Discovery of Lithium-Rich Sedimentary Rocks in Mesoproterozoic Wumishan Formation in Eastern Hebei Province and Implications for Mechanism of Lithium Enrichment and Mineralization
-
摘要: 2021年项目组在冀东地区发现中元古代富锂沉积岩系,是我国首次在前寒武纪地层中发现的富锂沉积记录.勘查区内共发现33层锂矿体,厚度为1.09~5.59 m,平均厚度2.32 m,Li2O品位为0.1%~0.42%,平均品位0.16%.富锂层位在冀东地区分布广泛、厚度大、层位稳定,因此,可预测的锂资源潜力巨大,具有重要的经济和理论研究价值.该富锂岩系发育于中元古代雾迷山组,XRD矿物分析、地球化学数据显示其主要矿物组成为白云石,其次为石英和伊蒙混层、伊利石等黏土矿物;富锂岩系具有高CaO、MgO含量和低Al2O3含量的特征;浸出实验结果表明,常温常压下富锂泥质白云岩与稀盐酸在封闭容器中反应可发生 > 77%的锂元素浸出.与华南地区晚古生代的富锂沉积岩系相比,该富锂岩系在成矿时代、赋矿层位、岩石类型、矿物组成、地化特征和赋存状态上存在显著差异,同时也不同于后者需要在加热条件下才发生锂的有效浸出.上述差异可能与以下原因有关:(1)研究区富锂岩系的成矿物质可能来源于山海关古陆的风化;(2)富锂岩系形成于干旱的碳酸盐岩潮坪-泻湖环境.因此,冀东雾迷山组富锂岩系的形成不同于前人提出的碳酸盐黏土型锂矿,指示了一种新的锂富集机制和成矿过程,但对该套岩系的锂富集成矿机制还需要进一步研究.Abstract: In 2021, the research group discovered the Mesoproterozoic lithium-rich sedimentary series in eastern Hebei Province. This is the first lithium-rich sedimentary record found in the Precambrian strata in China. A total of 33 lithium-rich layers were found in the exploration area, with a thickness of 1.09-5.59 m, an average thickness of 2.32 m, Li2O grade of 0.1%-0.42%, and an average grade of 0.16%. The target layer has wide distribution, huge thickness, stable horizon, and huge lithium resource potential, so it has a huge potential for lithium resources. Lithium-rich sedimentary rocks are developed in the Mesoproterozoic Wumishan Formation. Mineralogical and geochemical analyses show that dolomite is the dominant mineral with subordinate quartz, illite/smectite mixed layer, and illite. The lithium-rich rocks are characterized by high CaO, MgO and low Al2O3 contents. At room temperature and pressure, the reaction of argillaceous dolomite with dilute hydrochloric acid in a closed container can produce > 77% lithium leaching. Compared with the Late Paleozoic lithium-rich sedimentary rocks in South China, this type of lithium-rich rocks in North China has significant differences in metallogenic age, ore-bearing succession, lithology, mineral composition, major and trace elements and occurrence state. And it is also different from the former, which requires effective leaching of lithium under heating conditions. These differences are likely related to the likely derivation of the ore-forming materials of lithium-rich rocks in the study area from the weathering of Shanhaiguan ancient land and the deposition in a dry carbonate tidal flat-lagoon environment. Therefore, the formation of the lithium-rich rocks in the Wumishan Formation is different from the previously proposed carbonate clay-type lithium deposits, indicating a new lithium enrichment mechanism. The exact mechanism of lithium enrichment in this rock series still needs to be further studied.
-
图 3 研究区样品上地壳标准化微量元素蛛网图(a)和上地壳标准化稀土元素配分曲线图(b)
标准化值据Taylor and McLennan,1985;红色为研究区富锂岩系,黑色为研究区非富锂的白云岩
Fig. 3. The upper crust normalized trace element spider diagram (a) and REE distribution curve (b) of the samples from study area
图 6 研究区雾迷山组富锂岩系与豫西巩义地区上石炭统本溪组、桂西平果地区上二叠统合山组沉积序列对比
红色为富锂层位,豫西巩义地区柱状图引自张英利等(2023);桂西平果地区柱状图引自姚双秋等(2021)
Fig. 6. Comparison of lithium-rich rock series of Wumishan Formation in the study area with sedimentary sequence of Upper Carboniferous Benxi Formation in Gongyi area of western Henan Province and Upper Permian Heshan Formation in Pingguo area of western Guangxi Province
表 1 研究区X射线衍射分析结果(%)
Table 1. The results of X-ray diffraction analysis (%) in the study area
层位 样品编号 岩石定名 白云石 石英 钾长石 方解石 黄铁矿 黏土矿物总量 伊蒙混层 伊利石 高岭石 绿泥石 海泡石 Jxw1 GBL1012-2 泥质白云岩 73.0 14.8 1.6 1.1 9.5 6.7 2.4 0.2 0.2 Jxw1 GBL1015-2 泥质白云岩 72.9 12.4 3.0 11.7 7.6 3.4 0.4 0.4 Jxw2 LBZ后-1 泥质白云岩 63.7 17.1 2.1 17.1 10.9 5.6 0.2 0.3 Jxw3 ZJG-2 泥质白云岩 71.4 19.6 2.1 6.4 0.4 5.9 Jxw3 ZK4001-4 泥质白云岩 70.7 14.1 1.8 0.9 12.5 5.4 4.0 3.1 Jxw3 ZK4001-11 泥质白云岩 80.5 11.9 1.7 5.2 0.9 4.2 0.1 Jxw3 ZK4001-33 泥质白云岩 66.8 16.7 4.6 11.9 1.2 1.2 9.5 表 2 研究区雾迷山组主量元素(%)分析结果
Table 2. The major element compositions (%) from the Wumishan Formation in the study area
