• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    峡东九龙湾剖面埃迪卡拉纪陡山沱组盖帽白云岩无机碳同位素异常成因

    蔡应雄 安志辉 杨文武 王宁涛 王保忠 梅玉萍 丁丽雪 杨小莉 宋松

    蔡应雄, 安志辉, 杨文武, 王宁涛, 王保忠, 梅玉萍, 丁丽雪, 杨小莉, 宋松, 2025. 峡东九龙湾剖面埃迪卡拉纪陡山沱组盖帽白云岩无机碳同位素异常成因. 地球科学, 50(7): 2566-2583. doi: 10.3799/dqkx.2024.122
    引用本文: 蔡应雄, 安志辉, 杨文武, 王宁涛, 王保忠, 梅玉萍, 丁丽雪, 杨小莉, 宋松, 2025. 峡东九龙湾剖面埃迪卡拉纪陡山沱组盖帽白云岩无机碳同位素异常成因. 地球科学, 50(7): 2566-2583. doi: 10.3799/dqkx.2024.122
    Cai Yingxiong, An Zhihui, Yang Wenwu, Wang Ningtao, Wang Baozhong, Mei Yuping, Ding Lixue, Yang Xiaoli, Song Song, 2025. Origin of Inorganic Carbon Isotope Excursions in Ediacaran Doushantuo Cap Dolostone at Jiulongwan Section in East Yangtze Gorges. Earth Science, 50(7): 2566-2583. doi: 10.3799/dqkx.2024.122
    Citation: Cai Yingxiong, An Zhihui, Yang Wenwu, Wang Ningtao, Wang Baozhong, Mei Yuping, Ding Lixue, Yang Xiaoli, Song Song, 2025. Origin of Inorganic Carbon Isotope Excursions in Ediacaran Doushantuo Cap Dolostone at Jiulongwan Section in East Yangtze Gorges. Earth Science, 50(7): 2566-2583. doi: 10.3799/dqkx.2024.122

    峡东九龙湾剖面埃迪卡拉纪陡山沱组盖帽白云岩无机碳同位素异常成因

    doi: 10.3799/dqkx.2024.122
    基金项目: 

    古生物与地质环境演化湖北省重点实验室开放基金 PEL-202305

    中国地质调查局项目 DD20190315

    中国地质调查局项目 DD20221777

    中国地质调查局项目 DD20230218

    详细信息
      作者简介:

      蔡应雄(1981—), 男, 正高级工程师, 主要从事同位素地球化学研究. ORCID: 0000-0001-9402-7199. E-mail: whcyx0226@126.com

    • 中图分类号: P597

    Origin of Inorganic Carbon Isotope Excursions in Ediacaran Doushantuo Cap Dolostone at Jiulongwan Section in East Yangtze Gorges

    • 摘要:

      峡东地区埃迪卡拉纪陡山沱组盖帽白云岩中异常偏负的无机碳同位素(δ13CV‒PDB<‒40‰),是甲烷释放的关键地质证据,但其具体成因机制尚不明确.对九龙湾剖面陡山沱组盖帽白云岩中白云岩和自生碳酸盐岩的碳、氧、硫、锶同位素及元素地球化学进行对比研究.自生碳酸盐岩极低的无机碳同位素值,极大的硫酸盐和黄铁矿硫同位素变化范围,较低的δ18O(CAS,Brt)34S(CAS,Brt)斜率,Δ33Spyrite34Spyrite具有的负相关性,指示古海洋冷泉环境下AOM-MSR作用参与;氧化还原敏感元素显示自生碳酸盐岩(JF1和JF2)形成于缺氧环境,整个盖帽白云岩形成于氧化(/贫氧)‒缺氧‒氧化(/贫氧)‒缺氧‒氧化(/贫氧)环境转变;古水深指标指示在JF1和JF2阶段海平面分别下降;主、微量元素及锶同位素表明,JF1和JF2阶段陆源风化物质输入增加.九龙湾地区埃迪卡拉纪早期两次海退形成的海底缺氧环境和水化学条件改变,是形成极负无机碳同位素组成的重要原因.

