• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华北克拉通中部造山带北端罗卜起沟~2.33 Ga辉绿辉长岩成因及构造意义

    郑海平 姜雨奇 于文明 景国庆 徐洪波 吕晓慧

    郑海平, 姜雨奇, 于文明, 景国庆, 徐洪波, 吕晓慧, 2025. 华北克拉通中部造山带北端罗卜起沟~2.33 Ga辉绿辉长岩成因及构造意义. 地球科学, 50(7): 2735-2758. doi: 10.3799/dqkx.2024.127
    引用本文: 郑海平, 姜雨奇, 于文明, 景国庆, 徐洪波, 吕晓慧, 2025. 华北克拉通中部造山带北端罗卜起沟~2.33 Ga辉绿辉长岩成因及构造意义. 地球科学, 50(7): 2735-2758. doi: 10.3799/dqkx.2024.127
    Zheng Haiping, Jiang Yuqi, Yu Wenming, Jing Guoqing, Xu Hongbo, Lyu Xiaohui, 2025. Petrogenesis and Tectonic Implications of ~2.33 Ga Luobuqigou Diabase-Gabbro in Northern End of Trans-North China Orogen of North China Craton. Earth Science, 50(7): 2735-2758. doi: 10.3799/dqkx.2024.127
    Citation: Zheng Haiping, Jiang Yuqi, Yu Wenming, Jing Guoqing, Xu Hongbo, Lyu Xiaohui, 2025. Petrogenesis and Tectonic Implications of ~2.33 Ga Luobuqigou Diabase-Gabbro in Northern End of Trans-North China Orogen of North China Craton. Earth Science, 50(7): 2735-2758. doi: 10.3799/dqkx.2024.127

    华北克拉通中部造山带北端罗卜起沟~2.33 Ga辉绿辉长岩成因及构造意义

    doi: 10.3799/dqkx.2024.127
    基金项目: 

    华北地质勘查局综合普查大队科研项目 普科[2022]-C02

    详细信息
      作者简介:

      郑海平(1989—),男,高级工程师,硕士,主要从事矿产地质勘查工作. ORCID:0009-0004-3192-3657. E-mail:564788359@qq.com

    • 中图分类号: P581;P597

    Petrogenesis and Tectonic Implications of ~2.33 Ga Luobuqigou Diabase-Gabbro in Northern End of Trans-North China Orogen of North China Craton

    • 摘要: 古元古代早期岩浆活动对理解华北克拉通中部造山带构造演化史和地球动力学过程具有重要意义.首次在中部造山带北端赤峰南部罗卜起沟发现早古元古代辉绿辉长岩,并对其开展了详细的岩相学、全岩地球化学、锆石U-Pb-Hf同位素地球化学研究.锆石U-Pb同位素定年结果表明辉绿辉长岩侵入年龄为2 332 Ma.地球化学特征表明,辉绿辉长岩属于拉斑玄武岩系列,具Rb、Ba、U、Pb正异常,Sr、Nb、Th、Y负异常,具有相对较缓的右倾REE配分模式,LREE相对于HREE弱富集,Eu异常不明显.锆石εHft)值为-4.4~-0.8,单阶段模式年龄tDM1为2 722~2 837 Ma.岩石成因研究表明辉绿辉长岩岩浆起源于有软流圈地幔参与的大陆岩石圈富集地幔,富集地幔源为10%~20%部分熔融的含尖晶石和石榴石二辉橄榄岩地幔.其岩浆演化以单斜辉石分离结晶为主,橄榄石和斜长石次之,地壳混染影响有限.综合研究表明,早古元古代构造‒岩浆寂静期中部造山带北端赤峰南部罗卜起沟~2.33 Ga辉绿辉长岩可能处于弧后伸展裂谷环境.研究区可能经历了板块后撤引发的软流圈上涌、岩石圈减薄的地球动力学过程.研究结果为古元古代早期华北克拉通中部造山带北端构造演化提供约束和借鉴.

       

    • 图  1  华北克拉通构造简图(a)及小牛群‒罗卜起沟地区地质简图(b)

      图a据Zhao et al., 2005. 图b据核工业二〇八大队,2015内蒙古赤峰地质矿产勘查开发院,2016

      Fig.  1.  Tectonic map of the North China Craton (a) and geological sketch map of Luobuqigou-Xiaoniuqun area (b)

      图  2  罗卜起沟辉绿辉长岩野外露头照片

      a.罗卜起沟辉绿辉长岩野外照片及其与斑状二长花岗岩关系;b、c.古元古代早期辉绿辉长岩采样位置之一及样品照片;d.罗卜起沟老矿部后山东坡2.33 Ga辉绿辉长岩被1.86 Ga斑状二长花岗岩侵入照片

      Fig.  2.  Field photographs of the diabase-gabbro in the Luobuqigou area

      图  3  罗卜起沟辉绿辉长岩显微镜下照片

      Cpx.单斜辉石;Pl.斜长石;Hbl.角闪石;Chl.绿泥石;Mag.磁铁矿

      Fig.  3.  Photomicrographs (a、b) of the diabase-gabbro in the Luobuqigou area

      图  4  罗卜起沟辉绿辉长岩锆石U-Pb年龄谐和图及典型锆石阴极发光图像

      实线圈为锆石U-Pb测试点位,虚线圈为锆石Lu-Hf同位素测试点位

      Fig.  4.  Zircon U-Pb isotopic concordia diagrams and the representative CL images of analyzed zircons from the diabase-gabbro in the Luobuqigou area

      图  5  罗卜起沟辉绿辉长岩岩石分类图解

      a. Nb/Y-Zr/TiO2×0.000 1图解(据Winchester and Floyd, 1977);b. SiO2-FeOT/MgO图解(据Miyashiro,1975

      Fig.  5.  Geochemical classification diagrams of the diabase-gabbro in the Luobuqigou area

      图  6  罗卜起沟辉绿辉长岩哈克图解

      R值为Pearson相关系数

      Fig.  6.  Harker plots of the diabase-gabbro in the Luobuqigou area

      图  7  罗卜起沟辉绿辉长岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)

      球粒陨石、原始地幔、N-MORB、E-MORB和OIB数据均源自Sun and McDonough(1989)

      Fig.  7.  Chondrite-normalized rare elemental patterns (a) and primitive mantle-normalized trace elemental patterns (b) of diabase-gabbro in the Luobuqigou area

      图  8  罗卜起沟辉绿辉长岩Pearce元素比值图

      Russell and Nicholls, 1988. 矿物缩写:Ol.橄榄石;Opx.斜方辉石;Cpx.单斜辉石;Plg.斜长石

      Fig.  8.  Pearce element ratio diagrams fordiabase-gabbroin the Luobuqigou area

      图  9  罗卜起沟辉绿辉长岩Nb/La-La/Yb (a)、Nb/Yb-Th/Yb (b)、Nb/Yb-TiO2/Yb (c)、LaN/SmN-TbN/YbN (d)地幔源区判别图解

      图a~c据 Pearce, 2008, 2014;图d据Wang et al.(2002)

