• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    U同位素在重建古海洋氧化还原环境中的应用

    朱紫光 侯佳凯 朱光有 李茜 厉梦琪

    朱紫光, 侯佳凯, 朱光有, 李茜, 厉梦琪, 2025. U同位素在重建古海洋氧化还原环境中的应用. 地球科学, 50(3): 1250-1262. doi: 10.3799/dqkx.2024.129
    引用本文: 朱紫光, 侯佳凯, 朱光有, 李茜, 厉梦琪, 2025. U同位素在重建古海洋氧化还原环境中的应用. 地球科学, 50(3): 1250-1262. doi: 10.3799/dqkx.2024.129
    Zhu Ziguang, Hou Jiakai, Zhu Guangyou, Li Xi, Li Mengqi, 2025. Application of U Isotope Fractionation Effect in the Analysis of Paleooceans Redox Environments. Earth Science, 50(3): 1250-1262. doi: 10.3799/dqkx.2024.129
    Citation: Zhu Ziguang, Hou Jiakai, Zhu Guangyou, Li Xi, Li Mengqi, 2025. Application of U Isotope Fractionation Effect in the Analysis of Paleooceans Redox Environments. Earth Science, 50(3): 1250-1262. doi: 10.3799/dqkx.2024.129

    U同位素在重建古海洋氧化还原环境中的应用

    doi: 10.3799/dqkx.2024.129
    基金项目: 

    国家自然科学基金面上项目 42073068

    详细信息
      作者简介:

      朱紫光(2000-),男,博士研究生,矿产普查与勘探专业,主要从事沉积地球化学研究.ORCID:0009-0003-3539-9883. E-mail:2594540756@qq.com

      通讯作者:

      朱光有,E-mail: zhuguangyou@yangtzeu.edu.cn

    • 中图分类号: P597

    Application of U Isotope Fractionation Effect in the Analysis of Paleooceans Redox Environments

    • 摘要: U同位素载体在沉积和成岩过程中均会发生显著的分馏,导致人们对古海洋氧化还原环境的误判.本文系统梳理了U同位素的分馏机制,逐一阐述了其在碳酸盐岩、黑色页岩和铁锰结壳的沉积和成岩过程中的分馏行为,并提出了理想载体的特征及消除沉积成岩效应的技术手段.总体而言,U同位素分馏机制丰富多样,分馏程度受反应速率、电子通量和环境离子强度等多种因素影响.碳酸盐岩和黑色页岩的沉积与成岩作用通常导致同位素组成偏重,而铁锰结壳则会出现相反方向的分馏,分馏程度受沉积环境和岩性组成的控制.实际应用中应选择成岩程度较低、以文石为主的海相碳酸盐岩,并采用离子交换色谱等技术手段,精确表征古海洋氧化还原环境.

       

    • 图  1  希瓦氏菌MR-1中电子传递示意

      图据Brown et al.2023)修改;FccA、STC、CymA代表小四血红素细胞色素;MtrA、MtrB、MtrC代表多血红素色素;MQ代表甲萘醌

      Fig.  1.  Schematic diagram of electron transfer in Shewanella oneidensis MR-1

      图  2  铀酰离子吸附示意

      a. 铀酰离子吸附于铁氧化物模式;b. 铀酰离子吸附于锰氧化物模式,据Dang et al.2016)修改

      Fig.  2.  Schematic diagrams of uranyl ion adsorption

      图  3  碳酸盐岩沉淀过程中的U同位素分馏模式

      Fig.  3.  Schematic representation of uranium isotope fractionation during carbonate precipitation

      图  4  Δ238U随时间变化关系(据Chen et al., 2021修改)

      Fig.  4.  Relationship of Δ238U with Time (modified from Chen et al., 2021)