       

    • 图  1  扬子板块埃迪卡拉纪沉积古地理(a、b)和黄陵背斜周缘地质简图(c)

      a、b. 修改自Jiang et al.,2011魏昊明,2019;c. 修改自An et al.,2015

      Fig.  1.  Paleogeographic map of Ediacaran depositional environment in the Yangtze Block (a, b) and sketch map around Huangling anticline (c)

      图  2  九龙湾盖帽白云岩地层、岩石手标本和镜下照片

      a. 九龙湾盖帽白云岩(C1+C2+C3)野外露头,南沱组冰碛砾岩与盖帽白云岩呈整合接触关系,照片中人身高1.75 m;b. 盖帽白云岩C2中顺层产出灰岩透镜体;c. HNYD06白云岩手标本,数据为微钻取样后测得的方解石胶结物无机δ13CV‒PDB值(‰);d. HNYD27-2灰岩透镜体手标本,数据为微钻取样后测得的无机δ13CV‒PDB值(‰);e.白云岩中方解石胶结物显微照片(正交偏光);f. 灰岩透镜体中方解石脉显微照片(单偏光)

      Fig.  2.  Stratum, specimens and microscopic photographs of the cap dolostone at the Jiulongwan Section

      图  3  九龙湾盖帽白云岩剖面及碳、氧、硫同位素组成变化

      a. 碳酸盐无机碳同位素组成;b. 碳酸盐氧同位素组成;c. 硫酸盐(CAS和Brt)硫同位素组成;d. 硫酸盐(CAS和Brt)氧同位素组成. 剖面柱状图据Wang et al.,2008修改

      Fig.  3.  Stratigraphic column and carbon, oxygen and sulfur isotope profiles of the cap dolostone at Jiulongwan Section

      图  4  九龙湾剖面盖帽白云岩碳、氧同位素及锶含量之间相关性

      a. 白云岩碳、氧同位素相关性;b.自生碳酸盐岩碳、氧同位素相关性;c. 白云岩+自生碳酸盐岩的碳同位素与锶含量相关性;d. 白云岩+自生碳酸盐岩的氧同位素与锶含量相关性

      Fig.  4.  Correlations of carbon isotopes, oxygen isotopes and strontium contents of the cap dolostone at Jiulongwan Section

      图  5  U、Mo、V含量与Al2O3、Th和Zr含量之间相关性

      Fig.  5.  Correlations between U, Mo, and V contents and Al2O3, Th, and Zr contents

      图  6  九龙湾盖帽白云岩硫、氧同位素组成相关性

      图a、b、c分别为白云岩、自生碳酸盐岩JF1和JF2的δ34S(CAS、Brt)与δ18O(CAS、Brt)相关性;图d、e、f分别为白云岩、自生碳酸盐岩JF1和JF2的δ34S(pyrite)与δ34S(CAS)相关性

      Fig.  6.  Correlations between sulfur isotopes and oxygen isotopes of the cap dolostone at Jiulongwan Section

      图  7  九龙湾剖面盖帽白云岩地化指标及演化特征

      剖面柱状图同图 3,地层旋回据睢瑜(2019)

      Fig.  7.  Geochemical records in the cap dolostone at Jiulongwan Section

      图  8  九龙湾盖帽白云岩(a)与典型海水(b)的PAAS标准化稀土元素配分模式

      Fig.  8.  PAAS-normalized REE patterns in the cap dolostone at Jiulongwan section (a) and in typical seawater (b)

      图  9  九龙湾盖帽白云岩无机碳同位素异常成因示意图

      Fig.  9.  Schematic diagram illustrating the origin of inorganic carbon isotope excursions in the cap dolostone at Jiulongwan Section

