• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    江汉平原地下水中甲基砷的富集过程:碳同位素与溶解性有机质三维荧光光谱的指示

    袁晓芳 李林倩 张彦鹏 邓娅敏

    袁晓芳, 李林倩, 张彦鹏, 邓娅敏, 2024. 江汉平原地下水中甲基砷的富集过程:碳同位素与溶解性有机质三维荧光光谱的指示. 地球科学, 49(11): 3917-3929. doi: 10.3799/dqkx.2024.121
    引用本文: 袁晓芳, 李林倩, 张彦鹏, 邓娅敏, 2024. 江汉平原地下水中甲基砷的富集过程:碳同位素与溶解性有机质三维荧光光谱的指示. 地球科学, 49(11): 3917-3929. doi: 10.3799/dqkx.2024.121
    Yuan Xiaofang, Li Linqian, Zhang Yanpeng, Deng Yamin, 2024. Methylated Arsenic Enrichment in Groundwater of Jianghan Plain: Insights from Carbon Isotope and DOM EEMs Analysis. Earth Science, 49(11): 3917-3929. doi: 10.3799/dqkx.2024.121
    Citation: Yuan Xiaofang, Li Linqian, Zhang Yanpeng, Deng Yamin, 2024. Methylated Arsenic Enrichment in Groundwater of Jianghan Plain: Insights from Carbon Isotope and DOM EEMs Analysis. Earth Science, 49(11): 3917-3929. doi: 10.3799/dqkx.2024.121

    江汉平原地下水中甲基砷的富集过程:碳同位素与溶解性有机质三维荧光光谱的指示

    doi: 10.3799/dqkx.2024.121
    基金项目: 

    国家重点研发计划“变革性技术关键科学问题”重点专项“劣质地下水改良的原位调控理论与技术研究” 2021YFA0715900

    详细信息
      作者简介:

      袁晓芳(1995—),女,博士研究生,主要从事地下水污染与防治、地下水系统中砷的生物甲基化过程等方面的研究工作.E⁃mail:xf.yuan@cug.edu.cn

      通讯作者:

      邓娅敏, ORCID: 0000⁃0002⁃4815⁃7176. E⁃mail: yamin.deng@cug.edu.cn

    • 中图分类号: P64

    Methylated Arsenic Enrichment in Groundwater of Jianghan Plain: Insights from Carbon Isotope and DOM EEMs Analysis

    • 摘要: 高砷地下水造成的砷中毒对人体健康产生巨大威胁,砷甲基化过程可将毒性更高的无机砷转化为毒性低的甲基砷,在一定程度上可以降低砷的环境风险从而减轻对人体的毒害,有望成为调控地下水砷污染问题的有效途径.然而目前高砷地下水的研究主要侧重于无机砷的迁移转化,对于甲基砷富集的关键过程与控制因素研究还十分有限.本研究选取江汉平原长江与汉江沿岸的浅层地下水开展无机碳同位素示踪与溶解性有机质三维荧光光谱分析,解析江汉平原地下水中控制甲基砷富集的有机质降解途径,识别关键生物地球化学过程.研究发现江汉平原的甲基砷浓度范围为 < 0.01~444 μg/L(平均值为30 μg/L),长江沿岸和汉江沿岸地下水甲基砷的富集主控过程有明显差异:长江沿岸地下水中,以高分子量芳香族有机化合物降解驱动的产甲烷过程为主导,促进砷的生物甲基化过程;此外,伴随有机质发酵的硫酸盐还原过程也可导致地下水中甲基砷的富集.汉江沿岸地下水中,以小分子活性有机质发酵过程为主导,促进了砷生物甲基化过程.