样品编号 岩性 SiO2 TiO2 Al2O3 MgO CaO Na2O K2O P2O5 样品编号 岩性 SiO2 TiO2 Al2O3 MgO CaO Na2O K2O P2O5 ZK4001-1 泥晶白云岩 7.15 0.01 0.17 20.29 28.94 0.00 0.06 0.01 ZK4001-29 泥晶白云岩 1.29 0.00 0.07 21.44 29.65 0.00 0.05 0.03 ZK4001-2 白云质泥岩 27.48 0.12 2.84 16.17 18.80 0.02 2.00 0.09 ZK4001-30 粉晶白云岩 0.95 0.01 0.22 21.37 29.87 0.00 0.12 0.02 ZK4001-3 粉晶白云岩 8.92 0.03 0.76 18.52 29.06 0.01 0.32 0.02 ZK4001-31 白云质泥岩 22.14 0.03 0.83 17.18 23.24 0.00 0.49 0.20 ZK4001-4 泥质白云岩 27.69 0.16 3.75 16.57 18.01 0.05 2.20 0.10 ZK4001-32 粉晶白云岩 9.82 0.00 0.06 19.82 27.63 0.00 0.02 0.02 ZK4001-5 大理岩化白云岩 1.12 0.01 0.18 21.87 29.70 0.00 0.08 0.01 ZK4001-33 泥质白云岩 23.61 0.11 2.50 17.44 20.72 0.01 1.30 0.09 ZK4001-6 砂屑白云岩 29.18 0.06 1.38 14.88 20.87 0.00 0.77 0.04 ZK4001-34 粉晶白云岩 0.27 0.00 0.01 21.70 30.08 0.00 0.01 0.00 ZK4001-7 粉晶白云岩 15.44 0.00 0.13 18.43 25.67 0.00 0.05 0.01 ZK4001-35 泥晶白云岩 1.56 0.01 0.20 21.05 29.94 0.01 0.07 0.01 ZK4001-8 细晶白云岩 2.72 0.00 0.07 21.40 29.22 0.00 0.03 0.01 ZK4001-36 白云质泥岩 3.76 0.01 0.18 21.10 29.03 0.00 0.05 0.01 ZK4001-9 粉晶白云岩 38.30 0.01 0.19 13.62 19.08 0.00 0.08 0.01 ZK4001-37 粉晶白云岩 0.32 0.01 0.07 21.86 30.34 0.00 0.07 0.00 ZK4001-10 泥晶白云岩 1.89 0.01 0.21 21.39 29.52 0.00 0.13 0.01 ZK4001-38 沥青质白云岩 7.12 0.01 0.05 20.21 28.30 0.00 0.04 0.01 ZK4001-11 泥质白云岩 25.83 0.13 3.26 16.63 18.71 0.07 2.22 0.08 GBL1012-1 粉晶白云岩 27.50 0.00 0.07 16.05 22.71 0.00 0.02 0.03 ZK4001-12 燧石白云岩 5.39 0.02 0.64 21.03 28.64 0.00 0.32 0.01 GBL1012-2 泥质白云岩 27.37 0.10 2.75 18.05 18.93 0.00 1.21 0.14 ZK4001-13 泥晶白云岩 1.74 0.01 0.29 21.26 30.14 0.00 0.17 0.01 GBL1012-3 白云质泥岩 28.27 0.11 2.95 18.14 17.87 0.00 1.24 0.17 ZK4001-14 粉晶白云岩 0.37 0.01 0.05 21.86 30.15 0.00 0.04 0.00 GBL1012-4 粉晶白云岩 0.69 0.00 0.14 21.29 30.41 0.00 0.05 0.04 ZK4001-15 泥晶白云岩 4.72 0.00 0.13 20.46 29.03 0.00 0.03 0.00 GBL1015-1 细晶白云岩 3.02 0.02 0.82 21.11 28.92 0.00 0.67 0.03 ZK4001-16 泥质白云岩 9.76 0.06 1.37 18.81 26.32 0.00 0.82 0.07 GBL1015-2 泥质白云岩 25.60 0.11 2.85 17.73 18.60 0.06 2.53 0.09 ZK4001-17 粉晶白云岩 1.01 0.01 0.10 21.42 30.10 0.01 0.07 0.01 GBL1015-3 粉晶白云岩 0.00 0.00 0.02 21.80 30.36 0.00 0.01 0.00 ZK4001-18 白云质泥岩 16.88 0.06 1.38 18.82 23.14 0.35 1.23 0.04 LBZ后-1 泥质白云岩 31.18 0.16 3.99 15.63 16.69 0.04 2.95 0.10 ZK4001-19 泥晶白云岩 2.00 0.00 0.07 21.61 29.48 0.00 0.04 0.00 LBZ后-2 粉晶白云岩 23.35 0.01 0.25 16.13 23.24 0.00 0.09 0.03 ZK4001-20 细晶白云岩 7.82 0.00 0.03 20.09 27.79 0.00 0.02 0.00 JJY-1 泥晶白云岩 9.81 0.05 1.11 19.12 27.35 0.02 0.38 0.04 ZK4001-21 白云质泥岩 20.97 0.10 2.15 17.18 22.11 0.03 1.43 0.06 JJY-2 白云质泥岩 18.97 0.10 2.27 17.48 23.13 0.02 0.98 0.07 ZK4001-22 细晶白云岩 0.55 0.00 0.02 21.69 29.97 0.00 0.02 0.01 JJY-3 泥质白云岩 19.35 0.09 1.78 17.53 23.02 0.02 0.87 0.06 ZK4001-23 白云质泥岩 25.64 0.12 3.11 15.47 20.61 0.04 1.85 0.10 JJY-4 白云质泥岩 25.05 0.12 2.82 16.42 19.29 0.04 1.79 0.08 ZK4001-24 粉晶白云岩 0.85 0.01 0.11 21.57 29.81 0.00 0.08 0.01 ZJG-1 粉晶白云岩 4.91 0.00 0.13 20.91 28.57 0.00 0.03 0.02 ZK4001-25 白云质泥岩 1.75 0.01 0.08 21.71 30.06 0.00 0.03 0.00 ZJG-2 泥质白云岩 37.28 0.11 3.33 16.37 14.52 0.08 2.85 0.08 ZK4001-26 粉晶白云岩 1.35 0.01 0.06 21.41 29.56 0.00 0.04 0.01 ZJG-3 燧石白云岩 18.18 0.04 1.45 17.76 23.53 0.01 1.15 0.04 ZK4001-27 白云质泥岩 20.69 0.05 1.41 17.26 23.05 0.00 0.83 0.04 ZJG-4 泥晶白云岩 18.31 0.01 0.05 17.92 25.09 0.00 0.03 0.00 ZK4001-28 粉晶白云岩 12.86 0.00 0.05 18.93 26.30 0.01 0.02 0.00 表 3 研究区雾迷山组微量元素(ppm)分析结果
Table 3. The trace element compositions (ppm) from the Wumishan Formation in the study area
样品编号 岩性 Li Cu Rb Sr Y Zr Nb Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Th U LREE/HREE Eu/Eu* Ce/Ce* ZK4001-1 泥晶白云岩 21 4.87 0.32 46.50 0.82 0.01 0.00 6.60 1.27 2.30 0.29 0.99 0.18 0.03 0.17 0.02 0.12 0.03 0.06 0.01 0.05 0.01 0.00 0.13 0.09 10.75 0.86 0.86 ZK4001-2 白云质泥岩 865 3.23 67.40 67.38 6.01 48.42 2.89 5 000.06 8.93 18.95 2.29 7.86 1.46 1.22 1.34 0.18 1.01 0.22 0.57 0.09 0.58 0.09 1.24 3.13 1.42 9.99 4.08 0.95 ZK4001-3 粉晶白云岩 32 2.00 1.29 47.51 1.79 0.05 0.00 46.55 2.83 5.39 0.68 2.35 0.41 0.09 0.39 0.05 0.27 0.06 0.15 0.02 0.14 0.02 0.00 0.52 0.23 10.63 1.01 0.89 ZK4001-4 泥质白云岩 494 2.69 71.71 59.07 6.65 39.55 3.55 2 450.21 10.10 20.32 2.58 8.87 1.61 0.78 1.47 0.19 1.12 0.24 0.63 0.10 0.63 0.10 1.04 3.44 1.80 9.86 2.37 0.91 ZK4001-5 大理岩化白云岩 1 0.50 0.19 23.08 0.67 0.10 0.00 4.61 0.98 1.96 0.25 0.83 0.14 0.02 0.13 0.02 0.10 0.02 0.05 0.01 0.04 0.01 0.00 0.12 0.08 10.85 0.83 0.90 ZK4001-6 砂屑白云岩 4 0.51 1.74 47.50 3.43 0.16 0.00 22.55 3.82 8.61 1.30 4.72 0.94 0.17 0.83 0.11 0.63 0.13 0.29 0.04 0.25 0.04 0.01 1.25 0.55 8.43 0.89 0.88 ZK4001-7 粉晶白云岩 2 0.66 0.17 36.96 0.75 0.04 0.00 110.08 1.18 2.39 0.27 0.89 0.14 0.04 0.14 0.02 0.09 0.02 0.05 0.01 0.04 0.01 0.00 0.09 0.47 13.52 1.41 0.97 ZK4001-8 细晶白云岩 1 1.08 0.07 28.36 0.75 0.06 0.00 5.59 1.08 1.79 0.24 0.82 0.12 