      表  1  峡东九龙湾剖面盖帽白云岩硫、氧、锶同位素组成

      Table  1.   Sulfur, oxygen, and strontium isotopes of the cap dolostone at Jiulongwan Section

      样品编号 岩性/矿物 δ34SCAS
      (V-CDT, ‰)
      δ18OCAS
      (V-SMOW, ‰)
      δ34SBrt
      (V-CDT, ‰)
      δ18OBrt
      (V-SMOW, ‰)
      δ34SPy
      (V-CDT, ‰)
      $ \frac{{}^{87}\mathrm{S}\mathrm{r}}{{}^{86}\mathrm{S}\mathrm{r}}\left(1\sigma \right) $
      HNYD01 白云岩 41.79 11.80 35.77
      HNYD03 白云岩 39.52 42.00 12.90
      HNYD06 方解石胶结物 44.09 42.10 12.24 26.07 0.711 50(1)
      HNYD07 方解石胶结物 31.73 14.54 27.44 15.74
      HNYD11 白云岩 29.17 15.73 27.76 0.709 34(2)
      HNYD16-17 白云岩 29.85 24.45 0.710 19(1)
      HNYD25 白云岩 30.16 15.11 30.12 0.710 23(1)
      HNYD27-1 灰岩透镜体 46.72 13.34 39.83
      HNYD27-2 灰岩透镜体 45.26 12.16 35.10 7.53 27.99 0.710 77(1)
      HNYD27-3 灰岩透镜体 49.54 46.90 11.62 0.710 53(1)
      HNYD28-1 灰岩透镜体 39.01 10.42 35.41
      HNYD28-2 灰岩透镜体 54.31 60.18 15.21 41.15 0.712 70(3)
      HNYD29-1 灰岩透镜体 52.33 12.12 52.96 32.51
      HNYD29-2 灰岩透镜体 44.27 10.91 47.03 10.87 8.18
      HNYD31-32 白云岩 25.93 16.06 33.41 0.709 35(1)
      JLW-C1-1 亮晶方解石脉和胶结物 79.3 20.1 69.8
      JLW-C1-1-2 亮晶方解石脉和胶结物 80.1 22.2 73.4
      JLW-C1-3 亮晶方解石脉和胶结物 58.2 19.7 50.6
      JLW-C1-4 亮晶方解石脉和胶结物 39.0 15.0 38.4
      JLW-C1-6 亮晶方解石脉和胶结物 58.8 16.1 43.2
      注:JLW开头样品引自Peng et al.(2022),其他数据为本文测定;“‒”表示该项分析未测或未测出.
      下载: 导出CSV

      表  2  九龙湾剖面盖帽白云岩主、微量元素和有机碳含量及相关计算结果

      Table  2.   Results of major and trace element and total organic carbon contents of the cap dolostone at Jiulongwan Section

