• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    江汉平原古云梦泽形成演化及其影响机制

    顾延生 管硕 李越南

    顾延生, 管硕, 李越南, 2025. 江汉平原古云梦泽形成演化及其影响机制. 地球科学, 50(3): 830-845. doi: 10.3799/dqkx.2024.130
    引用本文: 顾延生, 管硕, 李越南, 2025. 江汉平原古云梦泽形成演化及其影响机制. 地球科学, 50(3): 830-845. doi: 10.3799/dqkx.2024.130
    Gu Yansheng, Guan Shuo, Li Yuenan, 2025. The Formation and Evolution of the Paleo-Yunmeng Lake Group in the Jianghan Plain and Its Influencing Mechanism. Earth Science, 50(3): 830-845. doi: 10.3799/dqkx.2024.130
    Citation: Gu Yansheng, Guan Shuo, Li Yuenan, 2025. The Formation and Evolution of the Paleo-Yunmeng Lake Group in the Jianghan Plain and Its Influencing Mechanism. Earth Science, 50(3): 830-845. doi: 10.3799/dqkx.2024.130

    江汉平原古云梦泽形成演化及其影响机制

    doi: 10.3799/dqkx.2024.130
    基金项目: 

    国家自然科学基金项目 41572153

    国家自然科学基金项目 U23A2023

    详细信息
      作者简介:

      顾延生(1970-),男,教授,博士,主要从事生态环境地质教学与研究. ORCID:0000-0001-6620-1946. E-mail:ysgu@cug.edu.cn

    • 中图分类号: P53

    The Formation and Evolution of the Paleo-Yunmeng Lake Group in the Jianghan Plain and Its Influencing Mechanism

    • 摘要: 夏商以来,江汉平原发育的古云梦泽具有重要的历史、地理、文化与生态环境研究价值,但长久以来受到历史记载贫乏和钻孔调查精度的限制,古云梦泽的成因、分布、演化的时空格局尚不清晰.在前人历史文献和钻孔调查基础上,本文首次系统开展了钻孔高分辨率古环境演化研究,真实还原了4 000年来古云梦泽形成演化历史,全面而深刻地揭示了古云梦泽沉积地貌过程与区域新构造运动、气候变化、河道变迁和人类活动的关系.多钻孔沉积学分析表明,古云梦泽发育时期沉积环境具有多样性,包括河床相、漫滩相、湖相和三角洲相,指示了“河流‒湖泊‒三角洲”复合沉积体系.沉积相自西向东分布呈现一定规律,西部以漫滩相、三角洲相为主,中部以漫滩相、三角洲、湖相为主,东部以湖相为主,古地理重建表明古云梦泽是江汉平原内部河间洼地发育的多变的湖群景观.根据历史文献与钻孔记录重建了古云梦泽形成演化的4个时期:鼎盛期(夏商时期)、淤浅期(周秦汉时期)、萎缩期(魏晋南北朝时期)和湮灭期(唐宋时期).结果表明,古云梦泽形成演化主要受到新构造运动、气候变化、洪水泛滥与河道变迁以及人类活动的叠加影响:(1)新构造沉降为古云梦泽分布创造了空间条件,长江主泓来水来沙为古云梦泽出现创造了可能,但后续长江主泓的南移对古云梦泽演化趋势影响显著;(2)ENSO(El Niño-Southern Oscillation)关联的季风异常降水与河道洪水泛滥作用推动了古云梦泽的兴盛,而荆江三角洲的推进与古云梦泽的於浅及萎缩有关;(3)唐宋以来,随着荆江统一河床的塑造、人为筑堤堵穴、围湖建垸和围湖造田加速了古云梦泽的湮灭.总之,本研究揭示了古云梦泽形成演化的时空格局及其复杂的影响机制,为存在已久的争议提供了可靠的答案,也为预测未来长江中游地区江湖关系演变和现代江汉湖群保护提供了重要参考.