       

    • 图  1  研究区地下水采样点及甲基砷浓度分布

      Fig.  1.   Distribution of groundwater sampling sites and methylarsenic concentrations in the study area

      图  2  江汉平原地下水中MeAs与As(III)、Fe2+、NH4+、DOC质量浓度的关系

      Fig.  2.   Relationship between MeAs and mass concentrations of As(III), Fe2+, NH4+, and DOC in groundwater of Jianghan plain

      图  3  长江、汉江沿岸地下水中无机碳碳同位素δ13C-DIC箱线图

      Fig.  3.   Box plot of δ 13C-DIC characteristics in groundwater along the Yangtze River and Han River banks

      图  4  平行因子分析鉴别出地下水中溶解性有机质的3个荧光组分及其荧光特征

      Fig.  4.   Spectral characteristics of the three components identified by EEM-PARAFAC model

      图  5  长江、汉江沿岸地下水中甲基砷与δ13C-DIC的关系

      气泡大小分别为Fe2+浓度、NH4+浓度

      Fig.  5.   Relationship between methylated arsenic and δ13C-DIC in groundwater along the Yangtze River and Han River

      图  6  长江与汉江沿岸地下水溶解性有机质荧光指数箱线图

      Fig.  6.   Box plot of the relationship between MeAs and fluorescence index

      图  7  长江沿岸和汉江沿岸地下水中天然有机质组分的相对含量与甲基砷浓度的关系

      Fig.  7.   The relationship between the relative content of natural organic components and MeAs in groundwater with different concentrations of MeAs

      图  8  长江与汉江沿岸地下水中有机物组分相对含量间的关系

      Fig.  8.   The relationship between the relative content of natural organic components in groundwater

      表  1  江汉平原长江汉江沿岸地下水砷形态及水化学特征统计

      Table  1.    Hydrochemical characteristics of groundwater from Jianghan plain

      指标 长江沿岸地下水 汉江沿岸地下水
      最小值 最大值 平均值 标准差 变异系数 最小值 最大值 平均值 标准差 变异系数
      pH 6.70 7.57 7.13 0.22 0.03 6.50 7.73 6.89 0.38 0.06
      Eh(mV) ‒171.10 ‒62.20 ‒130.47 28.72 ‒0.22 ‒149.90 85.50 ‒103.69 79.40 ‒0.77
      DO (mg/L) 0.15 4.75 1.04 0.92 0.88 0.94 7.20 2.56 2.06 0.80
      EC (μs/cm) 108 2 023 997 268 0.27 302 1 422 859 307 0.36
      DOC (mg/L) 3.52 28.17 9.57 5.07 0.53 0.00 14.90 4.14 4.13 1.00
      δ13C‒DIC ‒16.39 10.50 ‒6.28 7.05 ‒1.12 ‒17.53 0.85 ‒8.79 5.84 ‒0.67
      NH4‒N(mg/L) 0.44 35.50 8.31 9.52 1.15 0.45 45.30 6.76 14.08 2.08
      K (mg/L) 0.44 9.28 2.87 1.96 0.68 0.46 3.71 1.99 0.99 0.50
      Na (mg/L) 9.71 33.45 19.37 7.00 0.36 6.40 31.51 17.39 8.06 0.46
      Ca (mg/L) 84.26 275.11 155.54 34.96 0.22 47.85 261.09 148.39 61.41 0.41
      Mg (mg/L) 24.00 103.10 41.62 12.79 0.31 7.78 55.01 33.21 14.10 0.42
      HCO3- (mg/L) 536 1 495 728 164 0.23 115 713 528 192 0.36
      As (μg/L) 60.98 5 812 4 476.74 929 2.08 2.90 1 884 254 559 2.20
      Fe2+ (mg/L) 0.21 38.50 8.91 7.74 0.87 0.71 22.30 8.45 6.54 0.77
      S2‒ (μg/L) 0.00 58.00 5.54 10.03 1.81 1.00 12.00 3.07 3.68 1.20
      As(III) (μg/L) 50.37 5 332 375 857 2.28 16.50 1 450 213 449 2.11
      As(V) (μg/L) 1.75 282 23.46 56.78 2.42 0.93 346 29.90 113 3.77
      MMA(μg/L) 3.38 350 26.79 56.36 2.10 0.00 54.70 9.52 16.84 1.77
      DMA(μg/L) 2.78 94.59 9.89 15.13 1.53 0.00 37.33 7.36 11.15 1.52
      ∑MeAs(μg/L) 6.16 444 36.69 71.23 1.94 0.00 92.04 14.77 26.92 1.82
      下载: 导出CSV