      样品编号 岩性 主量元素(%) 微量元素(10-6 TOC
      (%)
      U/Th Mn/Sr Zr/Al Sr/Ba V/(V+Ni)
      Al2O3 CaO MgO K2O MnO Fe2O3 U Mo V Th Ni Zr Sr Ba
      HNYD01 白云岩 4.01 35.68 2.28 0.61 0.52 3.50 1.11 1.62 16.20 3.22 18.70 49.80 357.0 2 000.0 0.072 0.34 11.2 23.5 0.18 0.46
      HNYD06 自生碳酸盐岩 1.56 44.88 4.71 0.14 0.61 0.96 1.21 0.30 15.44 1.04 12.51 24.20 481.0 3 080.0 0.133 1.16 9.8 30.9 0.16 0.55
      HNYD07 自生碳酸盐岩 1.00 32.41 13.22 0.24 0.33 1.03 1.00 0.37 10.31 0.70 12.42 19.00 141.0 525.0 0.044 1.43 18.2 36.0 0.27 0.45
      HNYD11 白云岩 1.25 30.33 16.55 0.26 0.16 0.62 0.61 0.16 8.26 1.01 23.67 16.40 90.7 20.0 0.075 0.60 13.8 24.8 4.54 0.26
      HNYD16-17 白云岩 1.22 31.43 16.71 0.26 0.27 0.76 0.77 0.22 9.92 1.97 20.91 16.00 101.0 25.4 0.076 0.39 20.8 24.8 3.98 0.32
      HNYD25 白云岩 1.48 31.13 16.93 0.33 0.28 0.75 1.04 0.14 9.34 1.54 9.75 13.20 93.4 20.0 0.074 0.68 23.3 16.8 4.67 0.49
      HNYD27-2 自生碳酸盐岩 0.84 44.54 1.89 0.21 0.93 1.05 2.18 0.25 65.90 0.45 17.04 15.10 197.0 209.0 0.126 4.84 36.5 34.1 0.94 0.79
      HNYD28-2 自生碳酸盐岩 0.66 47.89 2.87 0.17 1.09 0.88 1.36 0.17 16.20 0.31 7.17 10.90 254.0 4 640.0 0.086 4.39 33.2 31.4 0.05 0.69
      HNYD29-1 自生碳酸盐岩 0.75 43.71 3.34 0.20 1.13 1.10 2.07 0.22 26.20 0.21 7.68 24.80 198.0 396.0 0.182 9.86 44.2 62.4 0.50 0.77
      HNYD31-32 白云岩 1.32 30.28 18.52 0.33 0.27 0.91 1.00 0.25 8.54 1.16 10.87 12.00 98.6 195.0 0.779 0.86 21.5 17.2 0.51 0.44
      下载: 导出CSV

      表  3  九龙湾剖面盖帽白云岩稀土元素含量(10-6)及相关计算结果

      Table  3.   Results of rare earth element contents (10-6) of the cap dolostone at Jiulongwan Section