0.02 0.13 0.02 0.09 0.02 0.04 0.01 0.03 0.01 0.00 0.04 0.17 12.01 0.85 0.80 ZK4001-9 粉晶白云岩 1 0.49 0.21 34.82 0.77 0.00 0.00 6.75 1.16 1.71 0.22 0.77 0.12 0.02 0.12 0.02 0.09 0.02 0.05 0.01 0.05 0.01 0.00 0.20 0.32 10.98 0.75 0.77 ZK4001-10 泥晶白云岩 11 0.26 0.48 49.82 1.17 0.05 0.00 791.09 1.67 3.45 0.44 1.49 0.28 0.21 0.25 0.04 0.20 0.04 0.09 0.01 0.08 0.01 0.00 0.16 0.14 10.47 3.71 0.92 ZK4001-11 泥质白云岩 971 1.93 75.28 48.58 5.58 47.98 2.93 1 423.10 7.79 16.49 2.02 6.97 1.30 0.50 1.18 0.16 0.92 0.20 0.53 0.08 0.54 0.08 1.19 2.80 2.20 9.51 1.89 0.95 ZK4001-12 燧石白云岩 19 2.86 1.07 45.79 1.72 0.03 0.00 20.97 2.22 4.28 0.58 2.12 0.37 0.07 0.37 0.05 0.25 0.05 0.12 0.02 0.09 0.01 0.00 0.43 0.26 10.06 0.91 0.86 ZK4001-13 泥晶白云岩 3 0.44 0.50 37.08 1.18 0.10 0.00 5.73 1.47 2.91 0.39 1.34 0.24 0.04 0.23 0.03 0.18 0.04 0.09 0.01 0.08 0.01 0.01 0.24 0.11 9.41 0.87 0.88 ZK4001-14 粉晶白云岩 1 0.17 0.09 21.22 0.25 0.03 0.00 1.18 0.36 0.44 0.05 0.18 0.03 0.01 0.03 0.00 0.03 0.01 0.02 0.00 0.02 0.00 0.00 0.04 0.06 10.52 0.81 0.72 ZK4001-15 泥晶白云岩 4 0.24 0.11 45.30 0.30 0.08 0.00 5.19 0.36 0.49 0.06 0.22 0.04 0.01 0.04 0.01 0.04 0.01 0.02 0.00 0.02 0.00 0.00 0.05 0.23 8.95 1.01 0.75 ZK4001-16 泥质白云岩 15 0.70 1.45 61.45 6.44 0.25 0.00 21.44 4.36 10.59 1.43 5.42 1.26 0.20 1.19 0.18 1.03 0.21 0.52 0.08 0.48 0.07 0.02 1.70 0.77 6.20 0.77 0.97 ZK4001-17 粉晶白云岩 5 0.23 0.22 61.90 0.51 0.19 0.00 7.06 0.59 1.15 0.14 0.50 0.10 0.02 0.09 0.01 0.07 0.02 0.04 0.01 0.03 0.01 0.00 0.11 0.21 9.28 0.97 0.90 ZK4001-18 白云质泥岩 1 262 1.17 41.49 44.02 2.77 19.93 1.28 76.09 3.36 7.02 0.91 3.16 0.60 0.12 0.53 0.07 0.44 0.10 0.26 0.04 0.27 0.04 0.50 1.19 0.72 8.67 1.02 0.91 ZK4001-19 泥晶白云岩 1 0.10 0.11 43.55 0.40 0.05 0.00 2.45 0.71 1.03 0.13 0.44 0.07 0.01 0.07 0.01 0.05 0.01 0.03 0.00 0.02 0.00 0.00 0.07 0.09 11.87 0.87 0.77 ZK4001-20 细晶白云岩 1 0.23 0.05 27.30 0.22 0.00 0.00 8.01 0.36 0.45 0.06 0.19 0.03 0.01 0.03 0.00 0.02 0.01 0.01 0.00 0.01 0.00 0.00 0.02 0.10 11.50 0.94 0.72 ZK4001-21 白云质泥岩 761 1.74 44.22 38.98 4.20 28.93 2.04 98.65 5.80 12.43 1.52 5.26 0.99 0.20 0.90 0.12 0.72 0.16 0.39 0.06 0.42 0.06 0.73 2.10 0.73 9.23 0.98 0.96 ZK4001-22 细晶白云岩 2 0.12 0.05 34.61 0.53 0.00 0.00 8.05 0.74 0.99 0.13 0.43 0.07 0.01 0.07 0.01 0.05 0.01 0.03 0.01 0.03 0.01 0.00 0.04 0.06 10.89 0.89 0.74 ZK4001-23 白云质泥岩 650 9.55 57.26 43.01 6.67 53.18 2.92 141.13 8.15 16.80 2.14 7.42 1.37 0.27 1.27 0.18 1.06 0.23 0.60 0.10 0.64 0.10 1.36 2.98 2.50 8.67 0.95 0.92 ZK4001-24 粉晶白云岩 2 0.09 0.14 29.65 1.17 0.06 0.00 2.59 0.55 0.83 0.13 0.46 0.09 0.02 0.09 0.01 0.10 0.03 0.07 0.01 0.07 0.01 0.03 0.08 0.07 5.31 0.89 0.72 ZK4001-25 白云质泥岩 4 0.21 0.78 32.86 0.37 1.15 0.07 5.54 0.63 0.86 0.12 0.41 0.06 0.01 0.07 0.01 0.05 0.01 0.03 0.00 0.02 0.00 0.03 0.07 0.21 11.28 0.89 0.71 ZK4001-26 粉晶白云岩 2 0.09 0.11 34.28 0.81 0.01 0.00 3.41 0.50 0.86 0.13 0.45 0.08 0.01 0.09 0.01 0.08 0.02 0.05 0.01 0.05 0.01 0.00 0.07 0.07 6.57 0.80 0.78 ZK4001-27 白云质泥岩 566 3.60 27.32 34.09 3.32 27.44 1.14 49.83 3.92 8.25 1.09 3.77 0.72 0.13 0.66 0.09 0.52 0.12 0.29 0.04 0.29 0.04 0.68 1.24 0.59 8.71 0.88 0.91 ZK4001-28 粉晶白云岩 2 0.26 0.10 35.53 0.38 0.00 0.00 3.97 0.27 0.33 0.05 0.19 0.04 0.01 0.04 0.01 0.04 0.01 0.02 0.00 0.02 0.00 0.00 0.02 0.07 6.07 0.86 0.63 ZK4001-29 泥晶白云岩 2 0.15 0.30 35.22 2.54 0.04 0.01 3.15 0.92 1.38 0.24 0.84 0.19 0.02 0.23 0.04 0.27 0.06 0.17 0.03 0.17 0.03 0.00 0.25 0.11 3.64 0.49 0.67 ZK4001-30 粉晶白云岩 4 0.19 0.39 54.81 1.09 0.41 0.01 6.51 0.83 1.59 0.22 0.78 0.16 0.03 0.15 0.02 0.13 0.03 0.08 0.01 0.09 0.02 0.01 0.19 0.18 6.67 0.76 0.86 ZK4001-31 白云质泥岩 44 0.77 1.58 51.43 11.52 0.24 0.00 244.07 6.07 17.14 2.29 8.33 2.08 0.29 1.93 0.31 1.97 0.44 1.17 0.19 1.29 0.20 0.01 1.15 0.44 4.82 0.68 1.05 ZK4001-32 粉晶白云岩 4 0.34 0.36 34.50 1.68 0.00 0.01 6.00 1.17 1.83 0.26 0.88 0.18 0.02 0.20 0.03 0.20 0.05 0.11 0.02 0.10 0.02 0.00 0.19 0.12 5.98 0.44 0.76 ZK4001-33 泥质白云岩 583 2.71 47.57 30.55 6.06 34.97 2.55 1 941.76 8.35 17.71 2.12 7.24 1.35 0.59 1.23 0.17 0.99 0.22 0.56 0.09 0.60 0.09 0.88 2.84 0.81 9.49 2.17 0.96 ZK4001-34 粉晶白云岩 4 0.27 0.10 41.52 0.38 0.00 0.00 3.85 0.74 0.91 0.10 0.35 0.06 0.01 0.06 0.01 0.04 0.01 0.02 0.00 0.02 0.00 0.00 0.03 0.13 13.04 0.72 0.75 ZK4001-35 泥晶白云岩 14 0.70 0.64 48.40 0.85 0.01 0.00 9.35 1.31 2.25 0.30 1.02 0.18 0.04 0.18 0.02 0.13 0.03 0.06 0.01 0.05 0.01 0.00 0.13 0.12 10.40 0.93 0.82 ZK4001-36 白云质泥岩 