      表  1  U同位素的分馏类型及分馏机理

      Table  1.   Types of uranium isotope fractionation and fractionation mechanisms

      同位素分馏类型 分馏方向 分馏机理 影响因素 实例
      氧化还原过程 生物 还原态富集238U 核场位移效应 反应自由能、反应速率、电子通量 Basu et al., 2014; Brown et al., 2023
      矿物 含铁矿物 氧化态富集238U 质量分馏机理 环境pH、接触时间 Renock et al., 2013; Stirling et al., 2007; Stylo et al., 2015;
      含硫矿物 几乎不产生分馏 单向反应分馏现象
      吸附过程 生物吸附过程 生物表面富集235U 配位几何结构变化 U浓度、共沉淀元素、离子强度 Chen et al., 2020; Wang et al., 2016;
      非生物吸附过程 矿物表面富集235U 配位几何结构不同
      碳酸盐岩沉淀及成岩 沉淀过程 碳酸盐岩富集238U 高δ238U的U组分优先进入碳酸盐岩中 金属离子浓度、环境pH、离子强度 Chen et al., 2016; Chen et al., 2022; Reeder et al., 2000;
      成岩过程 碳酸盐岩富集238U 多种分馏机理 岩石类型
      黑色页岩沉积及成岩 沉积过程 黑色页岩富集238U 发生氧化还原反应 金属离子浓度、环境pH、离子强度 Chen et al., 2021; Brown et al., 2018; Yang et al., 2017;
      成岩过程 黑色页岩富集238U 氧化U(Ⅳ)为U(Ⅵ) 环境pH、接触时间
      铁锰结壳形成过程中发生的U同位素分馏 铁锰结壳富集235U 非生物吸附作用产生U同位素分馏 U浓度、共沉淀元素、离子强度 Brennecka et al., 2010; Dang et al., 2016;
      下载: 导出CSV