      样品编号 岩性 La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu Y/Ho ΣREE+Y δCe δEu
      HNYD01 白云岩 16.58 38.45 4.54 19.31 3.95 1.07 3.42 0.50 2.64 15.59 0.46 1.06 0.15 0.90 0.13 33.54 108.77 1.02 1.47
      HNYD06 自生碳酸盐岩 2.02 4.15 0.45 1.88 0.35 0.08 0.36 0.05 0.29 2.02 0.05 0.13 0.02 0.14 0.02 38.80 12.01 1.00 1.31
      HNYD11 白云岩 2.19 4.67 0.53 2.23 0.48 0.11 0.41 0.07 0.39 3.27 0.08 0.22 0.03 0.23 0.03 41.38 14.95 1.00 1.17
      HNYD16-17 白云岩 2.48 4.78 0.61 2.53 0.54 0.14 0.52 0.10 0.60 5.70 0.13 0.36 0.06 0.40 0.07 44.50 19.01 0.89 1.40
      HNYD25 白云岩 1.76 3.64 0.40 1.81 0.37 0.09 0.36 0.06 0.37 2.89 0.08 0.20 0.03 0.24 0.03 34.51 12.35 0.99 1.24
      HNYD27-2 自生碳酸盐岩 8.95 17.17 1.52 6.47 1.24 0.34 1.44 0.23 1.55 16.73 0.37 1.00 0.15 0.81 0.11 45.04 58.08 1.06 1.26
      HNYD27-3 自生碳酸盐岩 14.34 31.59 3.32 14.50 3.02 0.62 3.36 0.61 4.44 38.22 0.99 3.00 0.49 3.15 0.42 38.46 122.07 1.05 0.92
      HNYD28-1 自生碳酸盐岩 12.72 32.20 3.07 13.53 2.86 0.61 3.01 0.56 3.85 31.80 0.85 2.40 0.40 2.45 0.34 37.22 110.65 1.19 0.97
      HNYD29-1 自生碳酸盐岩 5.66 10.26 0.88 3.61 0.68 0.22 0.77 0.12 0.78 7.26 0.18 0.47 0.07 0.42 0.06 40.47 31.45 1.03 1.61
      HNYD31-32 白云岩 2.00 3.98 0.46 1.91 0.44 0.10 0.39 0.06 0.45 3.11 0.09 0.24 0.04 0.23 0.03 36.18 13.53 0.95 1.29
      注:δCe=2CeN/(LaN+PrN),δEu=2EuN/(SmN+GdN),下标N代表稀土元素经澳大利亚后太古代页岩(PAAS)标准化之后的数值.
      下载: 导出CSV
    • Ader, M., Macouin, M., Trindade, R. I. F., et al., 2009. A Multilayered Water Column in the Ediacaran Yangtze Platform? Insights from Carbonate and Organic Matter Paired δ13C. Earth and Planetary Science Letters, 288(1-2): 213-227. https://doi.org/10.1016/j.epsl.2009.09.024
      Algeo, T. J., Maynard, J. B., 2008. Trace-Metal Covariation as a Guide to Water-Mass Conditions in Ancient Anoxic Marine Environments. Geosphere, 4(5): 872-887. https://doi.org/10.1130/GES00174.1
      An, Z. H., Jiang, G. Q., Tong, J. N., et al., 2015. Stratigraphic Position of the Ediacaran Miaohe Biota and Its Constrains on the Age of the Upper Doushantuo δ13C Anomaly in the Yangtze Gorges Area, South China. Precambrian Research, 271: 243-253. https://doi.org/10.1016/j.precamres.2015.10.007
      Antler, G., Turchyn, A. V., Herut, B., et al., 2014. Sulfur and Oxygen Isotope Tracing of Sulfate Driven Anaerobic Methane Oxidation in Estuarine Sediments. Estuarine, Coastal and Shelf Science, 142: 4-11. https://doi.org/10.1016/j.ecss.2014.03.001
      Banner, J. L., Hanson, G. N., 1990. Calculation of Simultaneous Isotopic and Trace Element Variations during Water-Rock Interaction with Applications to Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 54(11): 3123-3137. https://doi.org/10.1016/0016-7037(90)90128-8
      Bao, H. M., 2006. Purifying Barite for Oxygen Isotope Measurement by Dissolution and Reprecipitation in a Chelating Solution. Analytical Chemistry, 78(1): 304-309. https://doi.org/10.1021/ac051568z
      Bristow, T. F., Bonifacie, M., Derkowski, A., et al., 2011. A Hydrothermal Origin for Isotopically Anomalous Cap Dolostone Cements from South China. Nature, 474(7349): 68-71. https://doi.org/10.1038/nature10096
      Cai, C. F., Liu, D. W., Hu, Y. J., et al., 2023. Interlinked Marine Cycles of Methane, Manganese, and Sulfate in the Post-Marinoan Doushantuo Cap Dolostone. Geochimica et Cosmochimica Acta, 346: 245-258. https://doi.org/10.1016/j.gca.2023.02.014