37 0.62 1.96 35.44 0.70 1.44 0.15 7.48 1.16 2.00 0.27 0.91 0.15 0.03 0.15 0.02 0.10 0.02 0.05 0.01 0.05 0.01 0.04 0.14 0.12 11.29 1.04 0.81 ZK4001-37 粉晶白云岩 3 0.14 0.14 54.15 0.35 0.11 0.01 3.20 0.40 0.67 0.09 0.31 0.05 0.01 0.05 0.01 0.04 0.01 0.02 0.00 0.02 0.00 0.00 0.17 0.26 9.16 0.89 0.80 ZK4001-38 沥青质白云岩 8 0.10 0.21 55.86 0.43 0.03 0.00 9.27 0.48 0.76 0.10 0.35 0.06 0.01 0.07 0.01 0.05 0.01 0.03 0.01 0.03 0.01 0.00 0.06 0.12 8.40 0.95 0.79 GBL1012-1 粉晶白云岩 2 0.20 0.70 56.63 3.11 0.00 0.03 58.28 1.80 3.21 0.47 1.66 0.36 0.04 0.37 0.07 0.42 0.09 0.23 0.03 0.20 0.03 0.00 0.37 0.21 5.25 0.52 0.80 GBL1012-2 泥质白云岩 491 2.43 35.98 32.75 10.19 63.39 3.20 663.28 11.76 25.55 3.10 10.82 2.05 0.44 1.94 0.27 1.65 0.36 0.95 0.15 0.95 0.14 1.65 5.53 1.54 8.40 1.04 0.96 GBL1012-3 白云质泥岩 538 2.31 40.56 36.27 11.95 68.60 3.69 1 158.99 13.01 27.14 3.36 11.70 2.27 0.56 2.17 0.31 1.89 0.42 1.08 0.17 1.08 0.17 1.79 6.37 1.63 7.96 1.18 0.94 GBL1012-4 粉晶白云岩 10 0.25 0.61 64.11 5.14 0.05 0.01 1 463.34 5.04 8.50 0.98 3.49 0.70 0.34 0.72 0.11 0.67 0.14 0.36 0.05 0.30 0.04 0.00 0.29 0.12 7.97 2.23 0.87 GBL1015-1 细晶白云岩 3 0.45 0.17 22.19 2.20 0.40 0.01 2.91 1.87 4.12 0.62 2.19 0.46 0.05 0.39 0.06 0.38 0.08 0.21 0.03 0.22 0.03 0.01 1.27 0.12 6.62 0.57 0.88 GBL1015-2 泥质白云岩 1 824 6.43 65.53 28.18 6.34 33.42 2.81 88.84 8.67 17.66 2.11 7.18 1.33 0.21 1.19 0.17 1.01 0.22 0.59 0.09 0.61 0.09 0.89 3.68 0.91 9.36 0.80 0.94 GBL1015-3 粉晶白云岩 1 0.39 0.01 21.95 1.00 0.00 0.00 0.50 0.41 0.78 0.10 0.42 0.09 0.02 0.13 0.02 0.09 0.02 0.04 0.01 0.03 0.00 0.00 0.00 0.03 5.45 0.73 0.86 LBZ后-1 泥质白云岩 1 707 8.62 87.55 53.06 6.86 45.96 3.48 499.00 9.52 19.40 2.43 8.37 1.49 0.36 1.35 0.19 1.12 0.25 0.64 0.10 0.67 0.10 1.18 3.63 1.38 9.42 1.18 0.92 LBZ后-2 粉晶白云岩 6 1.40 0.04 32.58 3.13 0.05 0.01 3.05 1.22 3.65 0.49 2.03 0.55 0.13 0.61 0.10 0.57 0.11 0.25 0.03 0.19 0.03 0.00 0.04 0.07 4.26 1.01 1.08 JJY-1 泥晶白云岩 6 16.32 0.10 47.58 5.16 0.10 0.01 2.67 2.27 7.01 0.94 4.07 1.05 0.23 1.14 0.17 1.00 0.20 0.43 0.06 0.32 0.04 0.01 0.19 0.07 4.64 0.97 1.09 JJY-2 白云质泥岩 183 8.81 32.82 49.82 5.22 37.50 2.30 125.03 7.03 14.92 1.81 6.30 1.15 0.23 1.06 0.14 0.84 0.18 0.46 0.07 0.46 0.07 0.93 2.26 1.10 9.63 1.00 0.95 JJY-3 泥质白云岩 174 2.95 27.53 42.29 4.72 41.47 1.99 240.73 6.26 15.93 1.69 6.01 1.14 0.26 1.03 0.14 0.77 0.16 0.43 0.06 0.42 0.06 0.97 1.90 0.92 10.18 1.11 1.12 JJY-4 白云质泥岩 802 1.77 59.82 89.09 6.21 40.57 2.83 5 337.12 8.75 18.58 2.22 7.74 1.44 1.27 1.32 0.17 1.00 0.22 0.56 0.09 0.57 0.08 0.97 2.77 1.40 10.00 4.35 0.96 ZJG-1 粉晶白云岩 1 0.86 0.04 16.74 2.51 0.06 0.01 0.35 0.41 1.04 0.20 0.89 0.27 0.04 0.31 0.06 0.35 0.07 0.17 0.02 0.13 0.02 0.00 0.03 0.07 2.51 0.71 0.82 ZJG-2 泥质白云岩 1 910 6.03 80.27 31.88 5.26 56.56 2.99 245.16 8.31 16.35 2.01 6.71 1.22 0.25 1.10 0.15 0.87 0.19 0.48 0.08 0.52 0.08 1.46 3.17 0.95 10.04 1.01 0.91 ZJG-3 燧石白云岩 36 0.69 0.23 36.38 3.85 0.13 0.01 6.31 1.63 4.79 0.72 3.08 0.80 0.16 0.82 0.13 0.75 0.15 0.33 0.05 0.26 0.04 0.01 0.21 0.09 4.42 0.94 1.01 ZJG-4 泥晶白云岩 1 0.13 0.01 15.86 0.58 0.04 0.00 0.53 0.32 0.71 0.11 0.44 0.10 0.02 0.12 0.02 0.09 0.02 0.03 0.00 0.02 0.00 0.00 0.01 0.04 5.80 0.93 0.88 表 4 雾迷山组样品锂浸出实验结果
Table 4. The results of the lithium leaching from samples of the Wumishan Formation
样品编号 Li
(ppm)样品Li质量(mg) 实验A-1(加去离子水) 实验A-2(盐酸) 溶液Li+浓度
(mg/L)溶液Li质量(mg) 浸出百分比
(%)溶液Li+浓度(mg/L) 溶液Li质量(mg) 浸出百分比
(%)UN-7 75.01 0.23 0.14 4.06×10-3 1.80 5.71 0.17 76.12 UN-4 188.31 0.57 0.19 5.81×10-3 1.02 18.03 0.54 95.40 GBL-HC-6 199.74 0.60 0.63 1.90×10-2 3.17 17.96 0.54 89.92 GBL-HC-4 505.97 1.52 1.04 3.13×10-2 2.06 46.20 1.39 91.31 GBL-HC-2 564.98 1.69 1.17 3.51×10-2 2.08 54.75 1.64 96.91 GBL-HC-3 606.18 1.82 1.47 4.42×10-2 2.42 55.72 1.67 92.22 GBL1012-3 538.05 1.61 0.65 1.96×10-2 1.22 42.29 1.27 79.56 GBL1015-2 1 824.11 5.49 1.89 5.66×10-2 1.03 140.13 4.20 77.36 表 5 雾迷山组样品镁、钙浸出实验结果
Table 5. The results of the magnesium, calcium leaching from samples of the Wumishan Formation
样品编号 实验A-1 (加去离子水) 实验A-2 (加盐酸) Mg2+浓度(mg/L) Ca2+浓度(mg/L) Mg2+浓度(mg/L) Ca2+浓度(mg/L) UN-7 25 47 14 689 23 630 UN-4 18 23 13 029 16 971 GBL-HC-6 23 12 14 500 24 405 GBL-HC-4 14 16 15 589 24 484 GBL-HC-2 23 23 12 344 19 389 GBL-HC-3 20 19 14 709 22 731 表 6 雾迷山组样品锂吸附实验结果
Table 6. The results of the lithium adsorption from samples of the Wumishan Formation
样品编号 Li标液浓度(mg/L) Li标液质量(mg) 实验B-1 实验B-2 溶液Li+浓度(mg/L) 溶液Li质量(mg) Li减少百分比