       

    • 图  1  长江中下游主要淡水湖泊(a)及江汉平原古云梦泽研究钻孔分布图(b)

      Fig.  1.  Map showing the fresh water lake group in the mid-lower Yangze Valley (a) and the distribution of studied boreholes in the Jianghan Plain (b)

      图  2  江汉平原研究钻孔粒度频率曲线指示的沉积相

      Fig.  2.  Sedimentary facies indicated by particle-size frequency curves from the studied boreholes in the Jianghan Plain

      图  3  江汉平原钻孔沉积记录古云梦泽存在“河流‒湖泊‒三角洲”沉积地貌景观

      Fig.  3.  Sedimentary landscape of "river-lake-delta" of the PYMLG documented by sedimentary records from the studied boreholes in the Jianghan Plain

      图  4  基于钻孔与历史文献重建的夏商以来古云梦泽分布与演化阶段

      古水系和古地名参考张修桂(1980)姜加虎等(2015),夏商文化遗址、楚文化遗址来自Xie et al.(2013)、秦汉文化遗址、魏晋南北朝文化遗址、隋唐宋时期文化遗址来自邓辉等(2009)

      Fig.  4.  The distribution and evolution stages of the PYMLG since Xia and Shang Dynasties based on the boreholes and historic documents

      图  5  太阳辐射、ENSO活动、季风降水、古洪水事件、人类活动与古云梦泽环境演化阶段比较

      a. 基于GRIP冰心14C记录重建4 ka BP以来的太阳活动(Bond et al.,2001);b. 100年窗口内ENSO振幅(Liu et al.,2014);c. 江汉平原孢粉重建年均降水(Huang et al.,2023);d. 江汉平原JH001钻孔EM4组分含量指示的古洪水事件(Guan et al.,2022);e. 基于孢粉记录的鄱阳湖古水文变化(Gu et al.,2018);f. 长江中下游钻孔记录的大湖期(Fang et al.,1991);g. 梁子湖沉积物Cu含量记录的古人类活动(Lee et al.,2008

      Fig.  5.  Comparisons among solar radiation, ENSO activity, monsoon precipitation, ancient flood events, human activities and the evolutionary stages of the PYMLG environment

      表  1  江汉平原研究钻孔AMS14C测年结果

      Table  1.   Results of AMS 14C dating on the studied boreholes in the Jianghan Plain

      样品号 实验室编号 深度(m) 测试材料 14C年龄(a BP) 校正年代(2σ)(cal a BP)
      JH001-005 403978 5.00 有机泥 1 540±30 1 425~1 352
      JH001-009 403980 15.00 有机泥 2 120±30 2 007~1 871
      JH001-016 421878 20.00 有机泥 3 200±30 3 460~3 367
      JH001-017 582467 21.88 有机泥 4 000±30 4 528~4 414
      YMZ1-11 XA18288 10.56 有机泥 2 080±30 2 125~1 982
      YMZ3-15 XA18282 13.50 木块 1 675±25 1 613~1 523
      YMZ4-7 XA18293 7.94 木块 5 180±35 6 002~5 895
      YMZ7-3 XA18278 5.00 有机泥 3 986±30 4 528~4 404
      YLW01-1 447153 4.58 有机泥 850±30 793~684
      YLW01-4 447154 7.00 有机泥 3 120±30 3 400~3 315
      下载: 导出CSV

      表  2  JH002钻孔OSL测年结果(徐砚田,2019

      Table  2.   Results of OSL dating on JH002 Borehole (from Xu, 2019)