      表  2  理想岩石样品特征

      Table  2.   Characteristics of ideal rock samples

      分馏发生的阶段 样品属性 理想样品特征 机理 参考文献
      沉积过程 样品岩性 碳酸盐岩,也可使用开阔海盆地沉积的黑色页岩 沉积过程分馏程度较低 Chen et al., 2021
      沉积环境 碱性、二氧化碳强分压、高离子强度、Mg2+浓度高而Ca2+离子浓度低 分馏程度与pH、pCO2、离子强度和Mg2+浓度正相关 Chen et al., 2017; Brown et al., 2018
      成岩过程 矿物组成 碳酸盐岩的矿物组成以原生文石为主 在方解石中比在文石中更容易受到成岩作用的影响 Reeder et al., 2000; Reeder et al., 2001
      元素组成 较低的Fe/Sr和Mn/Sr 成岩作用程度低 Yang et al., 2017
      Re-Os体系应维持在正常范围 流体的侵入会出现异常
      下载: 导出CSV
    • Anbar, A. D., Knoll, A. H., 2002. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? Science, 297(5584): 1137-1142. https://doi.org/10.1126/science.1069651
      Andersen, M. B., Erel, Y., Bourdon, B., 2009. Experimental Evidence for 234U-238U Fractionation during Granite Weathering with Implications for 234U/238U in Natural Waters. Geochimica et Cosmochimica Acta, 73(14): 4124-4141. https://doi.org/10.1016/j.gca.2009.04.020
      Andersen, M. B., Romaniello, S., Vance, D., et al., 2014. A Modern Framework for the Interpretation of 238U/235U in Studies of Ancient Ocean Redox. Earth and Planetary Science Letters, 400: 184-194. https://doi.org/10.1016/j.epsl.2014.05.051
      Andersen, M. B., Stirling, C. H., Weyer, S., 2017. Uranium Isotope Fractionation. Reviews in Mineralogy and Geochemistry, 82(1): 799-850. https://doi.org/10.2138/rmg.2017.82.19
      Andersen, M. B., Vance, D., Morford, J. L., et al., 2016. Closing in on the Marine 238U/235U Budget. Chemical Geology, 420: 11-22. https://doi.org/10.1016/j.chemgeo.2015.10.041
      Bachmaf, S., Merkel, B. J., 2011. Sorption of Uranium(Ⅵ) at the Clay Mineral-Water Interface. Environmental Earth Sciences, 63(5): 925-934. https://doi.org/10.1007/s12665-010-0761-6
      Bargar, J. R., Reitmeyer, R., Lenhart, J. J., et al., 2000. Characterization of U(Ⅵ)-Carbonato Ternary Complexes on Hematite: EXAFS and Electrophoretic Mobility Measurements. Geochimica et Cosmochimica Acta, 64(16): 2737-2749. https://doi.org/10.1016/S0016-7037(00)00398-7
      Bargar, J. R., Williams, K. H., Campbell, K. M., et al., 2013. Uranium Redox Transition Pathways in Acetate-Amended Sediments. Proceedings of the National Academy of Sciences, 110(12): 4506-4511. https://doi.org/10.1073/pnas.1219198110
      Basu, A., Sanford, R. A., Johnson, T. M., et al., 2014. Uranium Isotopic Fractionation Factors during U(Ⅵ) Reduction by Bacterial Isolates. Geochimica et Cosmochimica Acta, 136: 100-113. https://doi.org/10.1016/j.gca.2014.02.041
      Brennecka, G. A., Borg, L. E., Hutcheon, I. D., et al., 2010. Natural Variations in Uranium Isotope Ratios of Uranium Ore Concentrates: Understanding the 238U/235U Fractionation Mechanism. Earth and Planetary Science Letters, 291(1-4): 228-233. https://doi.org/10.1016/j.epsl.2010.01.023
      Brennecka, G. A., Wasylenki, L. E., Bargar, J. R., et al., 2011. Uranium Isotope Fractionation during Adsorption to Mn-Oxyhydroxides. Environmental Science & Technology, 45(4): 1370-1375. https://doi.org/10.1021/es103061v
      Brown, A. R., Molinas, M., Roebbert, Y., et al., 2023. Electron Flux Is a Key Determinant of Uranium Isotope Fractionation during Bacterial Reduction. Communications Earth & Environment, 4: 329. https://doi.org/10.1038/s43247-023-00989-x