      Canfield, D. E., Raiswell, R., Westrich, J. T., et al., 1986. The Use of Chromium Reduction in the Analysis of Reduced Inorganic Sulfur in Sediments and Shales. Chemical Geology, 54(1-2): 149-155. https://doi.org/10.1016/0009-2541(86)90078-1
      Frimmel, H. E., 2009. Trace Element Distribution in Neoproterozoic Carbonates as Palaeoenvironmental Indicator. Chemical Geology, 258(3-4): 338-353. https://doi.org/10.1016/j.chemgeo.2008.10.033
      Feng, D., Gong, S. G., 2019. Progress on the Biogeochemical Process of Sulfur and Its Geological Record at Submarine Cold Seeps. Bulletin of Mineralogy, Petrology and Geochemistry, 38(6): 1047-1056, 1046 (in Chinese with English abstract).
      Feng, D., Peng, Y. B., Bao, H. M., et al., 2016. A Carbonate-Based Proxy for Sulfate-Driven Anaerobic Oxidation of Methane. Geology, 44(12): 999-1002. https://doi.org/10.1130/G38233.1
      Feng, D., Roberts, H. H., 2011. Geochemical Characteristics of the Barite Deposits at Cold Seeps from the Northern Gulf of Mexico Continental Slope. Earth and Planetary Science Letters, 309(1-2): 89-99. https://doi.org/10.1016/j.epsl.2011.06.017
      Gong, S. G., Peng, Y. B., Bao, H. M., et al., 2018. Triple Sulfur Isotope Relationships during Sulfate-Driven Anaerobic Oxidation of Methane. Earth and Planetary Science Letters, 504: 13-20. https://doi.org/10.1016/j.epsl.2018.09.036
      Guan, C. G., Wang, W., Zhou, C. M., 2024. Revisiting the Carbonate Carbon Isotopic Composition of the Lowermost Doushantuo Formation in Yichang, Hubei Province: Implications for Searching the Original Seawater Carbon Isotopic Signal. Acta Geologica Sinica, 98(3): 712-724 (in Chinese with English abstract).
      Hatch, J. R., Leventhal, J. S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A. . Chemical Geology, 99(1-3): 65-82. https://doi.org/10.1016/0009-2541(92)90031-Y
      Higgins, J. A., Blättler, C. L., Lundstrom, E. A., et al., 2018. Mineralogy, Early Marine Diagenesis, and the Chemistry of Shallow-Water Carbonate Sediments. Geochimica et Cosmochimica Acta, 220: 512-534. https://doi.org/10.1016/j.gca.2017.09.046
      Hoffman, P. F., Kaufman, A. J., Halverson, G. P., et al., 1998. A Neoproterozoic Snowball Earth. Science, 281(5381): 1342-1346. https://doi.org/10.1126/science.281.5381.1342
      Hoffman, P. F., Schrag, D. P., 2002. The Snowball Earth Hypothesis: Testing the Limits of Global Change. Terra Nova, 14(3): 129-155. https://doi.org/10.1046/j.1365-3121.2002.00408.x
      Horacek, M., Brandner, R., Abart, R., 2007. Carbon Isotope Record of the P/T Boundary and the Lower Triassic in the Southern Alps: Evidence for Rapid Changes in Storage of Organic Carbon. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 347-354. https://doi.org/10.1016/j.palaeo.2006.11.049
      Jiang, G. Q., Kennedy, M. J., Christie-Blick, N., 2003. Stable Isotopic Evidence for Methane Seeps in Neoproterozoic Postglacial Cap Carbonates. Nature, 426(6968): 822-826. https://doi.org/10.1038/nature02201
      Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China. Gondwana Research, 19(4): 831-849. https://doi.org/10.1016/j.gr.2011.01.006
      Jiang, G. Q., Zhang, S. H., Shi, X. Y., et al., 2008. Chemocline Instability and Isotope Variations of the Ediacaran Doushantuo Basin in South China. Science China Earth Sciences, 51(11): 1560-1569. https://doi.org/10.1007/s11430-008-0116-2