      样品号 深度(m) U(10‒6) Th(10‒6) K(%) 含水率(%) 剂量率(Gy/ka) De(Gy) 年代(ka)
      JH002-03 3.25±0.06 2.52±0.10 15.8±0.4 2.28±0.07 34±5 2.97±0.10 9.3±0.1 3.12±0.11
      JH002-05 4.74±0.06 3.70±0.12 18.6±0.4 2.58±0.07 29±5 3.65±0.13 14.6±0.5 4.00±0.19
      JH002-07 5.84±0.06 4.48±0.14 18.9±0.5 2.32±0.07 32±5 3.50±0.12 18.7±0.4 5.33±0.22
      下载: 导出CSV
    • Blaauw, M., Christen, J. A., 2011. Flexible Paleoclimate Age-Depth Models Using an Autoregressive Gamma Process. Bayesian Analysis, 6(3): 457-474. https://doi.org/10.1214/ba/1339616472
      Bond, G., Kromer, B., Beer, J., et al., 2001. Persistent Solar Influence on North Atlantic Climate during the Holocene. Science, 294(5549): 2130-2136. https://doi.org/10.1126/science.1065680
      Cai, S. M., Guan, Z. H., 1979. Study on Lake Geology (Quaternary Period) of Lake Donghu, Wuhan, Hubei Province, China-With Comments on Its Formation and on Ancient Yunmeng Swamp. Oceanologia et Limnologia Sinica, 10(4): 383-394 (in Chinese with English abstract).
      Cai, S. M., Guan, Z. H., 1982. The Ungrounded Hypothesis of the Presence of the Ancient Yunmeng Swamp Traversing South and North of the Changjiang River on the Jianghan-Dongting Plain-Second Comments on the Ancient Yunmeng Swamp. Oceanologia et Limnologia Sinica, 13(2): 129-142 (in Chinese with English abstract).
      Cai, S. M., Zhao, Y., Du, Y., et al., 1998. Environmental Evolution and Future Development Trends of the Holocene Jianghan Lake Group: A Further Understanding of the Ancient Yunmeng Swamp Problem. Wuhan University Journal (Philosophy & Social Science Edition), 51(6): 96-100 (in Chinese).
      Daniels, W. C., Russell, J. M., Morrill, C., et al., 2021. Lacustrine Leaf Wax Hydrogen Isotopes Indicate Strong Regional Climate Feedbacks in Beringia since the last Ice Age. Quaternary Science Reviews, 269: 107130. https://doi.org/10.1016/j.quascirev.2021.107130
      Deng, H., Chen, Y. Y., Jia, J. Y., et al., 2009. Distribution Patterns of the Ancient Cultural Sites in the Middle Reaches of the Yangtze River since 8 500 a BP. Acta Geographica Sinica, 64(9): 1113-1125 (in Chinese with English abstract). doi: 10.3321/j.issn:0375-5444.2009.09.009
      Editorial Committee of Physical Geography of China, Chinese Academy of Sciences, 1982. Physical Geography of China, Historical Physical Geography. Science Press, Beijing (in Chinese).
      Fang, H. Q., 1959. Neotectonic Movements in the Middle and Lower Reaches of the Yangtze River. Acta Geologica Sinica, 39(3): 328-343 (in Chinese with Russian abstract).
      Fang, J. Q., 1991. Lake Evolution during the Past 30, 000 Years in China, and Its Implications for Environmental Change. Quaternary Research, 36(1): 37-60. https://doi.org/10.1016/0033-5894(91)90016-x
      Gayantha, K., Routh, J., Chandrajith, R., 2017. A Multi-Proxy Reconstruction of the Late Holocene Climate Evolution in Lake Bolgoda, Sri Lanka. Palaeogeography, Palaeoclimatology, Palaeoecology, 473: 16-25. https://doi.org/10.1016/j.palaeo.2017.01.049
      Ge, J. W., 2007. Wetland Resources and Their Management: A Case Study on Hubei Province, Central China. Science Press, Beijing (in Chinese).
      Gu, Y. S., Ge, J. W., Huang, J. H., et al., 2009. Climate Change and Human Activity and Its Relationship with the Evolution of the Jianghan Lakes over the Past 20 000 Years. Geological Publishing House, Beijing (in Chinese).
      Gu, Y. S., Guan, S., Ma, T., et al., 2018. Quaternary Sedimentary Environment Documented by Borehole Stratigraphical Records in Eastern Jianghan Basin. Earth Science, 43(11): 3989-4000 (in Chinese with English abstract).