      Brown, S. T., Basu, A., Ding, X., et al., 2018. Uranium Isotope Fractionation by Abiotic Reductive Precipitation. Proceedings of the National Academy of Sciences, 115(35): 8688-8693. https://doi.org/10.1073/pnas.1805234115
      Chakraborty, S., Favre, F., Banerjee, D., et al., 2010. U(Ⅵ) Sorption and Reduction by Fe(Ⅱ) Sorbed on Montmorillonite. Environmental Science & Technology, 44(10): 3779-3785. https://doi.org/10.1021/es903493n
      Chen, X. M., Robinson, S. A., Romaniello, S. J., et al., 2022. 238U/235U in Calcite Is More Susceptible to Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 326: 273-287. https://doi.org/10.1016/j.gca.2022.03.027
      Chen, X. M., Romaniello, S. J., Anbar, A. D., 2017. Uranium Isotope Fractionation Induced by Aqueous Speciation: Implications for U Isotopes in Marine CaCO3 as a Paleoredox Proxy. Geochimica et Cosmochimica Acta, 215: 162-172. https://doi.org/10.1016/j.gca.2017.08.006
      Chen, X. M., Romaniello, S. J., Herrmann, A. D., et al., 2016. Uranium Isotope Fractionation during Coprecipitation with Aragonite and Calcite. Geochimica et Cosmochimica Acta, 188: 189-207. https://doi.org/10.1016/j.gca.2016.05.022
      Chen, X., Tissot, F. L. H., Jansen, M. F., et al., 2021. The Uranium Isotopic Record of Shales and Carbonates through Geologic Time. Geochimica et Cosmochimica Acta, 300: 164-191. https://doi.org/10.1016/j.gca.2021.01.040
      Chen, X., Zheng, W., Anbar, A. D., 2020. Uranium Isotope Fractionation (238U/235U) during U(Ⅵ) Uptake by Freshwater Plankton. Environmental Science & Technology, 54(5): 2744-2752. https://doi.org/10.1021/acs.est.9b06421
      Cheng, H., Lawrence Edwards, R., Shen, C. C., et al., 2013. Improvements in 230Th Dating, 230Th and 234U Half-Life Values, and U-Th Isotopic Measurements by Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Earth and Planetary Science Letters, 371: 82-91. https://doi.org/10.1016/j.epsl.2013.04.006
      Cole, D. B., Zhang, S., Planavsky, N. J., 2017. A New Estimate of Detrital Redox-Sensitive Metal Concentrations and Variability in Fluxes to Marine Sediments. Geochimica et Cosmochimica Acta, 215: 337-353. https://doi.org/10.1016/j.gca.2017.08.004
      Cumberland, S. A., Douglas, G., Grice, K., et al., 2016. Uranium Mobility in Organic Matter-Rich Sediments: A Review of Geological and Geochemical Processes. Earth-Science Reviews, 159: 160-185. https://doi.org/10.1016/j.earscirev.2016.05.010
      Dahl, T. W., Connelly, J. N., Li, D., et al., 2019. Atmosphere-Ocean Oxygen and Productivity Dynamics during Early Animal Radiations. Proceedings of the National Academy of Sciences, 116(39): 19352-19361. https://doi.org/10.1073/pnas.1901178116
      Dang, D. H., Novotnik, B., Wang, W., et al., 2016. Uranium Isotope Fractionation during Adsorption, (Co) Precipitation, and Biotic Reduction. Environmental Science & Technology, 50(23): 12695-12704. https://doi.org/10.1021/acs.est.6b01459
      Dang, D. H., Wang, W., Gibson, T. M., et al., 2022. Authigenic Uranium Isotopes of Late Proterozoic Black Shale. Chemical Geology, 588: 120644. https://doi.org/10.1016/j.chemgeo.2021.120644
      Dong, W., Brooks, S. C., 2006. Determination of the Formation Constants of Ternary Complexes of Uranyl and Carbonate with Alkaline Earth Metals (Mg2+, Ca2+, Sr2+, and Ba2+) Using Anion Exchange Method. Environmental Science & Technology, 40(15): 4689-4695. https://doi.org/10.1021/es0606327