      表  2  研究区地下水中3个荧光组分特征与已有文献报道的对比

      Table  2.    Descriptions of the three-component PARAFAC model of Ex/Em wavelengths data and their comparison with previous identified components

      组分 Ex/Em.max(nm) 荧光类型 文献报道
      C1 255(340)/466 陆源类腐殖质;分子量大;与高分子量的芳香族有关 C2:350/454 (Lambert et al., 2017)
      C2: < 260/448-480 (Fellman et al., 2010)
      C3:250(330)/456 (Yang et al., 2020a, 2020b)
      C2 < 220/418 陆源类富里酸,分子量较低 C3:240(305)/425 (Osburn et al., 2017)
      C2: < 240/404 (Walker et al., 2009)
      C4: < 240/405 (Lambert et al., 2016)
      C3 240(320)/398 微生物源类腐殖质;中等分子量大小 C2:325(< 260)/385 (Yamashita et al., 2010)
      C1:240(310)/405 (Chen et al., 2017)
      C3:315/410 (Lambert et al., 2017)
      下载: 导出CSV
    • Bethke, C. M., Sanford, R. A., Kirk, M. F., et al., 2011. The Thermodynamic Ladder in Geomicrobiology. American Journal of Science, 311(3): 183-210. https://doi.org/10.2475/03.2011.01
      Brammer, H., Ravenscroft, P., 2009. Arsenic in Groundwater: A Threat to Sustainable Agriculture in South and South⁃East Asia. Environment International, 35(3): 647-654. https://doi.org/10.1016/j.envint.2008.10.004
      Chen, C., Yang, B. Y., Shen, Y., et al., 2021. Sulfate Addition and Rising Temperature Promote Arsenic Methylation and the Formation of Methylated Thioarsenates in Paddy Soils. Soil Biology and Biochemistry, 154: 108129. https://doi.org/10.1016/j.soilbio.2021.108129
      Chen, Y. H., Yu, K. F., Zhou, Y. Q., et al., 2017. Characterizing Spatiotemporal Variations of Chromophoric Dissolved Organic Matter in Headwater Catchment of a Key Drinking Water Source in China. Environmental Science and Pollution Research International, 24(36): 27799-27812. https://doi.org/10.1007/s11356⁃017⁃0307⁃5
      Deng, Y. M., Zheng, T. L., Wang, Y. X., et al., 2018. Effect of Microbially Mediated Iron Mineral Transformation on Temporal Variation of Arsenic in the Pleistocene Aquifers of the Central Yangtze River Basin. Science of the Total Environment, 619: 1247-1258. https://doi.org/10.1016/j.scitotenv.2017.11.166
      Fellman, J. B., Hood, E., Spencer, R. G. M., 2010. Fluorescence Spectroscopy Opens New Windows into Dissolved Organic Matter Dynamics in Freshwater Ecosystems: A Review. Limnology and Oceanography, 55(6): 2452-2462. https://doi.org/10.4319/lo.2010.55.6.2452
      Fendorf, S., Michael, H. A., van Geen, A., 2010. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science, 328(5982): 1123-1127. https://doi.org/10.1126/science.1172974
      Gan, S. C., Schmidt, F., Heuer, V. B., et al., 2020. Impacts of Redox Conditions on Dissolved Organic Matter (DOM) Quality in Marine Sediments off the River Rhône, Western Mediterranean Sea. Geochimica et Cosmochimica Acta, 276: 151-169. https://doi.org/10.1016/j.gca.2020.02.001
      Gan, Y. Q., Wang, Y. X., Duan, Y. H., et al., 2014. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain, Central China. Journal of Geochemical Exploration, 138: 81-93. https://doi.org/10.1016/j.gexplo.2013.12.013