      Gu, Y. S., Liu, H. Y., Guan, S., et al., 2018. Possible El Niño-Southern Oscillation-Related Lacustrine Facies Developed in Southern Lake Poyang during the Late Holocene: Evidence from Spore-Pollen Records. The Holocene, 28(4): 503-512. https://doi.org/10.1177/0959683617735593
      Gu, Y. S., Li, K. J., Qin, Y. M., et al., 2013. The Impact of Human Activity on the Evolution of the Ecological Environment of Jianghan Lake Group since the Historical Period. Earth Science, 38(S1): 133-144 (in Chinese with English abstract).
      Gu, Y. S., Yu, J. X., Xie, S. C., et al., 2007. Palaeoclimate Changes Derived from Core Sediments Spore-Pollen and Phytolith Records in the Jianghan Plain over the Past 5 000 Years. Earth Science, 32 (Suppl. ): 133-141 (in Chinese with English abstract).
      Guan, S., Yang, Q., Li, Y. N., et al., 2022. River Flooding Response to ENSO-Related Monsoon Precipitation: Evidence from Late Holocene Core Sediments in the Jianghan Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 589: 110834. https://doi.org/10.1016/j.palaeo.2022.110834
      Hamilton, P. B., Strom, K., Hoyal, D. C. J. D., 2013. Autogenic Incision-Backfilling Cycles and Lobe Formation during the Growth of Alluvial Fans with Supercritical Distributaries. Sedimentology, 60(6): 1498-1525. https://doi.org/10.1111/sed.12046
      Hoyal, D. C. J. D., Sheets B. A., 2009. Morphodynamic Evolution of Experimental Cohesive Deltas. Journal of Geophysical Research: Earth Surface, 114: F02009. https://doi.org/10.1029/2007JF000882
      Hu, C. Y., Henderson, G. M., Huang, J. H., et al., 2008. Quantification of Holocene Asian Monsoon Rainfall from Spatially Separated Cave Records. Earth and Planetary Science Letters, 266(3-4): 221-232. https://doi.org/10.1016/j.epsl.2007.10.015
      Huang, X. Z., Ren, X. X., Chen, X. M., et al., 2021. Anthropogenic Mountain Forest Degradation and Soil Erosion Recorded in the Sediments of Mayinghai Lake in Northern China. CATENA, 207: 105597. https://doi.org/10.1016/j.catena.2021.105597
      Huang, Z. H., Ma, C. M., Feng, S., et al., 2023. Vegetation, Hydrology, and Quantitative Monsoon Precipitation since the Last Glacial Maximum in Central China. Global and Planetary Change, 231: 104298. https://doi.org/10.1016/j.gloplacha.2023.104298
      Jiang, J. H., Dou, H. S., Su, S. D., et al., 2015. The Evolution of Dongting Lake and Ancient Yunmengze and the Jingxiang Water Culture. Changjiang Press, Wuhan (in Chinese).
      Jin, B. X., 1979. Preliminary Exploration of Ancient Yunmeng Lake. Journal of Central China Normal University (Natural Sciences), 13(3): 52-61 (in Chinese).
      Jin, B. X., Deng, Z. R., Li, X. M., 1992. Integrated Research on the Jianghan Lakes. Hubei Science and Technology Press, Wuhan (in Chinese).
      Kim, W., Jerolmack, D. J., 2008. The Pulse of Calm Fan Deltas. The Journal of Geology, 116(4): 315-330. https://doi.org/10.1086/588830
      Lee, C. S. L., Qi, S. H., Zhang, G., et al., 2008. Seven Thousand Years of Records on the Mining and Utilization of Metals from Lake Sediments in Central China. Environmental Science & Technology, 42(13): 4732-4738. https://doi.org/10.1021/es702990n
      Li, C. A., 1998. Effect of Tilted Uplift of Tongbai Dabie Mountains on Middle Yangtze River Environment. Earth Science, 23(6): 562-566 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.1998.06.004
      Li, F., 2014. Environmental Change and Its Impacts on the Archaeological Culture Evolutions in the Jianghan Plain during 5.5~3.4 kyr BP (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).