      Dunk, R. M., Mills, R. A., Jenkins, W. J., 2002. A Reevaluation of the Oceanic Uranium Budget for the Holocene. Chemical Geology, 190(1-4): 45-67. https://doi.org/10.1016/S0009-2541(02)00110-9
      Endrizzi, F., Leggett, C. J., Rao, L. F., 2016. Scientific Basis for Efficient Extraction of Uranium from Seawater. I: Understanding the Chemical Speciation of Uranium under Seawater Conditions. Industrial & Engineering Chemistry Research, 55(15): 4249-4256. https://doi.org/10.1021/acs.iecr.5b03679
      Endrizzi, F., Rao, L., 2014. Chemical Speciation of Uranium(Ⅵ) in Marine Environments: Complexation of Calcium and Magnesium Ions with [(UO2)(CO3)3]4- and the Effect on the Extraction of Uranium from Seawater. Chemistry A European Journal, 20(44): 14499-14506. https://doi.org/10.1002/chem.201403262
      Ferronsky, V. I., Polyakov, V. A., 2012. Production and Distribution of Radiogenic Isotopes. In: Ferronsky, V. I., Polyakov, V. A., eds., Isotopes of the Earth's Hydrosphere. Springer, Dordrecht, 377-405. https://doi.org/10.1007/978-94-007-2856-1_16
      Gilleaudeau, G. J., Romaniello, S. J., Luo, G. M., et al., 2019. Uranium Isotope Evidence for Limited Euxinia in Mid-Proterozoic Oceans. Earth and Planetary Science Letters, 521: 150-157. https://doi.org/10.1016/j.epsl.2019.06.012
      Goto, K. T., Anbar, A. D., Gordon, G. W., et al., 2014. Uranium Isotope Systematics of Ferromanganese Crusts in the Pacific Ocean: Implications for the Marine 238U/235U Isotope System. Geochimica et Cosmochimica Acta, 146: 43-58. https://doi.org/10.1016/j.gca.2014.10.003
      Herrmann, A. D., Gordon, G. W., Anbar, A. D., 2018. Uranium Isotope Variations in a Dolomitized Jurassic Carbonate Platform (Tithonian; Franconian Alb, Southern Germany). Chemical Geology, 497: 41-53. https://doi.org/10.1016/j.chemgeo.2018.08.017
      Holmden, C., Amini, M., Francois, R., 2015. Uranium Isotope Fractionation in Saanich Inlet: A Modern Analog Study of a Paleoredox Tracer. Geochimica et Cosmochimica Acta, 153: 202-215. https://doi.org/10.1016/j.gca.2014.11.012
      Hood, A. V. S., Planavsky, N. J., Wallace, M. W., et al., 2016. Integrated Geochemical-Petrographic Insights from Component-Selective δ238U of Cryogenian Marine Carbonates. Geology, 44(11): 935-938. https://doi.org/10.1130/g38533.1
      Hu, D. P., Li, D. D., Zhou, L., et al., 2023. Diagenetic Effects on Strontium Isotope (87Sr/86Sr) and Elemental (Sr, Mn, and Fe) Signatures of Late Ordovician Carbonates. JUSTC, 53(5): 503. https://doi.org/10.52396/justc-2022-0160
      Hua, B., Deng, B. L., 2008. Reductive Immobilization of Uranium(Ⅵ) by Amorphous Iron Sulfide. Environmental Science & Technology, 42(23): 8703-8708. https://doi.org/10.1021/es801225z
      Jemison, N. E., Johnson, T. M., Shiel, A. E., et al., 2016. Uranium Isotopic Fractionation Induced by U(Ⅵ) Adsorption Onto Common Aquifer Minerals. Environmental Science & Technology, 50(22): 12232-12240. https://doi.org/10.1021/acs.est.6b03488
      Kendall, B., Creaser, R. A., Gordon, G. W., et al., 2009. Re-Os and Mo Isotope Systematics of Black Shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, Northern Australia. Geochimica et Cosmochimica Acta, 73(9): 2534-2558. https://doi.org/10.1016/j.gca.2009.02.013