      Huang, S. B., Wang, Y. X., Liu, C. R., et al., 2013. Hydrochemical and Fluorescent Spectroscopic Evidences of Arsenic Mobilization in Groundwater. Earth Science, 38(5): 1091-1098 (in Chinese with English abstract).
      Huang, S. B., Wang, Y. X., Ma, T., et al., 2015. Linking Groundwater Dissolved Organic Matter to Sedimentary Organic Matter from a Fluvio⁃Lacustrine Aquifer at Jianghan Plain, China by EEM⁃PARAFAC and Hydrochemical Analyses. Science of the Total Environment, 529: 131-139. https://doi.org/10.1016/j.scitotenv.2015.05.051
      Huguet, A., Vacher, L., Relexans, S., et al., 2009. Properties of Fluorescent Dissolved Organic Matter in the Gironde Estuary. Organic Geochemistry, 40(6): 706-719. https://doi.org/10.1016/j.orggeochem.2009.03.002
      Kocar, B. D., Borch, T., Fendorf, S., 2010. Arsenic Repartitioning during Biogenic Sulfidization and Transformation of Ferrihydrite. Geochimica et Cosmochimica Acta, 74(3): 980-994. https://doi.org/10.1016/j.gca.2009.10.023
      Kump, L. R., Arthur, M. A., 1999. Interpreting Carbon⁃ Isotope Excursions: Carbonates and Organic Matter. Chemical Geology, 161(1/2/3): 181-198. https://doi.org/10.1016/S0009⁃2541(99)00086⁃8
      Lambert, T., Bouillon, S., Darchambeau, F., et al., 2017. Effects of Human Land Use on the Terrestrial and Aquatic Sources of Fluvial Organic Matter in a Temperate River Basin (the Meuse River, Belgium). Biogeochemistry, 136(2): 191-211. https://doi.org/10.1007/s10533⁃017⁃0387⁃9
      Lambert, T., Teodoru, C. R., Nyoni, F. C., et al., 2016. Along⁃Stream Transport and Transformation of Dissolved Organic Matter in a Large Tropical River. Biogeosciences, 13(9): 2727-2741. https://doi.org/10.5194/bg⁃13⁃2727⁃2016
      Liang, S. K., Zhang, M. Z., Wang, X. K., et al., 2023. Seasonal Dynamics of Dissolved Organic Matter Bioavailability Coupling with Water Mass Circulation in the South Yellow Sea. Science of the Total Environment, 904: 166671. https://doi.org/10.1016/j.scitotenv.2023.166671
      Lu, Z. J., Deng, Y. M., Du, Y., et al., 2017. EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain. Earth Science, 42(5): 771-782 (in Chinese with English abstract).
      Maguffin, S. C., Kirk, M. F., Daigle, A. R., et al., 2015. Substantial Contribution of Biomethylation to Aquifer Arsenic Cycling. Nature Geoscience, 8: 290-293. https://doi.org/10.1038/ngeo2383
      Nowak, M. E., Schwab, V. F., Lazar, C. S., et al., 2017. Carbon Isotopes of Dissolved Inorganic Carbon Reflect Utilization of Different Carbon Sources by Microbial Communities in Two Limestone Aquifer Assemblages. Hydrology and Earth System Sciences, 21(9): 4283-4300. https://doi.org/10.5194/hess⁃21⁃4283⁃2017
      Osburn, C. L., Anderson, N. J., Stedmon, C. A., et al., 2017. Shifts in the Source and Composition of Dissolved Organic Matter in Southwest Greenland Lakes along a Regional Hydro⁃Climatic Gradient. Journal of Geophysical Research: Biogeosciences, 122(12): 3431-3445. https://doi.org/10.1002/2017jg003999
      Sansonetti, J. E., 2007. Spectroscopic Data for Neutral Francium (FrI). Journal of Physical and Chemical Reference Data, 36(2): 497-507. https://doi.org/10.1063/1.2719251
