The Late Triassic World: Earth in a Time of Transition. Springer, Berlin. https://doi.org/10.1007/978-3-319-68009-5_3
      Tanner, L. H., Lucas, S. G., Chapman, M. G., 2004. Assessing the Record and Causes of Late Triassic Extinctions. Earth-Science Reviews, 65(1-2): 103-139. https://doi.org/10.1016/S0012-8252(03)00082-5
      Trotter, J. A., Williams, I. S., Nicora, A., et al., 2015. Long-Term Cycles of Triassic Climate Change: A New δ18O Record from Conodont Apatite. Earth and Planetary Science Letters, 415: 165-174. https://doi.org/10.1016/j.epsl.2015.01.038
      van Soest, M. C., Hodges, K. V., Wartho, J. A., et al., 2011. (U-Th)/He Dating of Terrestrial Impact Structures: The Manicouagan Example. Geochemistry, Geophysics, Geosystems, 12(5): 1-8. https://doi.org/10.1029/2010gc003465
      Wang, D., Kang, H., Chen, Y. L., et al., 2024. Timeframe of Eastern Paleo-Tethys Closure: Constraint on the Songpan-Ganzi Complex by Big Data-Based Multiproxy Provenance Analysis. Lithos, 466-467: 107457. https://doi.org/10.1016/j.lithos.2023.107457
      Wang, J., Fu, X. G., Chen, W. X., et al., 2008. Chronology and Geochemistry of the Volcanic Rocks in Woruo Mountain Region, Northern Qiangtang Depression: Implications to the Late Triassic Volcanic-Sedimentary Events. Science China Earth Sciences, 51(2): 194-205. https://doi.org/10.1007/s11430-008-0010-y
      Wang, Y. J., Qian, X., Cawood, P. A., et al., 2018. Closure of the East Paleotethyan Ocean and Amalgamation of the Eastern Cimmerian and Southeast Asia Continental Fragments. Earth-Science Reviews, 186: 195-230. https://doi.org/10.1016/j.earscirev.2017.09.013
      Whiteside, J. H., Ward, P. D., 2011. Ammonoid Diversity and Disparity Track Episodes of Chaotic Carbon Cycling during the Early Mesozoic. Geology, 39(2): 99-102. https://doi.org/10.1130/G31401.1
      Wu, F. Y., Wan, B., Zhao, L., et al., 2020. Tethyan Geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674 (in Chinese with English abstract).
      Wu, Q. W., Jin, X., Karádi, V., et al., 2024. Norian (Upper Triassic) Carbon Isotopic Perturbations and Conodont Biostratigraphy from the Simao Terrane, Eastern Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 650: 112380. https://doi.org/10.1016/j.palaeo.2024.112380
      Xie, X. L., Niu, M. L., Wu, Q., et al., 2015. Petrological Characteristics of Triassic Magmatic Rocks from the Conjunction of Qinling, Qilian and Kunlun Orogens and Their Tectonic Environment. Journal of Earth Sciences and Environment, 37(6): 72-81 (in Chinese with English abstract).
      Yu, L., Yan, M. D., Domeier, M., et al., 2022. New Paleomagnetic and Chronological Constraints on the Late Triassic Position of the Eastern Qiangtang Terrane: Implications for the Closure of the Paleo-Jinshajiang Ocean. Geophysical Research Letters, 49(2): e2021GL096902. https://doi.org/10.1029/2021GL096902
      Zaffani, M., Agnini, C., Concheri, G., et al., 2017. The Norian "Chaotic Carbon Interval": New Clues from the δ13Corg Record of the Lagonegro Basin (Southern Italy). Geosphere, : GES01459.1. https://doi.org/10.1130/ges01459.1
      Zeng, W. P., Jiang, H. S., Chen, Y., et al., 2023. Upper Norian Conodonts from the Baoshan Block, Western Yunnan, Southwestern China, and Implications for Conodont Turnover. PeerJ, 11: e14517. https://doi.org/10.7717/peerj.14517
      Zeng, W. P., Purnell, M. A., Jiang, H. S., et al., 2021. Late Triassic (Norian) Conodont Apparatuses Revealed by Conodont Clusters from Yunnan Province, Southwestern China. Journal of Earth Science, 32(3): 709-724. https://doi.org/10.1007/s12583-021-1459-2
      Zhan, Q. Y., Zhu, D. C., Wang, Q., et al., 2018. Constructing the Eastern Margin of the Tibetan Plateau during the Late Triassic. Journal of Geophysical Research: Solid Earth, 123(12): 10449-10459. https://doi.org/10.1029/2018jb016353
      Zhan, Q. Y., Zhu, D. C., Wang, Q., et al., 2021. Imaging the Late Triassic Lithospheric Architecture of the Yidun Terrane, Eastern Tibetan Plateau: Observations and Interpretations. GSA Bulletin, 2279-2290. https://doi.org/10.1130/b35778.1
      Zhu, R. X., Zhao, P., Zhao, L., 2022. Evolution and Dynamic Process of NeoTethys Ocean. Science in China (Series D), 52(1): 1-25 (in Chinese).
      董致中, 王伟, 2006. 云南牙形类动物群: 相关生物地层及生物地理区研究. 昆明: 云南科技出版社.
      付修根, 王剑, 曾玉红, 等, 2020. 羌塘中生代盆地大洋缺氧事件及全球对比. 地质论评, 66(5): 1130-1142.
      吴福元, 万博, 赵亮, 等, 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627-1674.
      解小龙, 牛漫兰, 吴齐, 等, 2015. 秦祁昆结合部三叠纪岩浆岩岩石学特征及其构造环境. 地球科学与环境学报, 37(6): 72-81.
      朱日祥, 赵盼, 赵亮, 2022. 新特提斯洋演化与动力过程. 中国科学(D辑), 52(1): 1-25.
    • 加载中
    图(2)
    计量
    • 文章访问数:  119
    • HTML全文浏览量:  61
    • PDF下载量:  26
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-11-02
    • 网络出版日期:  2025-03-19
    • 刊出日期:  2025-03-25

    目录

      /

      返回文章
      返回