      Kendall, B., Komiya, T., Lyons, T. W., et al., 2015. Uranium and Molybdenum Isotope Evidence for an Episode of Widespread Ocean Oxygenation during the Late Ediacaran Period. Geochimica et Cosmochimica Acta, 156: 173-193. https://doi.org/10.1016/j.gca.2015.02.025
      Langmuir, D., 1978. Uranium Solution-Mineral Equilibria at Low Temperatures with Applications to Sedimentary Ore Deposits. Geochimica et Cosmochimica Acta, 42(6): 547-569. https://doi.org/10.1016/0016-7037(78)90001-7
      Liger, E., Charlet, L., Van Cappellen, P., 1999. Surface Catalysis of Uranium(Ⅵ) Reduction by Iron(Ⅱ). Geochimica et Cosmochimica Acta, 63(19/20): 2939-2955. https://doi.org/10.1016/S0016-7037(99)00265-3
      Lowenstein, T. K., Kendall, B., Anbar, A. D., 2014. The Geologic History of Seawater. In: Holland H. D., Turekian K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam, 569-622. https://doi.org/10.1016/b978-0-08-095975-7.00621-5
      Min, S. Y., Qiu, C., Luan, X. C., et al., 2023. Evolution of Oceanic Redox State during Early Ordovician Tremadocian Age Traced by Uranium Isotopes. Geological Journal of China Universities, 29(2): 147-160 (in Chinese with English abstract).
      Morse, J. W., Mackenzie, F. T., 1990. Geochemistry of Sedimentary Carbonates. Elsevier, New York.
      Newsome, L., Morris, K., Lloyd, J. R., 2014. The Biogeochemistry and Bioremediation of Uranium and Other Priority Radionuclides. Chemical Geology, 363: 164-184. https://doi.org/10.1016/j.chemgeo.2013.10.034
      Owens, S. A., Buesseler, K. O., Sims, K. W. W., 2011. Re-Evaluating the 238U-Salinity Relationship in Seawater: Implications for the 238U-234Th Disequilibrium Method. Marine Chemistry, 127(1-4): 31-39. https://doi.org/10.1016/j.marchem.2011.07.005
      Plette, A. C. C., Benedetti, M. F., van Riemsdijk, W. H., 1996. Competitive Binding of Protons, Calcium, Cadmium, and Zinc to Isolated Cell Walls of a Gram-Positive Soil Bacterium. Environmental Science & Technology, 30(6): 1902-1910. https://doi.org/10.1021/es950568l
      Prokoph, A., Shields, G. A., Veizer, J., 2008. Compilation and Time-Series Analysis of a Marine Carbonate δ18O, δ13C, 87Sr/86Sr and δ34S Database through Earth History. Earth-Science Reviews, 87(3-4): 113-133. https://doi.org/10.1016/j.earscirev.2007.12.003
      Qiu, C., Wei, G. Y., Min, S. Y., et al., 2022. Marine Redox Fluctuation during the Early Cambrian Age 10: Evidence from U Isotopes. Geological Journal of China Universities, 28(1): 40-50 (in Chinese with English abstract).
      Rademacher, L. K., Lundstrom, C. C., Johnson, T. M., et al., 2006. Experimentally Determined Uranium Isotope Fractionation during Reduction of Hexavalent U by Bacteria and Zero Valent Iron. Environmental Science & Technology, 40(22): 6943-6948. https://doi.org/10.1021/es0604360
      Reeder, R. J., Nugent, M., Lamble, G. M., et al., 2000. Uranyl Incorporation into Calcite and Aragonite: XAFS and Luminescence Studies. Environmental Science and Technology, 34(4): 638-644. https://doi.org/10.1021/es990981j
      Reeder, R. J., Nugent, M., Tait, C. D., et al., 2001. Coprecipitation of Uranium(Ⅵ) with Calcite: XAFS, Micro-XAS, and Luminescence Characterization. Geochimica et Cosmochimica Acta, 65(20): 3491-3503. https://doi.org/10.1016/S0016-7037(01)00647-0
      Renock, D., Mueller, M., Yuan, K., et al., 2013. The Energetics and Kinetics of Uranyl Reduction on Pyrite, Hematite, and Magnetite Surfaces: A Powder Microelectrode Study. Geochimica et Cosmochimica Acta, 118: 56-71. https://doi.org/10.1016/j.gca.2013.04.019