      Li, C., Hardisty, D. S., Luo, G., et al., 2017. Uncovering the Spatial Heterogeneity of Ediacaran Carbon Cycling. Geobiology, 15(2): 211-224. https://doi.org/10.1111/gbi.12222
      Li, D., Ling, H. F., Jiang, S. Y., et al., 2009. New Carbon Isotope Stratigraphy of the Ediacaran-Cambrian Boundary Interval from SW China: Implications for Global Correlation. Geological Magazine, 146(4): 465-484. https://doi.org/10.1017/S0016756809006268
      Li, W. P., 2017. Geochemistry of Sedimentary Carbonates from the Late Ediacaran to the Early Cambrian in the Lower Yangtze Region of South China (Dissertation). University of Science and Technology of China, Hefei (in Chinese with English abstract).
      Lin, Z. J., Wang, Q. X., Feng, D., et al., 2011. Post-Depositional Origin of Highly 13C-Depleted Carbonate in the Doushantuo Cap Dolostone in South China: Insights from Petrography and Stable Carbon Isotopes. Sedimentary Geology, 242(1-4): 71-79. https://doi.org/10.1016/j.sedgeo.2011.10.009
      Lin, Z. Y., Sun, X. M., Peckmann, J., et al., 2016. How Sulfate-Driven Anaerobic Oxidation of Methane Affects the Sulfur Isotopic Composition of Pyrite: A SIMS Study from the South China Sea. Chemical Geology, 440: 26-41. https://doi.org/10.1016/j.chemgeo.2016.07.007
      Liu, C., Wang, Z. R., Raub, T. D., et al., 2014. Neoproterozoic Cap-Dolostone Deposition in Stratified Glacial Meltwater Plume. Earth and Planetary Science Letters, 404: 22-32. https://doi.org/10.1016/j.epsl.2014.06.039
      Lu, M., Zhu, M. Y., Zhang, J. M., et al., 2013. The DOUNCE Event at the Top of the Ediacaran Doushantuo Formation, South China: Broad Stratigraphic Occurrence and Non-Diagenetic Origin. Precambrian Research, 225: 86-109. https://doi.org/10.1016/j.precamres.2011.10.018
      Montañez, I. P., Osleger, D. A., Mack, L. E., et al., 2000. Evolution of the Sr and C Isotope Composition of Cambrian Oceans. GSA Today, 10(5): 1-7.
      Peng, Y. B., Bao, H. M., Jiang, G. Q., et al., 2022. A Transient Peak in Marine Sulfate after the 635 Ma Snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 119(19): e2117341119. https://doi.org/10.1073/pnas.2117341119
      Porter, S. M., Knoll, A. H., Affaton, P., 2004. Chemostratigraphy of Neoproterozoic Cap Carbonates from the Volta Basin, West Africa. Precambrian Research, 130(1-4): 99-112. https://doi.org/10.1016/j.precamres.2003.10.015
      Rimmer, S. M., 2004. Geochemical Paleoredox Indicators in Devonian-Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 206(3-4): 373-391. https://doi.org/10.1016/j.chemgeo.2003.12.029
      Sansjofre, P., Ader, M., Trindade, R. I. F., et al., 2011. A Carbon Isotope Challenge to the Snowball Earth. Nature, 478(7367): 93-96. https://doi.org/10.1038/nature10499
      Shen, H. J., Gu, S. Y., Zhao, S. F., et al., 2020. The Sedimentary Geochemical Records of Ocean Environment during the Nantuo (Marinoan) Glaciation in South China-Carbon and Oxygen Isotopes and Trace Element Compositions of Dolostone in Nantuo Formation, Nanhuan System, in Eastern Guizhou. Geological Review, 66(1): 214-228 (in Chinese with English abstract).
      Shi, H. Y., Sun, Y. P., Ouyang, Q., et al., 2023. U-Pb Age of Highly 13C-Depleted Calcite from the Basal Ediacaran Cap Carbonate in Yichang, Hubei Province. Journal of Stratigraphy, 47(1): 1-16 (in Chinese with English abstract).