      Fig.  9.  (a) Nb/La-La/Yb; (b) Nb/Yb-Th/Yb; (c) Nb/Yb-TiO2/Yb; (d) LaN/SmN-TbN/YbN diagrams of mantle source for diabase-gabbroin the Luobuqigou area

      图  10  罗卜起沟辉绿辉长岩Dy/Dy*-Dy/Yb (a)、La/Sm-Sm/Yb (b)地幔源性质及部分熔融图解

      图a中Dy/Dy*定义来自Davidson et al.(2013).图b据Aldanmaz et al.(2000),黑色虚线和彩色虚线分别表示亏损MORB地幔(DMM)和富集的大陆岩石圈地幔(SCLM)熔融趋势,百分数为熔融程度;其中garnet-lherzolite(grt).石榴石二辉橄榄岩;spinel-lherzolite(sp).尖晶石二辉橄榄岩;DMM.亏损洋中脊玄武岩地幔;N/E-MORB.正常/富集洋中脊玄武岩;OIB.洋中脊玄武岩;PM.原始地幔;GLOSS.全球俯冲沉积物

      Fig.  10.  Dy/Dy*-Dy/Yb (a), La/Sm-Sm/Yb (b) diagrams of nature and partial melting of mantle source for diabase-gabbro in the Luobuqigou area

      图  11  罗卜起沟辉绿辉长岩Zr-Zr/Y (a)、Ta/Hf-Th/Hf (b)、2Nb-Zr/4-Y (c)图解

      图a据Pearce and Norry, 1979;图b据汪云亮等,2001;图c据Meschede,1986. b. Ⅰ.正常洋中脊玄武岩;Ⅱ1.洋岛玄武岩;Ⅱ2.大陆边缘岛弧玄武岩;Ⅲ.洋岛玄武岩、过渡洋中脊玄武岩、富集洋中脊玄武岩;Ⅳ1.陆内裂谷拉斑玄武岩;Ⅳ2.大陆伸展/裂谷玄武岩;Ⅳ3.陆内钙碱性玄武岩;V.地幔柱玄武岩.c. AI-AII.板内碱性玄武岩;AII-C.板内拉斑玄武岩;C.板内玄武岩;D.正常洋中脊玄武岩;B.富集洋中脊玄武岩

      Fig.  11.  Zr-Zr/Y (a), Ta/Hf-Th/Hf (b), 2Nb-Zr/4-Y (c) diagrams for diabase-gabbro in the Luobuqigou area

      表  1  罗卜起沟古元古代早期辉绿辉长岩LA-ICP-MS锆石U-Pb定年结果

      Table  1.   LA-ICP-MS zircon U-Pb dating results for the Early Paleoproterozoic diabase-gabbro in the Luobuqigou area

      测点号 Pb Th U Th/U 207Pb/206Pb 2σ 207Pb/235U 2σ 206Pb/238U 2σ 207Pb/206Pb 2σ 谐和度
      含量(10‒6) 同位素比值 年龄(Ma)
      A1 157 142 203 0.70 0.150 4 0.004 4 9.070 0 0.280 0 0.442 2 0.011 0 2 350 24 99
      A2 95 68 90.3 0.75 0.147 9 0.009 0 8.970 0 0.460 0 0.430 2 0.018 6 2 322 40 99
      A3 36.3 31.3 44.8 0.70 0.150 7 0.008 0 9.090 0 0.480 0 0.441 1 0.015 4 2 354 46 100
      A4 113 97 164 0.59 0.151 4 0.005 6 9.070 0 0.380 0 0.435 2 0.008 8 2 362 44 99
      A5 324 241 807 0.30 0.170 3 0.002 2 11.602 0 0.178 0 0.488 9 0.010 4 2 561 18 100
      A6 61.2 54.4 106 0.51 0.147 1 0.005 4 8.580 0 0.380 0 0.426 1 0.015 2 2 312 34 100
      A7 69.9 59.8 142 0.42 0.148 6 0.004 0 9.160 0 0.420 0 0.441 8 0.015 0 2 330 38 100
      A8 41.6 38.7 67.3 0.58 0.147 7 0.007 6 8.900 0 0.420 0 0.446 9 0.015 8 2 319 38 98
      A9 49.9 52.6 260 0.20 0.142 0 0.009 4 7.350 0 0.700 0 0.392 0 0.022 0 2 252 90 99
      A10 66.7 62.6 105 0.60 0.151 9 0.008 2 8.930 0 0.540 0 0.440 4 0.019 0 2 367 50 99
      A11 37.6 33.3 58.5 0.57 0.145 0 0.008 2 8.770 0 0.580 0 0.443 5 0.018 2 2 288 60 98
      A12 73 63.4 130 0.49 0.142 8 0.008 2 8.480 0 1.000 0 0.430 0 0.046 0 2 261 90 99
      A13 110 92.6 104 0.89 0.144 9 0.007 4 8.610 0 0.420 0 0.4291 0.014 4 2 287 42 100
      A14 73.6 77.2 330 0.23 0.145 8 0.006 8 7.910 0 0.580 0 0.411 0 0.028 0 2 297 56 100
      A15 117 106 251 0.42 0.140 5 0.008 4 6.570 0 0.480 0 0.354 0 0.030 0 2 233 66 95
      A16 113 111 212 0.52 0.139 8 0.005 8 6.830 0 0.420 0 0.363 0 0.020 0 2 225 48 95
      A17 124 76.6 278 0.28 0.142 7 0.004 0 7.249 5 0.273 7 0.365 3 0.015 1 2 256 49 93
      A18 94.1 117 174 0.68 0.149 0 0.004 2 8.418 5 0.411 1 0.405 5 0.016 7 2 330 50 96
      A19 77.3 40.2 147 0.27 0.152 5 0.004 7 8.986 5 0.389 7 0.423 7 0.016 9 2 369 52 97
      A20 34.1 26.4 59.7 0.44 0.153 0 0.008 7 9.606 4 0.371 2 0.462 1 0.020 5 2 365 94 99
      A21 55.4 37.1 97.3 0.38 0.146 9 0.004 5 9.115 6 0.454 0 0.444 6 0.014 6 2 305 52 99
      A22 98.2 54.9 244 0.22 0.141 6 0.003 9 6.554 6 0.320 4 0.336 2 0.008 2 2 242 47 90
      A23 43.3 34.7 83.4 0.42 0.152 4 0.005 2 8.550 9 0.482 9 0.402 4 0.017 1 2 366 61 95
      A24 75.9 62.3 132 0.47 0.151 5 0.004 5 9.132 3 0.342 1 0.430 3 0.011 4 2 358 50 98
      A25 104 88.7 223 0.40 0.144 3 0.002 5 7.501 8 0.267 4 0.374 1 0.012 6 2 277 30 94
      A26 96.3 68.4 183.1 0.37 0.146 9 0.003 7 8.486 3 0.424 3 0.417 6 0.014 5 2 322 33 99
      A27 43.7 32.6 69.0 0.47 0.150 0 0.004 3 10.112 3 0.476 6 0.485 0 0.019 5 2 341 49 96
      A28 45.5 33.1 80.1 0.41 0.152 7 0.003 9 9.638 6 0.452 2 0.455 2 0.016 0 2 373 45 99
      A29 70.2 73.6 114 0.65 0.152 2 0.005 4 9.527 6 0.478 8 0.451 7 0.013 1 2 364 62 99
      A30 102 43.2 188 0.23 0.147 1 0.003 8 9.206 7 0.451 0 0.450 9 0.014 7 2 309 45 98
      A31 108 78.7 243 0.32 0.140 0 0.003 7 6.886 4 0.362 8 0.355 4 0.017 0 2 223 45 93
      A32 123 251 265 0.95 0.141 0 0.003 6 6.719 5 0.626 2 0.343 4 0.027 3 2 235 45 91
      A33 100 47.9 202 0.24 0.144 5 0.003 5 7.766 5 0.426 7 0.389 0 0.016 4 2 278 42 96
      下载: 导出CSV