      Schaefer, M. V., Guo, X. X., Gan, Y. Q., et al., 2017. Redox Controls on Arsenic Enrichment and Release from Aquifer Sediments in Central Yangtze River Basin. Geochimica et Cosmochimica Acta, 204: 104-119. https://doi.org/10.1016/j.gca.2017.01.035
      Song, X. W., Li, Y. Q., Stirling, E., et al., 2022. Asgene DB: A Curated Orthology Arsenic Metabolism Gene Database and Computational Tool for Metagenome Annotation. NAR Genomics and Bioinformatics, 4(4): lqac080. https://doi.org/10.1093/nargab/lqac080.
      Stolz, J. F., Basu, P., Santini, J. M., et al., 2006. Arsenic and Selenium in Microbial Metabolism. Annual Review of Microbiology, 60: 107-130. https://doi.org/10.1146/annurev.micro.60.080805.142053
      Stuckey, J., Schaefer, M., Kocar, B., et al., 2016. Arsenic Release Metabolically Limited to Permanently Water⁃Saturated Soil in Mekong Delta. Nature Geoscience, 9: 70-76. https://doi.org/10.1038/ngeo2589
      Styblo, M., Del Razo, L. M., Vega, L., et al., 2000. Comparative Toxicity of Trivalent and Pentavalent Inorganic and Methylated Arsenicals in Rat and Human Cells. Archives of Toxicology, 74(6): 289-299. https://doi.org/10.1007/s002040000134
      Tao, D. Y., Shi, C. Z., Guo, W., et al., 2022. Determination of As Species Distribution and Variation with Time in Extracted Groundwater Samples by On⁃Site Species Separation Method. Science of the Total Environment, 808: 151913. https://doi.org/10.1016/j.scitotenv.2021.151913
      Thomas, F., Diaz⁃Bone, R. A., Wuerfel, O., et al., 2011. Connection between Multimetal(Loid) Methylation in Methanoarchaea and Central Intermediates of Methanogenesis. Applied and Environmental Microbiology, 77(24): 8669-8675. https://doi.org/10.1128/AEM.06406⁃11
      Tian, T., Yan, M. M., Zeng, X. B., et al., 2020. Effect of Dissolved Organic Matter from Different Sources on Arsenic Methylation in Paddy Soils. Journal of Agro⁃ Environment Science, 39(3): 511-520 (in Chinese with English abstract).
      Walker, S. A., Amon, R. M. W., Stedmon, C., et al., 2009. The Use of PARAFAC Modeling to Trace Terrestrial Dissolved Organic Matter and Fingerprint Water Masses in Coastal Canadian Arctic Surface Waters. Journal of Geophysical Research: Biogeosciences, 114(G4): G00F06. https://doi.org/10.1029/2009jg000990
      Wang, P. P., Bao, P., Sun, G. X., 2015. Identification and Catalytic Residues of the Arsenite Methyltransferase from a Sulfate⁃Reducing Bacterium, Clostridium Sp. BXM. FEMS Microbiology Letters, 362(1): 1-8. https://doi.org/10.1093/femsle/fnu003
      Wang, Y. H., Li, P., Jiang, Z., et al., 2018. Diversity and Abundance of Arsenic Methylating Microorganisms in High Arsenic Groundwater from Hetao Plain of Inner Mongolia, China. Ecotoxicology, 27(8): 1047-1057. https://doi.org/10.1007/s10646⁃018⁃1958⁃9
      Xu, Y. X., Liu, D., Yuan, X. F., et al., 2024. Deciphering the Spatial Heterogeneity of Groundwater Arsenic in Quaternary Aquifers of the Central Yangtze River Basin. Science of the Total Environment, 929: 172405. https://doi.org/10.1016/j.scitotenv.2024.172405