(%)溶液Li+浓度(mg/L) 溶液Li质量(mg) Li减少百分比
(%)GBL1015-2 103.99 3.12 99.17 2.98 4.64 100.80 3.02 3.07 GBL1012-3 100.43 3.01 3.43 97.06 2.91 6.67 表 7 国内黏土型锂矿成矿特征(据张英利等, 2022; 张七道等, 2024)
Table 7. Geological characteristics of clay-type lithium deposits in China
分布地区 岩石类型 成矿时代 赋矿地层 沉积环境 物质来源 豫西、山西 黏土岩 晚石炭世 本溪组 滨岸‒泻湖 岩浆岩为主 滇中、黔中 黏土岩
铝土质泥岩早石炭世 九架炉组、倒石头组 陆相洪积作用及湖泊 碳酸盐岩 黔北‒渝南和黔东南 黏土岩
铝土质泥岩晚石炭世‒早二叠世 大竹园组 冲积扇、湖泊和潮坪 页岩、灰岩、白云岩 滇东南‒桂西 黏土岩
铝土质泥岩晚二叠世 合山组、吴家坪组和龙潭组 潮坪‒泻湖 玄武岩、碳酸盐岩 扬子周缘 凝灰岩 中三叠世 雷口坡组 长英质火山岩 黔西 黏土岩 早二叠世 梁山组 淡水陆相为主 白云岩或火山岩 表 8 研究区雾迷山组与晚古生代的富锂岩系沉积特征对比
Table 8. The comparison of sedimentary characteristics between the Wumishan lithium-rich rock series and the Late Paleozoic lithium-rich rock series in the study area
晚古生代富锂岩系 研究区富锂岩系 分布区域 华南、西南、华北西部 华北东部 大地构造属性 被动大陆边缘 大陆裂谷 成矿时代 晚古生代 中元古代 赋矿层位 碳酸盐岩不整合面之上的泥质岩 碳酸盐岩沉积韵律层富泥质层 矿石类型 黏土岩、铝质黏土岩、铝土矿 泥质白云岩、白云质泥岩 矿物组成 主要由黏土矿物组成,不含白云石 主要由白云石组成,黏土矿物相对较少 富锂矿物 蒙脱石、伊利石、高岭石,勃姆石、一水硬铝石、三水铝石等 伊蒙混层、伊利石组成,含少量高岭石、绿泥石 主要化学成分 高Al2O3、SiO2 高CaO、MgO Li2O品位 0.10%~1.02%之间, 平均0.30% 0.10%~0.32%,平均0.16% 浸出实验 加热酸解 常温酸解 成矿物质来源 碳酸盐岩、岩浆岩 岩浆岩、变质岩 沉积环境 陆源碎屑岩潮坪‒泻湖亚相 碳酸盐潮坪‒泻湖亚相 -
Castor, S. B., Henry, C. D., 2020. Lithium-Rich Claystone in the McDermitt Caldera, Nevada, USA: Geologic, Mineralogical, and Geochemical Characteristics and Possible Origin. Minerals, 10(1): 68. https://doi.org/10.3390/min10010068 Chen, J. B., Zhang, H. M., Zhu, S. X., et al., 1980. A Study of the Sinian Subrealm in Jixian. Tianjin Science and Technology Press, Tianjin (in Chinese). Cui, Y., Luo, C. G., Xu, L., et al., 2018. Weathering Origin and Enrichment of Lithium in Clay Rocks of the Jiujialu Formation, Central Guizhou Province, Southwest China. Bulletin of Mineralogy, Petrology and Geochemistry, 37(4): 696-704 (in Chinese with English abstract). Goldhammer, R. K., Dunn, P. A., Hardie, L. A., 1990. Depositional Cycles, Composite Sea-Level Changes, Cycle Stacking Patterns, and the Hierarchy of Stratigraphic Forcing: Examples from Alpine Triassic Platform Carbonates. Geological Society of America Bulletin, 102(5): 535-562. https://doi.org/10.1130/0016-7606(1990)102<0535:DCCSLC>2.3.CO;2 doi: 10.1130/0016-7606(1990)102<0535:DCCSLC>2.3.CO;2 Guo, R. T., 2014. Sequence Stratigraphic Framework and Paleographic Environment Evolution of the Mesoproterozoic Wumishan Formation, Western Yanshan Mountains. Journal of Jilin University (Earth Science Edition), 44(2): 446-459 (in Chinese with English abstract). Hofstra, A. H., Todorov, T. I., Mercer, C. N., et al., 2013. Silicate Melt Inclusion Evidence for Extreme Pre-Eruptive Enrichment and Post-Eruptive Depletion of Lithium in Silicic Volcanic Rocks of the Western United States: Implications for the Origin of Lithium-Rich Brines. Economic Geology, 108(7): 1691-1701. https://doi.org/10.2113/econgeo.108.7.1691 Huang, C. G., Yuan, J. Y., Tian, G. R., et al., 2016. The Geochemical Characteristics and Formation Mechanism of the Eocene Lacustrine Dolomite Reservoirs in the Western Qaidam. Earth Science Frontiers, 23(3): 230-242 (in Chinese with English abstract). Jia, Y. D., Wang, D. H., Wang, X. Y., et al., 2020. Sedimentary Environment and Geochemical Features of Wumishan and Hongshuizhuang Formations in Jizhou, Tianjin. Global Geology, 39(3): 569-577 (in Chinese with English abstract). Jiang, S. Y., Wen, H. J., Xu, C., et al., 2019. Earth Sphere Cycling and Enrichment Mechanism of Critical Metals: Major Scientific Issues for Future Research. Bulletin of National Natural Science Foundation of China, 33(2): 112-118 (in Chinese with English abstract). Jin, Z. G., Zhou, J. X., Huang, Z. L., et al., 2015. The Distribution of Associated Elements Li, Sc and Ga in the Typical Bauxite Deposits over the Wuchuan-Zheng'an-Daozhen Bauxite Ore District, Northern Guizhou Province. Geology in China, 42(6): 1910-1918 (in Chinese with English abstract). Kesler, S. E., Gruber, P. W., Medina, P. A., et al., 2012. Global Lithium Resources: Relative Importance of Pegmatite, Brine and Other Deposits. Ore Geology Reviews, 48: 55-69. https://doi.org/10.1016/j.oregeorev.2012.05.006 Li, H., Shao, L. Y., Wang, F. G., et al., 2016. Study on Upper Permian Sedimentary Environment and Coal Accumulation Pattern in Qiubei Area, Southeastern Yunnan. Coal Geology of China, 28(4): 1-8 (in Chinese with English abstract). Li, J. K., Liu, X. F., Wang, D. H., 