      Sui, Y., 2019. Cyclostratigraphic Analysis of the Ediacaran Doushantuo Formation, South China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
      Veizer, J., 1983. Chemical Diagenesis of Carbonates: Theory and Application of Trace Element Technique. In: Arthur, M. A., Anderson, T. F., Kaplan, I. R., et al., eds., Stable Isotopes in Sedimentary Geology. SEPM, Tulsa.
      Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161(1-3): 59-88. https://doi.org/10.1016/S0009-2541(99)00081-9
      Wang, J. S., Jiang, G. Q., Xiao, S. H., et al., 2008. Carbon Isotope Evidence for Widespread Methane Seeps in the ca. 635 Ma Doushantuo Cap Carbonate in South China. Geology, 36(5): 347-350. https://doi.org/10.1130/g24513a.1
      Wang, J. S., Wang, Z., Hu, J., et al., 2012. Multiple Proxies Indicating Methane Seepage during the Neoproterozoic Cap Carbonate in South China. Earth Science, 37(S2): 14-22 (in Chinese with English abstract).
      Wang, Z., 2017. The Diagenesis of Early and Middle Ediacaran Carbonate Sediments in Western Hubei and the Paleoenvironmental Implications of the Doushantuo Glendonite (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Webb, G. E., Kamber, B. S., 2000. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565. https://doi.org/10.1016/S0016-7037(99)00400-7
      Wei, G. Y., 2019. Evolution of Marine Environment from the Late Neoproterozoic to Early Paleozoic (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).
      Wei, H. M., 2019. The Evolution of Shallow Ocean Redox on Edicaran Yangtze Platform (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Zhou, C. M., Bao, H. M., Peng, Y. B., et al., 2010. Timing the Deposition of 17O-Depleted Barite at the Aftermath of Nantuo Glacial Meltdown in South China. Geology, 38(10): 903-906. https://doi.org/10.1130/G31224.1
      Zhou, C. M., Xie, G. W., McFadden, K., et al., 2007. The Diversification and Extinction of Doushantuo-Pertatataka Acritarchs in South China: Causes and Biostratigraphic Significance. Geological Journal, 42(3-4): 229-262. https://doi.org/10.1002/gj.1062
      Zhu, M. Y., Zhang, J. M., Yang, A. H., 2007. Integrated Ediacaran (Sinian) Chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 7-61. https://doi.org/10.1016/j.palaeo.2007.03.025
      冯东, 宫尚桂, 2019. 海底冷泉系统硫的生物地球化学过程及其沉积记录研究进展. 矿物岩石地球化学通报, 38(6): 1047-1056, 1046.
      关成国, 王伟, 周传明, 2024. 湖北宜昌埃迪卡拉系陡山沱组下部无机碳同位素再研究: 探寻碳酸盐岩碳同位素组成的原始海水信号. 地质学报, 98(3): 712-724.
      李伟平, 2017. 下扬子埃迪卡拉纪晚期和寒武纪早期沉积碳酸盐岩地球化学研究(博士学位论文). 合肥: 中国科学技术大学.
      沈洪娟, 顾尚义, 赵思凡, 等, 2020. 华南南华纪南沱冰期海洋环境的沉积地球化学记录——来自黔东部南华系南沱组白云岩碳氧同位素和微量元素的证据. 地质论评, 66(1): 214-228.
      史红毅, 孙云鹏, 欧阳晴, 等, 2023. 湖北宜昌埃迪卡拉系陡山沱组底部盖帽碳酸盐岩中具极负碳同位素值方解石的U-Pb年龄. 地层学杂志, 47(1): 1-16.
      睢瑜, 2019. 华南地区埃迪卡拉纪陡山沱组旋回地层学研究(博士学位论文). 武汉: 中国地质大学.
      王家生, 王舟, 胡军, 等, 2012. 华南新元古代"盖帽"碳酸盐岩中甲烷渗漏事件的综合识别特征. 地球科学, 37(S2): 14-22. https://cstj.cqvip.com/Qikan/Article/Detail?id=1003445673
      王舟, 2017. 鄂西埃迪卡拉纪早中期碳酸盐岩地层成岩作用及其六水碳钙石假晶的古环境意义(博士学位论文). 武汉: 中国地质大学.
      魏广祎, 2019. 新元古代晚期到古生代早期古海洋地球化学演变(博士学位论文). 南京: 南京大学.
      魏昊明, 2019. 埃迪卡拉纪扬子地台浅海氧化还原状态的时空演变(博士学位论文). 北京: 中国地质大学.
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  31
    • HTML全文浏览量:  9
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-10-12
    • 网络出版日期:  2025-07-29
    • 刊出日期:  2025-07-25

    目录

      /

      返回文章
      返回