      表  2  罗卜起沟古元古代早期辉绿辉长岩LA-ICP-MS锆石Lu-Hf同位素结果

      Table  2.   LA-ICP-MS zircon Lu-Hf isotope results for the Early Paleoproterozoic diabase-gabbro in the Luobuqigou area

      测点号 t (Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ 176Hf/177Hfi εHf(0) εHf(t) 2σ tDM1(Ma) fLu/Hf
      A1 2 350 0.014 260 0.000 526 0.281 255 0.000 012 0.281 232 ‒53.6 ‒1.8 0.4 2 749 ‒0.98
      A2 2 322 0.018 350 0.000 602 0.281 252 0.000 012 0.281 226 ‒53.7 ‒2.7 0.4 2 759 ‒0.98
      A3 2 354 0.012 537 0.000 436 0.281 225 0.000 012 0.281 205 ‒54.7 ‒2.7 0.4 2 783 ‒0.99
      A4 2 362 0.018 139 0.000 629 0.281 281 0.000 012 0.281 252 ‒52.7 ‒0.8 0.4 2 722 ‒0.98
      A6 2 312 0.010 523 0.000 414 0.281 246 0.000 011 0.281 228 ‒54.0 ‒2.8 0.4 2 754 ‒0.99
      A7 2 330 0.012 734 0.000 470 0.281 259 0.000 012 0.281 238 ‒53.5 ‒2.0 0.4 2 740 ‒0.99
      A8 2 319 0.015 636 0.000 608 0.281 246 0.000 015 0.281 219 ‒54.0 ‒3.0 0.5 2 768 ‒0.98
      A13 2 287 0.025 005 0.000 985 0.281 262 0.000 021 0.281 219 ‒53.4 ‒3.7 0.8 2 773 ‒0.97
      A14 2 297 0.015 112 0.000 610 0.281 222 0.000 017 0.281 195 ‒54.8 ‒4.3 0.6 2 800 ‒0.98
      A17 2 256 0.023 534 0.000 875 0.281 266 0.000 013 0.281 229 ‒53.2 ‒4.1 0.5 2 759 ‒0.97
      A21 2 305 0.019 707 0.000 708 0.281 278 0.000 014 0.281 247 ‒52.8 ‒2.3 0.5 2 732 ‒0.98
      A23 2 366 0.008 874 0.000 302 0.281 240 0.000 012 0.281 226 ‒54.2 ‒1.6 0.4 2 754 ‒0.99
      A24 2 358 0.025 860 0.000 905 0.281 258 0.000 012 0.281 217 ‒53.5 ‒2.1 0.4 2 773 ‒0.97
      A25 2 277 0.024 889 0.000 963 0.281 247 0.000 019 0.281 205 ‒53.9 ‒4.4 0.7 2 792 ‒0.97
      A26 2 322 0.036 846 0.001 326 0.281 263 0.000 017 0.281 204 ‒53.4 ‒3.4 0.6 2 796 ‒0.96
      A27 2 341 0.016 067 0.000 605 0.281 260 0.000 012 0.281 233 ‒53.5 ‒2.0 0.4 2 749 ‒0.98
      A28 2 373 0.012 245 0.000 479 0.281 255 0.000 014 0.281 234 ‒53.6 ‒1.2 0.5 2 746 ‒0.99
      A29 2 364 0.025 627 0.001 015 0.281 217 0.000 014 0.281 171 ‒55.0 ‒3.7 0.5 2 837 ‒0.97
      A30 2 309 0.015 799 0.000 600 0.281 273 0.000 012 0.281 247 ‒53.0 ‒2.2 0.4 2 730 ‒0.98
      A33 2 278 0.022 936 0.000 937 0.281 274 0.000 017 0.281 233 ‒53.0 ‒3.4 0.6 2 753 ‒0.97
      下载: 导出CSV

      表  3  罗卜起沟古元古代早期辉绿辉长岩的全岩主量(%)和微量元素(10-6)分析结果

      Table  3.   Analyzed whole-rock major (%) and trace (10-6) element results for the Early Paleoproterozoic diabase-gabbro in the Luobuqigou area