      Rolison, J. M., Stirling, C. H., Middag, R., et al., 2017. Uranium Stable Isotope Fractionation in the Black Sea: Modern Calibration of the 238U/235U Paleo-Redox Proxy. Geochimica et Cosmochimica Acta, 203: 69-88. https://doi.org/10.1016/j.gca.2016.12.014
      Romaniello, S. J., Herrmann, A. D., Anbar, A. D., 2013. Uranium Concentrations and 238U/235U Isotope Ratios in Modern Carbonates from the Bahamas: Assessing a Novel Paleoredox Proxy. Chemical Geology, 362: 305-316. https://doi.org/10.1016/j.chemgeo.2013.10.002
      Scott, C., Lyons, T. W., Bekker, A., et al., 2008. Tracing the Stepwise Oxygenation of the Proterozoic Ocean. Nature, 452: 456-459. https://doi.org/10.1038/nature06811
      Shi, L., Dong, H. L., Reguera, G., et al., 2016. Extracellular Electron Transfer Mechanisms between Microorganisms and Minerals. Nature Reviews Microbiology, 14: 651-662. https://doi.org/10.1038/nrmicro.2016.93
      Singer, D. M., Chatman, S. M., Ilton, E. S., et al., 2012. U(Ⅵ) Sorption and Reduction Kinetics on the Magnetite (111) Surface. Environmental Science & Technology, 46(7): 3821-3830. https://doi.org/10.1021/es203878c
      Skomurski, F. N., Ilton, E. S., Engelhard, M. H., et al., 2011. Heterogeneous Reduction of U6+ by Structural Fe2+ from Theory and Experiment. Geochimica et Cosmochimica Acta, 75(22): 7277-7290. https://doi.org/10.1016/j.gca.2011.08.006
      Stirling, C. H., Andersen, M. B., Potter, E. K., et al., 2007. Low-Temperature Isotopic Fractionation of Uranium. Earth and Planetary Science Letters, 264(1-2): 208-225. https://doi.org/10.1016/j.epsl.2007.09.019
      Stylo, M., Neubert, N., Wang, Y., et al., 2015. Uranium Isotopes Fingerprint Biotic Reduction. Proceedings of the National Academy of Sciences, 112(18): 5619-5624. https://doi.org/10.1073/pnas.1421841112
      Suzuki, Y., Kelly, S. D., Kemner, K. M., et al., 2005. Direct Microbial Reduction and Subsequent Preservation of Uranium in Natural Near-Surface Sediment. Applied and Environmental Microbiology, 71(4): 1790-1797. https://doi.org/10.1128/aem.71.4.1790-1797.2005
      Tissot, F. L. H., Chen, C., Go, B. M., et al., 2018. Controls of Eustasy and Diagenesis on the 238U/235U of Carbonates and Evolution of the Seawater (234U/238U) during the last 1.4 Myr. Geochimica et Cosmochimica Acta, 242: 233-265. https://doi.org/10.1016/j.gca.2018.08.022
      Tissot, F. L. H., Dauphas, N., 2015. Uranium Isotopic Compositions of the Crust and Ocean: Age Corrections, U Budget and Global Extent of Modern Anoxia. Geochimica et Cosmochimica Acta, 167: 113-143. https://doi.org/10.1016/j.gca.2015.06.034
      Tokumaru, A., Nozaki, T., Suzuki, K., et al., 2015. Re-Os Isotope Geochemistry in the Surface Layers of Ferromanganese Crusts from the Takuyo Daigo Seamount, Northwestern Pacific Ocean. Geochemical Journal, 49(3): 233-241. https://doi.org/10.2343/geochemj.2.0352
      Tunusoğlu, Ö., 2007. Kinetic Morphological, and Compositional Characterization of the Uptake of Aqueous Ba2+, Mn2+, and Cd2+ Ions by Calcite and Aragonite over a Wide Range of Concentration. Izmir Institute of Technology, Izmir.
      Ulrich, K. U., Veeramani, H., Bernier-Latmani, R., et al., 2011. Speciation-Dependent Kinetics of Uranium(Ⅵ) Bioreduction. Geomicrobiology Journal, 28(5-6): 396-409. https://doi.org/10.1080/01490451.2010.507640