2014. The Metallogenetic Regularity of Lithium Deposit in China. Acta Geologica Sinica, 88(12): 2269-2283 (in Chinese with English abstract). Li, Z. M., Ma, X. H., Guo, R., et al., 2012. Late Carboniferous Lithofacies Palaeogeogrphic Feature of Daye Bauxite Mine Area in Dengfeng County, Henan Province and the Prospecting Direction. Contributions to Geology and Mineral Resources Research, 27(4): 433-439 (in Chinese with English abstract). Ling, K. Y., Wen, H. J., Zhang, Q. Z., et al., 2021. Super-Enrichment of Lithium and Niobium in the Upper Permian Heshan Formation in Pingguo, Guangxi, China. Scientia Sinica Terrae, 51(6): 853-873 (in Chinese). Ling, K. Y., Wen, H. J., Zhang, Z. W., et al., 2019. Geochemical Characteristics of Dolomite Weathering Profiles and Revelations to Enrichment Mechanism of Trace Elements in the Jiujialu Formation, Central Guizhou Province. Acta Petrologica Sinica, 35(11): 3385-3397 (in Chinese with English abstract). Ling, K. Y., Zhu, X. Q., Tang, H. S., et al., 2018. Geology and Geochemistry of the Xiaoshanba Bauxite Deposit, Central Guizhou Province, SW China: Implications for the Behavior of Trace and Rare Earth Elements. Journal of Geochemical Exploration, 190: 170-186. https://doi.org/10.1016/j.gexplo.2018.03.007 Liu, C. S., Jin, Z. G., Guo, J. H., 2015. Facies Analysis of Sedimentary Bauxite Deposition in Freshwater of Wuzhengdao in Northern Guizhou. Journal of Central South University (Science and Technology), 46(3): 962-969 (in Chinese with English abstract). Liu, L. J., Wang, D. H., Liu, X. F., et al., 2017. The Main Types, Distribution Features and Present Situation of Exploration and Development for Domestic and Foreign Lithium Mine. Geology in China, 44(2): 263-278 (in Chinese with English abstract). Liu, S. W., Wang, W., Bai, X., et al., 2018. Lithological Assemblages of Archean Meta-Igneous Rocks in Eastern Hebei-Western Liaoning Provinces of North China Craton, and Their Geodynamic Implications. Earth Science, 43(1): 44-56 (in Chinese with English abstract). Long, Z., Fu, Y., He, W., et al., 2021. Geochemical Characteristics and Enrichment Mechanism of Li in Xinmin Bauxite Deposit, Guizhou. Mineral Deposits, 40(4): 873-890 (in Chinese with English abstract). Luo, S. S., Chen, X. J., Li, R. Y., et al., 2011. Geochemical Behaviors of the Wumishan Formation in the Jibei Depression of Yanshan Region. Oil & Gas Geology, 32(1): 17-28 (in Chinese with English abstract). Ma, Z., Li, J. W., 2018. Analysis of China's Lithium Resources Supply System: Status, Issues and Suggestions. China Mining Magazine, 27(10): 1-7 (in Chinese with English abstract). doi: 10.12075/j.issn.1004-4051.2018.10.022 Marriott, C. S., Henderson, G. M., Crompton, R., et al., 2004. Effect of Mineralogy, Salinity, and Temperature on Li/Ca and Li Isotope Composition of Calcium Carbonate. Chemical Geology, 212(1-2): 5-15. https://doi.org/10.1016/j.chemgeo.2004.08.002 Mei, M. X., Du, B. M., Zhou, H. R., et al., 1999. A Preliminary Study of the Cyclic Sequences of Composite Sea Level Changes in the Mesoproterozoic Wumishan Formation in Jixian, Tianjin. Sedimentary Facies and Palaeogeography, 19(5): 12-22 (in Chinese with English abstract). Meng, Q. R., Wei, H. H., Qu, Y. Q., et al., 2011. Stratigraphic and Sedimentary Records of the Rift to Drift Evolution of the Northern North China Craton at the Paleo-to Mesoproterozoic Transition. Gondwana Research, 20(1): 205-218. https://doi.org/10.1016/j.gr.2010.12.010 Qiao, X. F., 2002. Intraplate Seismic Belt and Basin Framework of Sino-Korean Plate in Proterozoic. Earth Science Frontiers, 9(3): 141-149 (in Chinese with English abstract). Qin, S. Q., Lei, M. R., Ling, K. Y., et al., 2023. Distribution and Enrichment Characteristics of Critical Metals in the Upper Permian Heshan Formation in the Central Guangxi. Bulletin of Mineralogy, Petrology and Geochemistry, 42(1): 157-166 (in Chinese with English abstract). Song, Y. H., Liu, K., Dai, H. M., et al., 2022. Palynological Assemblages of Typical Black Soil Profile in the Eastern Songliao Plain and Their Age and Its Implication for Paleoclimatic. Geological Bulletin of China, 41(9): 1528-1538 (in Chinese with English abstract). Sun, Y., Geng, X. L., Zhou, W. Z., et al., 2023. Discussion on the Occurrence Status and Genetic Mechanism of Lithium in Dolomite in Jixian Group, Eastern Hebei. Acta Petrologica Sinica, 39(9): 2761-2777 (in Chinese with English abstract). Tang, H. S., Chen, Y. J., Wu, G., et al., 2009. Rare Earth Element Geochemistry of Carbonates of Dashiqiao Formation, Liaohe Group, Eastern Liaoning Province: Implications for Lomagundi Event. Acta Petrologica Sinica, 25(11): 3075-3093 (in Chinese with English abstract). Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Compositionand Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rock. Journal of Geology, 94 (4): 632-633. Wang, D. H., Dai, H. Z., Liu, S. B., et al., 2022. New Progress and Trend in Ten Aspects of Lithium Exploration Practice and Theoretical Research in China in the Past Decade. Journal of Geomechanics, 28(5): 743-764 (in Chinese with English abstract). Wang, D. H., Li, P. G., Qu, W. J., et al., 2013. Discovery and Comprehensive Evaluation of Tungsten and Lithium in Dazhuyuan Bauxite Mine, Guizhou Province. Scientia Sinica Terrae, 43(1): 44-51 (in Chinese). Wang, Q. S., Yuan, C. H., 2019. The Global Supply Situation of Lithium Ore and Suggestions on Resources Security in China. China Mining Magazine, 28(5): 1-6 (in Chinese with English abstract). Wang, W., Jiang, S. Y., Ge, W., et al., 2024. Geological Characteristics and Genetic Mechanism of the Lacustrine Sedimentary Clay Type Lithium Deposit. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 64-78, 6 (in Chinese with English abstract). Wang, Y. C., Li, Z. K., Zhai, Z. F., et al., 2011. Benxi Formation Bauxite Mineralization Condition and Rule in Shanxi Province. Northwestern Geology, 44(4): 82-88 (in Chinese with English abstract). Wen, H. J., Luo, N., Du, S. J., et al., 2020. Carbonate-Hosted Clay-Type Lithium Deposit and Its Prospecting Significance. Chinese Science Bulletin, 65(1): 53-59 (in Chinese). Xi, W. W., Zhao, Y. H., Ni, P., et al., 2023. Main Types, Characteristics, Distributions, and Prospecting Potential of Lithium Deposits. Sedimentary Geology and Tethyan Geology, 43(1): 19-35 (in Chinese with English abstract). Xu, X. W., Zhai, M. G., Hong, T., et al., 2023. Migration-Circulation Processes and Enrichment-Mineralization Mechanism of Lithium-Beryllium Elements in the Continental Crust. Acta Petrologica Sinica, 39(3): 639-658 (in Chinese with English abstract). Xu, Z. Q., Fu, X. F., Zhao, Z. B., et al., 2019. Discussion on Relationships of Gneiss Dome and Metallogenic Regularity of Pegmatite-Type Lithium Deposits. Earth Science, 44(5): 1452-1463 (in Chinese with English abstract). Xu, Z. Q., Zhu, W. B., Zheng, B. H., et al., 2021. New Energy Strategy for Lithium Resource and the Continental Dynamics Research—Celebrating the Centenary of the School of Earth Sciences and Engineering, Nanjing University. Acta Geologica Sinica, 95(10): 2937-2954 (in Chinese with English abstract). Yao, S. Q., Pang, C. J., Wen, S. N., et al., 2021. Li-Rich Claystone in the Upper Permian Heshan Formation in Western Guangxi and Its Prospecting Significance. Geotectonica et Metallogenia, 45(5): 951-962 (in Chinese with English abstract). Yu, F., Wang, D. H., Yu, Y., et al., 2019. The Distribution and Exploration Status of Domestic and Foreign Sedimentary-Type Lithium Deposits. Rock and Mineral Analysis, 38(3): 354-364 (in Chinese with English abstract). Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005 Zhang, Q. D., Li, D. Z., Li, Z. W., et al., 2024. Geochemical Characteristics and Genesis of Lithium Rich Clay Rocks in the Pudi Area of Northwestern Guizhou. Earth Science Frontiers, 31(4): 258-280 (in Chinese with English abstract). Zhang, Y. L., Chen, L., Wang, K. M., et al., 2022. Metallogenic Characteristics of Sedimentary Lithium Resources. Mineral Deposits, 41(5): 1073-1092 (in Chinese with English abstract). Zhang, Y. L., Chen, L., Wang, K. M., et al., 2023. Geochemistry and Li-Rich Characteristics of Mudstones from Upper Carboniferous Benxi Formation in Gongyi Area, the Western Henan, China and Their Controlling Factors. Journal of Earth Sciences and Environment, 45(2): 208-226 (in Chinese with English abstract). Zhao, H. N., Xing, L. C., He, H. T., et al., 2022. The Mode of Occurrence of Niobium in Bauxite of the Upper Permian Heshan Formation in the Pingguo Area, Guangxi Autonomous Region, China. Acta Mineralogica Sinica, 