      样品号 LBQG-H2 LBQG-H3 LBQG-H4 LBQG-H5 LBQG-H6 LBQG-H7 LBQG-H8 LBQG-H9 LBQG-H11
      SiO2 46.8 46.77 47.75 45.07 43.04 44.27 46.83 47.09 47.64
      TiO2 2.48 2.85 2.53 2.2 2.28 2.95 1.72 1.74 1.99
      Al2O3 13.17 11.78 13.86 12.11 12.43 12.29 13.94 13.58 12.93
      Fe2O3T 15.67 17.01 13.44 13.82 16.84 17.3 13.75 13.87 14.03
      MnO 0.2 0.21 0.18 0.19 0.2 0.22 0.21 0.28 0.29
      MgO 5.43 4.53 6.01 5.65 6.17 5.26 6.9 6.88 6.16
      CaO 5.1 5.63 6.69 8.08 7.33 6.21 9.15 7.07 8.51
      Na2O 2.56 2.24 2.32 2.21 1.34 1.72 2.69 1.9 3.92
      K2O 2.42 1.89 1.99 0.46 0.46 3.1 1.32 3.88 0.38
      P2O5 0.23 0.28 0.22 0.19 0.19 0.27 0.15 0.16 0.18
      LOI 5.81 7.24 5.16 10.1 9.8 6.59 2.78 2.7 3.69
      Total 99.87 100.43 100.15 100.08 100.08 100.18 99.44 99.15 99.72
      FeO 10.96 9.12 7.47 10.78 12.21 8.48 7.54 7.31 8.23
      Mg# 44.68 38.30 51.03 48.79 46.06 41.47 53.91 53.62 50.57
      Li 48.0 60.5 37.6 66.4 75.3 35.9 28.6 27.9 16.7
      Be 2.19 2.59 1.91 1.69 1.69 1.92 0.86 0.87 1.44
      Sc 35.8 38.1 37.5 34.1 36.0 39.8 41.9 43.6 38.1
      Ti 15 849 18 309 16 005 14 276 14 826 18 058 12 217 12 656 11 925
      V 433 588 456 399 439 599 446 459 445
      Cr 76.4 63.4 123 125 129 67.4 128 127 71.8
      Mn 1 651 1 773 1 402 1 547 1 657 1 738 1 849 2 543 2 205
      Co 52.6 52.7 48.1 52.4 61.9 57.8 62.0 62.7 49.3
      Ni 58.0 48.5 70.3 67.3 70.2 48.7 86.1 87.5 53.1
      Cu 97.0 83.9 183 110 51.5 162 98.8 29.9 490
      Zn 129 235 104 113 141 261 169 263 188
      Ga 21.8 21.3 20.5 19.2 21.4 21.3 22.0 21.9 19.3
      Ge 1.63 1.92 2.00 2.08 2.49 1.92 2.05 2.37 2.19
      As 2.18 6.90 3.36 3.09 5.42 3.57 16.29 7.34 5.01
      Rb 115 62.7 102 19.0 19.6 88.0 46.4 192 12.7
      Sr 112 204 321 237 204 89 418 316 223
      Y 30.3 33.5 27.9 25.3 27.2 30.0 23.9 24.9 25.7
      Zr 209 227 204 173 183 212 151 155 153
      Nb 12.9 17.3 14.6 12.7 13.6 16.0 9.82 10.3 10.1
      Mo 0.89 0.62 0.97 1.00 0.92 0.68 0.54 0.46 0.52
      In 0.12 0.13 0.10 0.09 0.09 0.10 0.10 0.10 0.09
      Cd 0.10 0.15 0.11 0.13 0.10 0.14 0.13 0.10 0.11
      Sn 1.68 1.82 1.75 1.83 1.20 1.67 1.27 1.27 1.34
      Sb 6.36 8.23 5.56 6.22 7.30 6.75 8.19 8.20 7.93
      Cs 5.43 1.69 1.50 0.76 0.73 0.83 0.35 1.14 1.38
      Ba 342 431 450 109 100 500 254 1588 59.8
      La 13.4 18.7 15.7 13.0 13.8 15.6 12.9 13.3 13.9
      Ce 36.1 47.0 40.4 34.5 36.0 41.0 30.9 31.5 34.6
      Pr 4.09 5.08 4.45 3.84 4.05 4.44 3.37 3.35 3.60
      Nd 21.9 25.8 23.1 20.0 21.1 22.8 17.4 17.5 18.6
      Sm 5.83 6.59 5.93 5.16 5.59 5.90 4.53 4.54 4.91
      Eu 2.02 2.42 2.10 1.50 1.64 2.10 1.77 2.39 1.68
      Gd 6.74 7.86 7.00 5.75 6.68 6.97 5.06 5.57 5.59
      Tb 1.17 1.28 1.09 0.97 1.10 1.14 0.91 0.91 0.98
      Dy 6.80 7.65 6.41 5.72 6.55 6.76 5.39 5.41 5.83
      Ho 1.25 1.42 1.18 1.03 1.18 1.26 0.99 1.00 1.08
      Er 3.91 4.53 3.70 3.24 3.60 4.05 3.29 3.29 3.42
      Tm 0.47 0.55 0.45 0.39 0.43 0.49 0.40 0.40 0.41
      Yb 3.22 3.84 3.02 2.71 2.95 3.48 2.86 2.80 2.92
      Lu 0.43 0.51 0.41 0.34 0.39 0.47 0.38 0.38 0.39
      Hf 5.59 6.09 5.54 4.75 5.18 5.77 4.29 4.27 4.24
      Ta 0.95 1.24 1.09 0.95 1.03 1.19 0.73 0.76 0.79
      W 1.51 7.71 1.45 2.05 1.94 2.79 1.42 1.09 1.64
      Tl 0.55 0.30 0.45 0.09 0.09 0.40 0.18 0.77 0.07
      Pb 2.46 11.1 4.50 4.19 5.74 12.9 15.6 9.73 9.83
      Bi 0.13 0.06 0.03 0.13 0.23 0.04 0.04 0.05 0.03
      Th 1.55 2.27 2.08 1.78 2.03 2.09 2.11 2.12 2.16
      U 0.48 0.65 0.77 0.67 0.73 0.55 0.53 0.50 0.61
      ΣREE 107 133 115 98.1 105 116 90.1 92.3 97.9
      LREE 83.30 106 91.7 78.0 82.2 91.8 70.8 72.5 77.2
      HREE 23.99 27.6 23.3 20.1 22.9 24.6 19.3 19.8 20.6
      LREE/HREE 3.47 3.82 3.95 3.87 3.60 3.73 3.68 3.67 3.75
      LaN/YbN 2.99 3.49 3.74 3.44 3.35 3.21 3.24 3.40 3.41
      δEu 0.98 1.03 1.00 0.84 0.82 1.00 1.13 1.45 0.98
      δCe 1.20 1.18 1.18 1.20 1.18 1.21 1.15 1.16 1.20
      注:LOI为烧失量; Mg#=100×(MgO/40.30)/(MgO/40.30+Fe2O3T×0.899 8/71.839×(1-0.15)); δEu=EuCN/(SmCN×GdCN)1/2δCe= CeCN/(LaCN×PrCN)1/2,CN为球粒陨石标准化(Sun and McDonough, 1989).
      下载: 导出CSV
    • Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1-2): 67-95. https://doi.org/10.1016/S0377-0273(00)00182-7
      Aldanmaz, E., Schmidt, M. W., Gourgaud, A., et al., 2009. Mid-Ocean Ridge and Supra-Subduction Geochemical Signatures in Spinel-Peridotites from the Neotethyan Ophiolites in SW Turkey: Implications for Upper Mantle Melting Processes. Lithos, 113(3-4): 691-708. https://doi.org/10.1016/j.lithos.2009.03.010
      Belica, M. E., Piispa, E. J., Meert, J. G., et al., 2014. Paleoproterozoic Mafic Dyke Swarms from the Dharwar Craton: Paleomagnetic Poles for India from 2.37 to 1.88 Ga and Rethinking the Columbia Supercontinent. Precambrian Research, 244: 100-122. https://doi.org/10.1016/j.precamres.2013.12.005
      Blichert-Toft, J., Albaréde, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/S0012-821X(97)00040-X
      Campbell, I. H., Griffiths, R. W., 2014. Did the Formation of D″ Cause the Archaean-Proterozoic Transition? Earth and Planetary Science Letters, 388: 1-8. https://doi.org/10.1016/j.epsl.2013.11.048
      Chen, B., Liu, S. W., Wang, R., et al., 2006. The Nd-Sr Isotopic Characteristics and Petrogenesis of Neoarchean-Proterozoic Granites in Lvliang-Wutai Block, North China Craton. Acta Geologica Sinica, 80(12): 1841 (in Chinese with English abstract).
      Chifeng Geology and Mineral Exploration and Development Institute, Inner Mongolia, 2016. Report of the 1∶50 000 Regional Mineral Geological Survey of Xiaoniuqun Sheet and the Other Two Sheets in Chifeng City, Inner Mongolia Autonomous Region. National Geological Data Museum, 19-122 (in Chinese).
      Condie, K. C., 2001. Mantle Plumes and Their Record in Earth History. Cambridge University Press, Cambridge.
      Condie, K. C., O'Neill, C., Aster, R. C., 2009. Evidence and Implications for a Widespread Magmatic Shutdown for 250 My on Earth. Earth and Planetary Science Letters, 282(1-4): 294-298. https://doi.org/10.1016/j.epsl.2009.03.033
      Condie, K. C., Pisarevsky, S. A., Puetz, S. J., et al., 2022. A Reappraisal of the Global Tectono-Magmatic Lull at ∼2.3 Ga. Precambrian Research, 376: 106690. https://doi.org/10.1016/j.precamres.2022.106690