      Veeramani, H., Alessi, D. S., Suvorova, E. I., et al., 2011. Products of Abiotic U(Ⅵ) Reduction by Biogenic Magnetite and Vivianite. Geochimica et Cosmochimica Acta, 75(9): 2512-2528. https://doi.org/10.1016/j.gca.2011.02.024
      Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161(1-3): 59-88. https://doi.org/10.1016/S0009-2541(99)00081-9
      Vollstaedt, H., Eisenhauer, A., Wallmann, K., et al., 2014. The Phanerozoic δ88/86Sr Record of Seawater: New Constraints on Past Changes in Oceanic Carbonate Fluxes. Geochimica et Cosmochimica Acta, 128: 249-265. https://doi.org/10.1016/j.gca.2013.10.006
      Waite, T. D., Davis, J. A., Payne, T. E., et al., 1994. Uranium(Ⅵ) Adsorption to Ferrihydrite: Application of a Surface Complexation Model. Geochimica et Cosmochimica Acta, 58(24): 5465-5478. https://doi.org/10.1016/0016-7037(94)90243-7
      Wall, J. D., Krumholz, L. R., 2006. Uranium Reduction. Annual Review of Microbiology, 60: 149-166. https://doi.org/10.1146/annurev.micro.59.030804.121357
      Wang, X. L., Johnson, T. M., Lundstrom, C. C., 2015. Isotope Fractionation during Oxidation of Tetravalent Uranium by Dissolved Oxygen. Geochimica et Cosmochimica Acta, 150: 160-170. https://doi.org/10.1016/j.gca.2014.12.007
      Wang, X. L., Ossa, F. O., Hofmann, A., et al., 2020. Uranium Isotope Evidence for Mesoarchean Biological Oxygen Production in Shallow Marine and Continental Settings. Earth and Planetary Science Letters, 551: 116583. https://doi.org/10.1016/j.epsl.2020.116583
      Wang, X., Planavsky, N. J., Reinhard, C. T., et al., 2016. A Cenozoic Seawater Redox Record Derived from 238U/235U in Ferromanganese Crusts. American Journal of Science, 316(1): 64-83. https://doi.org/10.2475/01.2016.02
      Wei, W., Frei, R., Klaebe, R., et al., 2021. A Transient Swing to Higher Oxygen Levels in the Atmosphere and Oceans at ~1.4 Ga. Precambrian Research, 354: 106058. https://doi.org/10.1016/j.precamres.2020.106058
      Weyer, S., Anbar, A. D., Gerdes, A., et al., 2008. Natural Fractionation of 238U/235U. Geochimica et Cosmochimica Acta, 72(2): 345-359. https://doi.org/10.1016/j.gca.2007.11.012
      Xu, G. P., Hannah, J. L., Bingen, B., et al., 2012. Digestion Methods for Trace Element Measurements in Shales: Paleoredox Proxies Examined. Chemical Geology, 324: 132-147. https://doi.org/10.1016/j.chemgeo.2012.01.029
      Yang, S., Kendall, B., Lu, X. Z., et al., 2017. Uranium Isotope Compositions of Mid-Proterozoic Black Shales: Evidence for an Episode of Increased Ocean Oxygenation at 1.36 Ga and Evaluation of the Effect of Post-Depositional Hydrothermal Fluid Flow. Precambrian Research, 298: 187-201. https://doi.org/10.1016/j.precamres.2017.06.016
      Zhang, F. F., Lenton, T. M., Rey, Á. D., et al., 2020. Uranium Isotopes in Marine Carbonates as a Global Ocean Paleoredox Proxy: A Critical Review. Geochimica et Cosmochimica Acta, 287: 27-49. https://doi.org/10.1016/j.gca.2020.05.011
      闵思雨, 邱晨, 栾晓聪, 等, 2023. 铀同位素示踪早奥陶世特马豆克期海洋氧化还原状态演化. 高校地质学报, 29(2): 147-160.
      邱晨, 魏广祎, 闵思雨, 等, 2022. 寒武纪第十期早期海洋氧化还原波动: 来自U同位素的证据. 高校地质学报, 28(1): 40-50.
    • 加载中
    图(4) / 表(2)
    计量
    • 文章访问数:  136
    • HTML全文浏览量:  92
    • PDF下载量:  31
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-05-04
    • 刊出日期:  2025-03-25

    目录

      /

      返回文章
      返回