      Xue, X. B., Li, J. X., Xie, X. J., et al., 2019. Effects of Depositional Environment and Organic Matter Degradation on the Enrichment and Mobilization of Iodine in the Groundwater of the North China Plain. Science of the Total Environment, 686: 50-62. https://doi.org/10.1016/j.scitotenv.2019.05.391
      Yamashita, Y., Scinto, L. J., Maie, N., et al., 2010. Dissolved Organic Matter Characteristics across a Subtropical Wetland's Landscape: Application of Optical Properties in the Assessment of Environmental Dynamics. Ecosystems, 13(7): 1006-1019. https://doi.org/10.1007/s10021⁃010⁃9370⁃1
      Yan, M. M., Zeng, X. B., Wang, J., et al., 2020. Dissolved Organic Matter Differentially Influences Arsenic Methylation and Volatilization in Paddy Soils. Journal of Hazardous Materials, 388: 121795. https://doi.org/10.1016/j.jhazmat.2019.121795
      Yang, Y. J., Yuan, X. F., Deng, Y. M., et al., 2020a. Seasonal Dynamics of Dissolved Organic Matter in High Arsenic Shallow Groundwater Systems. Journal of Hydrology, 589: 125120. https://doi.org/10.1016/j.jhydrol.2020.125120
      Yang, Y. P., Tang, X. J., Zhang, H. M., et al., 2020b. The Characterization of Arsenic Biotransformation Microbes in Paddy Soil after Straw Biochar and Straw Amendments. Journal of Hazardous Materials, 391: 122200. https://doi.org/10.1016/j.jhazmat.2020.122200
      Yuan, X. F., Deng, Y. M., Du, Y., et al., 2020. Characteristics of Stable Carbon Isotopes and Its Implications on Arsenic Enrichment in Shallow Groundwater of the Jianghan Plain. Bulletin of Geological Science and Technology, 39(5): 156-163 (in Chinese with English abstract).
      Zhang, J. W., Ma, T., Yan, Y. N., et al., 2018. Effects of Fe⁃S⁃As Coupled Redox Processes on Arsenic Mobilization in Shallow Aquifers of Datong Basin, Northern China. Environmental Pollution, 237: 28-38. https://doi.org/10.1016/j.envpol.2018.01.092
      Zhao, F. J., Harris, E., Yan, J., et al., 2013. Arsenic Methylation in Soils and Its Relationship with Microbial arsM Abundance and Diversity, and As Speciation in Rice. Environmental Science & Technology, 47(13): 7147-7154. https://doi.org/10.1021/es304977m
      Zhu, Y. G., Yoshinaga, M., Zhao, F. J., et al., 2014. Earth Abides Arsenic Biotransformations. Annual Review of Earth and Planetary Sciences, 42: 443-467. https://doi.org/10.1146/annurev⁃earth⁃060313⁃054942
      黄爽兵, 王焰新, 刘昌蓉, 等, 2013. 含水层中砷活化迁移的水化学与DOM三维荧光证据. 地球科学, 38(5): 1091-1098. doi: 10.3799/dqkx.2013.107
      鲁宗杰, 邓娅敏, 杜尧, 等, 2017. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义. 地球科学, 42(5): 771-782. doi: 10.3799/dqkx.2017.065
      田腾, 颜蒙蒙, 曾希柏, 等, 2020. 不同来源可溶性有机质对稻田土壤中砷甲基化的影响. 农业环境科学学报, 39(3): 511-520.
      袁晓芳, 邓娅敏, 杜尧, 等, 2020. 江汉平原高砷地下水稳定碳同位素特征及其指示意义. 地质科技通报, 39(5): 156-163.
    • 加载中
    图(8) / 表(2)
    计量
    • 文章访问数:  355
    • HTML全文浏览量:  99
    • PDF下载量:  39
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-10-29
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回