      Cox, K. G., 1980. A Model for Flood Basalt Volcanism. Journal of Petrology, 21(4): 629-650. https://doi.org/10.1093/petrology/21.4.629
      Davidson, J., Turner, S., Plank, T., 2013. Dy/Dy*: Variations Arising from Mantle Sources and Petrogenetic Processes. Journal of Petrology, 54(3): 525-537. https://doi.org/10.1093/petrology/egs076
      DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189-202. https://doi.org/10.1016/0012-821X(81)90153-9
      Dong, C. Y., Ma, M. Z., Wilde, S. A., et al., 2022. The First Identification of Early Paleoproterozoic (2.46-2.38 Ga) Supracrustal Rocks in the Daqingshan Area, Northwestern North China Craton: Geology, Geochemistry and SHRIMP U-Pb Dating. Precambrian Research, 377: 106727. https://doi.org/10.1016/j.precamres.2022.106727
      Du, L. L., Yang, C. H., Song, H. X., et al., 2020. Neoarchean-Paleoproterozoic Multi-Stage Geological Events and Their Tectonic Implications in the Fuping Complex, North China Craton. Earth Science, 45(9): 3179-3195 (in Chinese with English abstract).
      Du, L. L., Yang, C. H., Wang, W., et al., 2013. Paleoproterozoic Rifting of the North China Craton: Geochemical and Zircon Hf Isotopic Evidence from the 2 137 Ma Huangjinshan A-Type Granite Porphyry in the Wutai Area. Journal of Asian Earth Sciences, 72: 190-202. https://doi.org/10.1016/j.jseaes.2012.11.040
      Duan, Q. S., Du, L. L., Song, H. X., et al., 2021. Petrogenesis of the 2.3 Ga Lengkou Metavolcanic Rocks in the North China Craton: Implications for Tectonic Settings during the Magmatic Quiescence. Precambrian Research, 357: 106151. https://doi.org/10.1016/j.precamres.2021.106151
      Faccenna, C., Becker, T. W., Lallemand, S., et al., 2010. Subduction-Triggered Magmatic Pulses: A New Class of Plumes? Earth and Planetary Science Letters, 299(1-2): 54-68. https://doi.org/10.1016/j.epsl.2010.08.012
      Faure, M., Trap, P., Lin, W., et al., 2007. Polyorogenic Evolution of the Paleoproterozoic Trans-North China Belt-New Insights from the Lüliangshan-Hengshan-Wutaishan and Fuping Massifs. Episodes, 30(2): 96-107. https://doi.org/10.18814/epiiugs/2007/v30i2/004
      Frey, F. A., Garcia, M. O., Wise, W. S., et al., 1991. The Evolution of Mauna Kea Volcano, Hawaii: Petrogenesis of Tholeiitic and Alkalic Basalts. Journal of Geophysical Research: Solid Earth, 96(B9): 14347-14375. https://doi.org/10.1029/91JB00940
      Gao, P., Santosh, M., Kwon, S., et al., 2021. Ocean Plate Stratigraphy of a Long-Lived Precambrian Subduction-Accretion System: The Wutai Complex, North China Craton. Precambrian Research, 363: 106334. https://doi.org/10.1016/j.precamres.2021.106334
      Gao, Z., Zhang, H. F., Yang, H., et al., 2018. Back-Arc Basin Development: Constraints on Geochronology and Geochemistry of Arc-like and OIB-like Basalts in the Central Qilian Block (Northwest China). Lithos, 310-311: 255-268. https://doi.org/10.1016/j.lithos.2018.04.002
      Grauch, R. I., 1989. Rare Earth Elements in Metamorphic Rocks. In: Lipin, B. R., McKay, G. A., eds., Geochemistry and Mineralogy of Rare Earth Elements. Mineralogical Society of America, Washington, D. C., 147-167.
      Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/S0016-7037(99)00343-9
      Hart, S. R., Staudigel, H., 1982. The Control of Alkalies and Uranium in Seawater by Ocean Crust Alteration. Earth and Planetary Science Letters, 58(2): 202-212. https://doi.org/10.1016/0012-821X(82)90194-7
      Hawkesworth, C. J., Lightfoot, P. C., Fedorenko, V. A., et al., 1995. Magma Differentiation and Mineralisation in the Siberian Continental Flood Basalts. Lithos, 34(1-3): 61-88. https://doi.org/10.1016/0024-4937(95)90011-X
      Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219-229. https://doi.org/10.1038/385219a0
      Hoffmann, J. E., Wilson, A. H., 2017. The Origin of Highly Radiogenic Hf Isotope Compositions in 3.33 Ga Commondale Komatiite Lavas (South Africa). Chemical Geology, 455: 6-21. https://doi.org/10.1016/j.chemgeo.2016.10.010
      Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.10.025
      Jia, X. L., Zhai, M. G., Xiao, W. J., et al., 2020. Mesoarchean to Paleoproterozoic Crustal Evolution of the Taihua Complex in the Southern North China Craton. Precambrian Research, 337: 105451. https://doi.org/10.1016/j.precamres.2019.105451
      Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397. https://doi.org/10.1016/S1367-9120(03)00071-3
      Kusky, T. M., 2011. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 20(1): 26-35. https://doi.org/10.1016/j.gr.2011.01.004
      Kusky, T. M., Windley, B. F., Wang, L., et al., 2014. Flat Slab Subduction, Trench Suction, and Craton Destruction: Comparison of the North China, Wyoming, and Brazilian Cratons. Tectonophysics, 630: 208-221. https://doi.org/10.1016/j.tecto.2014.05.028
      Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 162(1): 387-432. https://doi.org/10.1016/j.earscirev.2016.09.002
      Li, J. H., Qian, X. L., Huang, X. N., et al., 2000. Tectonic Framework of North China Block and Its Cratonization in the Early Precambrian. Acta Petrologica Sinica, 16(1): 1-10 (in Chinese with English abstract).
      Li, X. H., Li, W. X., He, B., 2012. Building of the South China Block and Its Relevance to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559 (in Chinese with English abstract).
      Li, Z. X., Zhang, S. B., Zheng, Y. F., et al., 2024. Linking the Paleoproterozoic Tectono-Magmatic Lull to the Archean Supercratons: Geochemical Insights from Paleoproterozoic Rocks in the North China Craton. Precambrian Research, 404: 107326. https://doi.org/10.1016/j.precamres.2024.107326
      Liu, S. W., Fu, J. H., Lu, Y. J., et al., 2019. Precambrian Hongqiyingzi Complex at the Northern Margin of the North China Craton: Its Zircon U-Pb-Hf Systematics, Geochemistry and Constraints on Crustal Evolution. Precambrian Research, 326: 58-83. https://doi.org/10.1016/j.precamres.2018.05.019