42(4): 453-460 (in Chinese with English abstract). Zhao, Y. Y., Fu, J. J., Li, Y., 2015. Super Large Lithium and Boron Deposit in Jadar Basin, Serbia. Geological Review, 61(1): 34-44 (in Chinese with English abstract). Zhao, Y., Ma, W. P., Yang, Y., et al., 2022. Experimental Study on the Adsorption of Li+ by Clay Minerals- Implications for the Mineralization of Clay-Type Lithium Deposit. Acta Mineralogica Sinica, 42(2): 141-153 (in Chinese with English abstract). Zhong, H. R., Sun, Y., Yang, Y. Q., et al., 2019. Bauxite(Aluminum)-Type Lithium Resources and Analysis of Its Development and Utilization Potential. Mineral Deposits, 38(4): 898-916 (in Chinese with English abstract). Zhou, H. R., Mei, M. X., Du, B. M., et al., 2006. Study on the Sedimentary Features of High Frequency Cyclothems of the Wumishan Formation at Jixian, Tianjin. Geoscience, 20(2): 209-215 (in Chinese with English abstract). Zhu, X. Q., Zhu, W. B., Ge, R. F., et al., 2014. Late Paleozoic Provenance Shift in the South-Central North China Craton: Implicationsfor Tectonic Evolution and Crustal Growth. Gondwana Research, 25(1): 383-400. https://doi.org/10.1016/j.gr.2013.04.009 陈晋镳, 张惠民, 朱士兴, 等, 1980. 蓟县震旦亚界的研究. 天津: 天津科学技术出版社. 崔燚, 罗重光, 徐林, 等, 2018. 黔中九架炉组富锂黏土岩系的风化成因及锂的富集规律. 矿物岩石地球化学通报, 37(4): 696-704. 郭荣涛, 2014. 燕山西段雾迷山组层序地层格架及古地理演化. 吉林大学学报(地球科学版), 44(2): 446-459. 黄成刚, 袁剑英, 田光荣, 等, 2016. 柴西地区始新统湖相白云岩储层地球化学特征及形成机理. 地学前缘, 23(3): 230-242. 贾雨东, 王德海, 王新宇, 等, 2020. 天津蓟州雾迷山组与洪水庄组沉积环境与地球化学特征. 世界地质, 39(3): 569-577. 蒋少涌, 温汉捷, 许成, 等, 2019. 关键金属元素的多圈层循环与富集机理: 主要科学问题及未来研究方向. 中国科学基金, 33(2): 112-118. 金中国, 周家喜, 黄智龙, 等, 2015. 黔北务-正-道地区典型铝土矿床伴生有益元素锂、镓和钪分布规律. 中国地质, 42(6): 1910-1918. 李惠, 邵龙义, 王福国, 等, 2016. 滇东南丘北地区上二叠统沉积环境与聚煤规律研究. 中国煤炭地质, 28(4): 1-8. 李建康, 刘喜方, 王登红, 2014. 中国锂矿成矿规律概要. 地质学报, 88(12): 2269-2283. 李战明, 马晓辉, 郭锐, 等, 2012. 河南大冶矿区晚石炭世岩相古地理特征及铝土矿找矿方向. 地质找矿论丛, 27(4): 433-439. 凌坤跃, 温汉捷, 张起钻, 等, 2021. 广西平果上二叠统合山组关键金属锂和铌的超常富集与成因. 中国科学: 地球科学, 51(6): 853-873. 凌坤跃, 温汉捷, 张正伟, 等, 2019. 白云岩风化剖面元素地球化学特征: 对黔中九架炉组"三稀金属"富集机制的启示. 岩石学报, 35(11): 3385-3397. 刘辰生, 金中国, 郭建华, 2015. 黔北务正道地区淡水沉积型铝土矿床沉积相. 中南大学学报(自然科学版), 46(3): 962-969. 刘丽君, 王登红, 刘喜方, 等, 2017. 国内外锂矿主要类型、分布特点及勘查开发现状. 中国地质, 44(2): 263-278. 刘树文, 王伟, 白翔, 等, 2018. 冀东-辽西太古宙火成岩岩石组合和动力学意义. 地球科学, 43(1): 44-56. doi: 10.3799/dqkx.2018.003 龙珍, 付勇, 何伟, 等, 2021. 贵州新民铝土矿矿床Li的地球化学特征与富集机制探究. 矿床地质, 40(4): 873-890. 罗顺社, 陈小军, 李任远, 等, 2011. 燕山地区冀北坳陷雾迷山组地球化学特征. 石油与天然气地质, 32(1): 17-28. 马哲, 李建武, 2018. 中国锂资源供应体系研究: 现状、问题与建议. 中国矿业, 27(10): 1-7. 梅冥相, 杜本明, 周洪瑞, 等, 1999. 天津蓟县中元古界雾迷山组复合海平面变化旋回层序的初步研究. 岩相古地理, 19(5): 12-22. 乔秀夫, 2002. 中朝板块元古宙板内地震带与盆地格局. 地学前缘, 9(3): 141-149. 覃顺桥, 雷美荣, 凌坤跃, 等, 2023. 桂中地区上二叠统合山组关键金属分布富集特征. 矿物岩石地球化学通报, 42(1): 157-166. 宋运红, 刘凯, 戴慧敏, 等, 2022. 松嫩平原东部典型黑土剖面孢粉组合、时代及其对古气候的指示. 地质通报, 41(9): 1528-1538. 孙艳, 耿晓磊, 周炜智, 等, 2023. 冀东蓟县群白云岩中锂资源的成因与赋存状态研究. 岩石学报, 39(9): 2761-2777. 汤好书, 陈衍景, 武广, 等, 2009. 辽东辽河群大石桥组碳酸盐岩稀土元素地球化学及其对Lomagundi事件的指示. 岩石学报, 25(11): 3075-3093. 王登红, 代鸿章, 刘善宝, 等. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势. 地质力学学报, 28(5): 743-764. 王登红, 李沛刚, 屈文俊, 等, 2013. 贵州大竹园铝土矿中钨和锂的发现与综合评价. 中国科学: 地球科学, 43(1): 44-51. 王秋舒, 元春华, 2019. 全球锂矿供应形势及我国资源安全保障建议. 中国矿业, 28(5): 1-6. 王微, 蒋少涌, 葛文, 等, 2024. 湖相沉积黏土型锂矿主要地质特征及成因. 矿物岩石地球化学通报, 43(1): 64-78, 6. 王银川, 李昭坤, 翟自峰, 等, 2011. 山西本溪组铝土矿成矿条件及成矿规律探讨. 西北地质, 44(4): 82-88. 温汉捷, 罗重光, 杜胜江, 等, 2020. 碳酸盐黏土型锂资源的发现及意义. 科学通报, 65(1): 53-59. 隰弯弯, 赵宇浩, 倪培, 等, 2023. 锂矿主要类型、特征、时空分布及找矿潜力分析. 沉积与特提斯地质, 43(1): 19-35. 徐兴旺, 翟明国, 洪涛, 等, 2023. 大陆地壳锂铍迁移-循环过程与富集-成矿机制. 岩石学报, 39(3): 639-658. 许志琴, 付小方, 赵中宝, 等, 2019. 片麻岩穹窿与伟晶岩型锂矿的成矿规律探讨. 地球科学, 44(5): 1452-1463. doi: 10.3799/dqkx.2019.042 许志琴, 朱文斌, 郑碧海, 等, 2021. 新能源锂矿战略与大陆动力学研究——纪念南京大学地球科学与工程学院100周年华诞. 地质学报, 95(10): 2937-2954. 姚双秋, 庞崇进, 温淑女, 等, 2021. 桂西上二叠统合山组富锂黏土岩的发现及意义. 大地构造与成矿学, 45(5): 951-962. 于沨, 王登红, 于扬, 等, 2019. 国内外主要沉积型锂矿分布及勘查开发现状. 岩矿测试, 38(3): 354-364. 张七道, 李德宗, 李致伟, 等, 2024. 黔西北普底地区富锂黏土岩地球化学特征及成因. 地学前缘, 31(4): 258-280. 张英利, 陈雷, 王坤明, 等, 2022. 沉积型锂资源成矿作用特征. 矿床地质, 41(5): 1073-1092. 张英利, 陈雷, 王坤明, 等, 2023. 豫西巩义地区上石炭统本溪组泥岩地球化学和富锂特征及其控制因素. 地球科学与环境学报, 45(2): 208-226. 赵浩男, 邢乐才, 何洪涛, 等, 2022. 广西平果上二叠统合山组铝土矿中铌的赋存状态. 矿物学报, 42(4): 453-460. 赵元艺, 符家骏, 李运, 2015. 塞尔维亚贾达尔盆地超大型锂硼矿床. 地质论评, 61(1): 34-44. 赵越, 马万平, 杨洋, 等, 2022. 黏土矿物对Li+的吸附实验研究——对黏土型锂矿成矿启示. 矿物学报, 42(2): 141-153. 钟海仁, 孙艳, 杨岳清, 等, 2019. 铝土矿(岩)型锂资源及其开发利用潜力. 矿床地质, 38(4): 898-916. 周洪瑞, 梅冥相, 杜本明, 等, 2006. 天津蓟县雾迷山组高频旋回沉积特征. 现代地质, 20(2): 209-215. -