      Liu, S. W., Pan, Y. M., Li, J. H., et al., 2002. Geological and Isotopic Geochemical Constraints on the Evolution of the Fuping Complex, North China Craton. Precambrian Research, 117(1-2): 41-56. https://doi.org/10.1016/S0301-9268(02)00063-3
      Liu, S. W., Santosh, M., Wang, W., et al., 2011. Zircon U-Pb Chronology of the Jianping Complex: Implications for the Precambrian Crustal Evolution History of the Northern Margin of North China Craton. Gondwana Research, 20(1): 48-63. https://doi.org/10.1016/j.gr.2011.01.003
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Ludwig, K. R., 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, 70.
      Manikyamba, C., Kerrich, R., Khanna, T. C., et al., 2009. Enriched and Depleted Arc Basalts, with Mg-Andesites and Adakites: A Potential Paired Arc-Back-Arc of the 2.6 Ga Hutti Greenstone Terrane, India. Geochimica et Cosmochimica Acta, 73(6): 1711-1736. https://doi.org/10.1016/j.gca.2008.12.020
      McKenzie, D., O'Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. https://doi.org/10.1093/petrology/32.5.1021
      Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
      Miyashiro, A., 1975. Classification, Characteristics, and Origin of Ophiolites. The Journal of Geology, 83(2): 249-281. https://doi.org/10.1086/628085
      No. 208 Team of Nuclear Industry, 2015. Report of the 1∶ 50 000 Regional Mineral Geological Survey of Chaoyangdi Sheet and the Other Three Sheets in Chifeng City, Inner Mongolia Autonomous Region. National Geological Data Museum, 25-91 (in Chinese).
      O'Neill, C., Lenardic, A., Moresi, L., et al., 2007. Episodic Precambrian Subduction. Earth and Planetary Science Letters, 262(3-4): 552-562. https://doi.org/10.1016/j.epsl.2007.04.056
      Ouzegane, K., Liégeois, J. P., Doukkari, S., et al., 2023. The Egéré Paleo-Mesoproterozoic Rifted Passive Margin of the LATEA Metacraton (Central Hoggar, Tuareg Shield, Algeria) Subducted and Exhumed during the Pan-African Orogeny: U-Pb Zircon Ages, P-T-t Paths, Geochemistry and Sr-Nd Isotopes. Earth-Science Reviews, 236: 104262. https://doi.org/10.1016/j.earscirev.2022.104262
      Panda, A., Shankar, R., Sarma, D. S., et al., 2023. Precise Pb-Pb Baddeleyite Geochronology, Geochemistry, and Sr-Nd Isotopic Constraints on the 2.36 & 1.88 Ga Mafic Dykes from the Bastar Craton, India: Implications for Their Petrogenesis in Conjunction with the Dharwar Mafic Dykes. Precambrian Research, 393: 107090. https://doi.org/10.1016/j.precamres.2023.107090
      Partin, C. A., Bekker, A., Sylvester, P. J., et al., 2014. Filling in the Juvenile Magmatic Gap: Evidence for Uninterrupted Paleoproterozoic Plate Tectonics. Earth and Planetary Science Letters, 388: 123-133. https://doi.org/10.1016/j.epsl.2013.11.041
      Pehrsson, S. J., Buchan, K. L., Eglington, B. M., et al., 2014. Did Plate Tectonics Shutdown in the Palaeoproterozoic? A View from the Siderian Geologic Record. Gondwana Research, 26(3-4): 803-815. https://doi.org/10.1016/j.gr.2014.06.001
      Peng, P., Guo, J. H., Zhai, M. G., et al., 2012. Genesis of the Hengling Magmatic Belt in the North China Craton: Implications for Paleoproterozoic Tectonics. Lithos, 148: 27-44. https://doi.org/10.1016/j.lithos.2012.05.021
      Peng, P., Ernst, R. E., Hou, G. T., et al., 2016. Dyke Swarms: Keys to Paleogeographic Reconstructions. Science Bulletin, 61(21): 1669-1671. https://doi.org/10.1007/s11434-016-1184-x
      Pearce, T. H., 1968. A Contribution to the Theory of Variation Diagrams. Contributions to Mineralogy and Petrology, 19(2): 142-157. https://doi.org/10.1007/BF00635485
      Pearce, J. A., 1975. Basalt Geochemistry Used to Investigate Past Tectonic Environments on Cyprus. Tectonophysics, 25(1-2): 41-67. https://doi.org/10.1016/0040-1951(75)90010-4
      Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Andesites: Orogenic Andesites and Related Rocks. Wiley, Chichester, 525-548.
      Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
      Pearce, J. A., 2014. Immobile Element Fingerprinting of Ophiolites. Elements, 10(2): 101-108. https://doi.org/10.2113/gselements.10.2.101
      Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/BF00375192
      Pearce, J. A., Stern, R. J., 2006. Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives. In: Christie, M. D., Fisher, R. C., Lee, S., et al., eds., Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. American Geophysical Union, Washington, D. C., 63-86. https://doi.org/10.1029/166gm06
      Pisarevsky, S. A., De Waele, B., Jones, S., et al., 2015. Paleomagnetism and U-Pb Age of the 2.4 Ga Erayinia Mafic Dykes in the South-Western Yilgarn, Western Australia: Paleogeographic and Geodynamic Implications. Precambrian Research, 259: 222-231. https://doi.org/10.1016/j.precamres.2014.05.023
      Polat, A., Hofmann, A. W., 2003. Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3-4): 197-218. https://doi.org/10.1016/S0301-9268(03)00095-0
      Polat, A., Kusky, T., Li, J. H., et al., 2005. Geochemistry of Neoarchean (ca. 2.55-2.50 Ga) Volcanic and Ophiolitic Rocks in the Wutaishan Greenstone Belt, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting and Continental Growth. Geological Society of America Bulletin, 117(11-12): 1387-1399. https://doi.org/10.1130/b25724.1
      Rossel, P., Oliveros, V., Ducea, M. N., et al., 2013. The Early Andean Subduction System as an Analog to Island Arcs: Evidence from Across-Arc Geochemical Variations in Northern Chile. Lithos, 179: 211-230. https://doi.org/10.1016/j.lithos.2013.08.014
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1-64. https://doi.org/10.1016/B0-08-043751-6/03016-4
      Russell, J. K., Nicholls, J., 1988. Analysis of Petrologic Hypotheses with Pearce Element Ratios. Contributions to Mineralogy and Petrology, 99(1): 25-35. https://doi.org/10.1007/BF00399362
      Rutherford, L., Barovich, K., Hand, M., et al., 2006. Continental ca 1.7-1.69 Ga Fe-Rich Metatholeiites in the Curnamona Province, Australia: A Record of Melting of a Heterogeneous, Subduction-Modified Lithospheric Mantle. Australian Journal of Earth Sciences, 53(3): 501-519. https://doi.org/10.1080/08120090600632466
      Santosh, M., Hu, C. N., He, X. F., et al., 2017. Neoproterozoic Arc Magmatism in the Southern Madurai Block, India: Subduction, Relamination, Continental Outbuilding, and the Growth of Gondwana. Gondwana Research, 45: 1-42. https://doi.org/10.1016/j.gr.2016.12.009
      Shaw, D. M., 1970. Trace Element Fractionation during Anatexis. Geochimica et Cosmochimica Acta, 34(2): 237-243. https://doi.org/10.1016/0016-7037(70)90009-8
      Silver, P. G., Behn, M. D., 2008. Intermittent Plate Tectonics? Science, 319(5859): 85-88. https://doi.org/10.1126/science.1148397
      Smith, E. I., Sánchez, A., Walker, J. D., et al., 1999. Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small- and Large-Scale Chemical Variability of the Lithospheric Mantle. The Journal of Geology, 107(4): 433-448. https://doi.org/10.1086/314355
      Spencer, C. J., Murphy, J. B., Kirkland, C. L., et al., 2018. A Palaeoproterozoic Tectono-Magmatic Lull as a Potential Trigger for the Supercontinent Cycle. Nature Geoscience, 11(2): 97-101. https://doi.org/10.1038/s41561-017-0051-y
      Srivastava, R. K., 2010. Dyke Swarms: Keys for Geodynamic Interpretation. Proceedings of the Sixth International Dyke Conference. Springer, Berlin, 636. https://doi.org/10.1007/978-3-642-12496-9
      Sun, G. Z., Liu, S. W., Lü, Y. J., et al., 2022. Chronological Framework of Precambrian Dantazi Complex: Implications for the Formation and Evolution of the Northern North China Craton. Precambrian Research, 379: 106819. https://doi.org/10.1016/j.precamres.2022.106819
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Sun, Z. J., Yu, H. N., Li, C., et al., 2017. Paleoproterozoic (ca. 1.7 Ga) Magmatism in Chifeng, Inner Mongolia: Implications for the Tectonic Evolution of the Trans-North China Orogen. Arabian Journal of Geosciences, 10(20): 453. https://doi.org/10.1007/s12517-017-3206-7
      Tang, L., Santosh, M., Tsunogae, T., et al., 2017. Petrology, Phase Equilibria Modelling and Zircon U-Pb Geochronology of Paleoproterozoic Mafic Granulites from the Fuping Complex, North China Craton. Journal of Metamorphic Geology, 35(5): 517-540. https://doi.org/10.1111/jmg.12243
      Tang, L., Santosh, M., 2018. Neoarchean Granite-Greenstone Belts and Related Ore Mineralization in the North China Craton: An Overview. Geoscience Frontiers, 9(3): 751-768. https://doi.org/10.1016/j.gsf.2017.04.002
      Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241-265. https://doi.org/10.1029/95RG00262
      Trap, P., Faure, M., Lin, W., et al., 2012. Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen: Toward a Comprehensive Model. Precambrian Research, 222-223: 191-211. https://doi.org/10.1016/j.precamres.2011.09.008
      Turner, S. P., 1996. Petrogenesis of the Late-Delamerian Gabbroic Complex at Black Hill, South Australia: Implications for Convective Thinning of the Lithospheric Mantle. Mineralogy and Petrology, 56(1): 51-89. https://doi.org/10.1007/BF01162657
      Turner, S. J., Langmuir, C. H., Dungan, M. A., et al., 2017. The Importance of Mantle Wedge Heterogeneity to Subduction Zone Magmatism and the Origin of EM1. Earth and Planetary Science Letters, 472: 216-228. https://doi.org/10.1016/j.epsl.2017.04.051
      Valley, J. W., Reinhard, D. A., Cavosie, A. J., et al., 2015. Nano- and Micro-Geochronology in Hadean and Archean Zircons by Atom-Probe Tomography and SIMS: New Tools for Old Mineralsâ. American Mineralogist, 100(7): 1355-1377. https://doi.org/10.2138/am-2015-5134
      Verma, S. P., 1981. Seawater Alteration Effects on 87Sr/86Sr, K, Rb, Cs, Ba and Sr in Oceanic Igneous Rocks. Chemical Geology, 34(1-2): 81-89. https://doi.org/10.1016/0009-2541(81)90073-5
      Wang, G. D., Wang, H., Chen, H. X., et al., 2014. Metamorphic Evolution and Zircon U-Pb Geochronology of the Mts. Huashan Amphibolites: Insights into the Palaeoproterozoic Amalgamation of the North China Craton. Precambrian Research, 245: 100-114. https://doi.org/10.1016/j.precamres.2014.02.004
      Wang, J. P., Li, X. W., Ning, W. B., et al., 2019. Geology of a Neoarchean Suture: Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin, 131(11-12): 1943-1964. https://doi.org/10.1130/B35138.1
      Wang, K., Plank, T., Walker, J. D., et al., 2002. A Mantle Melting Profile across the Basin and Range, SW USA. Journal of Geophysical Research: Solid Earth, 107(B1): ECV5-1-ECV5-21. https://doi.org/10.1029/2001JB000209
      Wang, W., Liu, S. W., Santosh, M., et al., 2013a. Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry of Granitoid Gneisses in the Jianping Gneissic Terrane, Western Liaoning Province: Constraints on the Neoarchean Crustal Evolution of the North China Craton. Precambrian Research, 224: 184-221. https://doi.org/10.1016/j.precamres.2012.09.019
      Wang, Y. J., Zhang, A. M., Cawood, P. A., et al., 2013b. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-Back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231: 343-371. https://doi.org/10.1016/j.precamres.2013.03.020
      Wang, W., Liu, S. W., Santosh, M., et al., 2015. Neoarchean Intra-Oceanic Arc System in the Western Liaoning Province: Implications for Early Precambrian Crustal Evolution in the Eastern Block of the North China Craton. Earth-Science Reviews, 150: 329-364. https://doi.org/10.1016/j.earscirev.2015.08.002
      Wang, Y. L., Zhang, C. J., Xiu, S. Z., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract).
      Wang, Z. H., Wilde, S. A., Wan, J. L., 2010. Tectonic Setting and Significance of 2.3-2.1 Ga Magmatic Events in the Trans-North China Orogen: New Constraints from the Yanmenguan Mafic-Ultramafic Intrusion in the Hengshan-Wutai-Fuping Area. Precambrian Research, 178(1-4): 27-42. https://doi.org/10.1016/j.precamres.2010.01.005
      Wei, C. J., Qian, J. H., Zhou, X. W., 2014. Paleoproterozoic Crustal Evolution of the Hengshan-Wutai-Fuping Region, North China Craton. Geoscience Frontiers, 5(4): 485-497. https://doi.org/10.1016/j.gsf.2014.02.008
      Wilde, S. A., Zhao, G. C., Sun, M., 2002. Development of the North China Craton during the Late Archaean and Its Final Amalgamation at 1.8 Ga: Some Speculations on Its Position within a Global Palaeoproterozoic Supercontinent. Gondwana Research, 5(1): 85-94. https://doi.org/10.1016/S1342-937X(05)70892-3
      Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Chapman and Hall, London. https://doi.org/10.1007/978-1-4020-6788-4
      Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      Winter, J. D., 2014. Principles of Igneous and Metamorphic Petrology (Second ed.). Cambridge University Press, Cambridge, 745. https://doi.org/10.1017/CBO9780511813429
      Wu, C., Wang, G. S., Zhou, Z. G., et al., 2022. Late Archeanâ Paleoproterozoic Plate Tectonics along the Northern Margin of the North China Craton. GSA Bulletin, 135(3-4): 967-989. https://doi.org/10.1130/B36533.1
      Wu, C., Zhou, Z. G., Zuza, A. V., et al., 2018. A 1.9 Ga Mélange along the Northern Margin of the North China Craton: Implications for the Assembly of Columbia Supercontinent. Tectonics, 37(10): 3610-3646. https://doi.org/10.1029/2018TC005103
      Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract).
      Yuan, L. L., Zhang, X. H., Yang, Z. L., et al., 2017. Paleoproterozoic Alaskan-Type Ultramafic-Mafic Intrusions in the Zhongtiao Mountain Region, North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 296: 39-61. https://doi.org/10.1016/j.precamres.2017.04.037
      Zeng, Y. C., Chen, Q., Xu, J. F., et al., 2018. Petrogenesis and Geodynamic Significance of Neoproterozoic (∼925 Ma) High-Fe-Ti Gabbros of the RenTso Ophiolite, Lhasa Terrane, Central Tibet. Precambrian Research, 314: 160-169. https://doi.org/10.1016/j.precamres.2018.06.005
      Zhai, M. G., 2011. Cratonization and the Ancient North China Continent: A Summary and Review. Science China Earth Sciences, 54(8): 1110-1120. https://doi.org/10.1007/s11430-011-4250-x
      Zhai, M. G., Liu, W. J., 2003. Palaeoproterozoic Tectonic History of the North China Craton: A Review. Precambrian Research, 122(1-4): 183-199. https://doi.org/10.1016/S0301-9268(02)00211-5
      Zhai, M. G., Peng, P., 2020. Origin of Early Continents and Beginning of Plate Tectonics. Science Bulletin, 65(12): 970-973. https://doi.org/10.1016/j.scib.2020.03.022
      Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
      Zhai, M. G., Zhang, Y. B., Li, Q. L., et al., 2021. Cratonization, Lower Crust and Continental Lithosphere. Acta Petrologica Sinica, 37(1): 1-23 (in Chinese with English abstract).
      Zhai, Q. G., Jahn, B. M., Su, L., et al., 2013. SHRIMP Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopic Compositions of a Mafic Dyke Swarm in the Qiangtang Terrane, Northern Tibet and Geodynamic Implications. Lithos, 174: 28-43. https://doi.org/10.1016/j.lithos.2012.10.018
      Zhang, H., Hou, G. T., Tian, W., 2023. Baddeleyite Dating of a 2.34 Ga Mafic Dyke in the Western Shandong Province, North China Craton, and Its Tectonic Implications. Lithos, 438-439: 107013. https://doi.org/10.1016/j.lithos.2022.107013
      Zhao, G. C., Cawood, P. A., Li, S. Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222-223: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016
      Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002. Review of Global 2.1-1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1-4): 125-162. https://doi.org/10.1016/S0012-8252(02)00073-9
      Zhao, G. C., Sun, M., Wilde, S. A., et al., 2004. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup. Earth-Science Reviews, 67(1-2): 91-123. https://doi.org/10.1016/j.earscirev.2004.02.003
      Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002
      Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207-1240. https://doi.org/10.1016/j.gr.2012.08.016
      Zhao, J. H., Hu, R. Z., Zhou, M. F., et al., 2007. Elemental and Sr-Nd-Pb Isotopic Geochemistry of Mesozoic Mafic Intrusions in Southern Fujian Province, SE China: Implications for Lithospheric Mantle Evolution. Geological Magazine, 144(6): 937-952. https://doi.org/10.1017/S0016756807003834
      Zhao, J. H., Zhou, M. F., 2009. Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China. Lithos, 107(3-4): 152-168. https://doi.org/10.1016/j.lithos.2008.09.017
      Zhao, T. P., Chen, W., Zhou, M. F., 2009. Geochemical and Nd-Hf Isotopic Constraints on the Origin of the ~1.74 Ga Damiao Anorthosite Complex, North China Craton. Lithos, 113(3-4): 673-690. https://doi.org/10.1016/j.lithos.2009.07.002
      Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth's History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029
      Zhou, Y. Y., Sun, Q. Y., Zhao, T. P., et al., 2021. Petrogenesis of the Early Paleoproterozoic Low-δ18O Potassic Granites in the Southern NCC and Its Possible Implications for No Confluence of Glaciations and Magmatic Shutdown at ca. 2.3 Ga. Precambrian Research, 361: 106258. https://doi.org/10.1016/j.precamres.2021.106258
      Zhou, Y. Y., Zhai, M. G., 2022. Mantle Plume-Triggered Rifting Closely Following Neoarchean Cratonization Revealed by 2.50-2.20 Ga Magmatism across North China Craton. Earth-Science Reviews, 230: 104060. https://doi.org/10.1016/j.earscirev.2022.104060
      陈斌, 刘树文, 王蕊等, 2006. 华北克拉通吕梁‒五台地块新太古代‒古元古代花岗岩的Nd-Sr同位素地球化学及其成因意义. 地质学报, 80(12): 1841.
      杜利林, 杨崇辉, 宋会侠, 等, 2020. 华北克拉通阜平杂岩新太古代‒古元古代多期地质事件及其构造性质. 地球科学, 45(9): 3179-3195. doi: 10.3799/dqkx.2020.240
      核工业二〇八大队, 2015. 内蒙古自治区赤峰市《朝阳地等四幅》1∶5万区域矿产地质调查报告. 全国地质资料馆, 25-91.
      侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604.
      李江海, 钱祥麟, 黄雄南, 等, 2000. 华北陆块基底构造格局及早期大陆克拉通化过程. 岩石学报, 16(1): 1-10.
      李献华, 李武显, 何斌, 2012. 华南陆块的形成与Rodinia超大陆聚合‒裂解——观察、解释与检验. 矿物岩石地球化学通报, 31(6): 543-559.
      内蒙古赤峰地质矿产勘查开发院, 2016. 内蒙古自治区赤峰市《小牛群等三幅》1∶5万区域矿产地质调查报告. 全国地质资料馆, 19-122.
      汪云亮, 张成江, 修淑芝, 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421.
      吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
      翟明国, 张艳斌, 李秋立, 等, 2021. 克拉通、下地壳与大陆岩石圈——庆贺沈其韩先生百年华诞. 岩石学报, 37(1): 1-23.
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  27
    • HTML全文浏览量:  10
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-09-23
    • 网络出版日期:  2025-07-29
    • 刊出日期:  2025-07-25

    目录

      /

      返回文章
      返回