      Li, F., Zhu, C., Wu, L., et al., 2014. Environmental Humidity Changes Inferred from Multi-Indicators in the Jianghan Plain, Central China during the Last 12 700 Years. Quaternary International, 349: 68-78. https://doi.org/10.1016/j.quaint.2013.09.040
      Li, Q. M., Han, M. L., 2010. Further Discussion on the Problems of Yunmeng and Yunmeng Lake. Journal of Hubei University (Philosophy and Social Sciences), 37(4): 30-36 (in Chinese).
      Lin, C. K., Chen, Q. L., 1965. The Origin and Evolution of the Jingjiang River Bend. Journal of Nanjing University (Natural Science), 9 (1): 97-122 (in Chinese with Russian abstract).
      Liu, H. Y., Gu, Y. S., Huang, X. Y., et al., 2019. A 13 000-Year Peatland Palaeohydrological Response to the ENSO-Related Asian Monsoon Precipitation Changes in the Middle Yangtze Valley. Quaternary Science Reviews, 212: 80-91. https://doi.org/10.1016/j.quascirev.2019.03.034
      Liu, H., Gu, Y., Yu, Z., et al., 2020. Holocene Peatland Water Regulation Response to ~1 000-Year Solar Cycle Indicated by Phytoliths in Central China. Journal of Hydrology, 589: 125169. https://doi.org/10.1016/j.jhydrol.2020.125169
      Liu, T., Chen, Z. Y., Sun, Q. L., et al., 2012. Migration of Neolithic Settlements in the Dongting Lake Area of the Middle Yangtze River Basin, China: Lake-Level and Monsoon Climate Responses. The Holocene, 22(6): 649-657. https://doi.org/10.1177/0959683611405084
      Liu, Z. Y., Lu, Z. Y., Wen, X. Y., et al., 2014. Evolution and Forcing Mechanisms of El Niño over the Past 21 000 Years. Nature, 515: 550-553. https://doi.org/10.1038/nature13963
      Miao, J. X., 2018. Study on OSL Dating on the HJ003 Boreholes in Jianghan Plain (Dissertation). Jiangxi Normal University, Nanchang (in Chinese with English abstract).
      National Cutural Heritage Administration, 2002. Atlas of Chinese Cultural Relics, Hubei Branch. Xi'an Cartographic Publishing House, Xi'an (in Chinese).
      Reimer, P. J., Austin, W. E. N., Bard, E., et al., 2020. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 Cal kBP). Radiocarbon, 62(4): 725-757. https://doi.org/10.1017/rdc.2020.41
      Reitz, M. D., Jerolmack, D. J., Swenson, J. B., 2010. Flooding and Flow Path Selection on Alluvial Fans and Deltas. Geophysical Research Letters, 37(6): L06401. https://doi.org/10.1029/2009gl041985
      Shi, Q., 1988. New Exploration of the Geography of Ancient Jingchu. Wuhan University Press, Wuhan (in Chinese).
      Shi, Q., 1993. Error on the Ancient Yunmeng Lakes "Across the South of the North" Said. Journal of Wuhan University (Social Science), (6): 80-85 (in Chinese).
      Shi, Q., Cai, S. M., 1996. Research on Ancient Yunmeng Lake. Hubei Education Press, Wuhan (in Chinese).
      Sun, D. H., An, Z. S., Su, R. X., et al., 2001. Mathematical Approach to Sedimentary Component Partitioning of Polymodal Sediments and Its Applications. Progress in Natural Science, 11(5): 374-382.
      Sun, J., Ma, C. M., Cao, X. Y., et al., 2019. Quantitative Precipitation Reconstruction in the East-Central Monsoonal China since the Late Glacial Period. Quaternary International, 521: 175-184. https://doi.org/10.1016/j.quaint.2019.05.033
      Swenson, J. B., Voller, V. R., Paola, C., et al., 2000. Fluvio-Deltaic Sedimentation: A Generalized Stefan Problem. European Journal of Applied Mathematics, 11(5): 433-452. https://doi.org/10.1017/s0956792500004198
      Tan, Q. X., 1980. Yunmeng and Yunmeng Lake. Journal of Fudan University (Social Sciences Edition), (S1): 1-11 (in Chinese).
      Van Dijk, M., Postma, G., Kleinhans, M. G., 2009. Autocyclic Behaviour of Fan Deltas: An Analogue Experimental Study. Sedimentology, 56(5): 1569-1589. https://doi.org/10.1111/j.1365-3091.2008.01047.x
      Vauclin, S., Mourier, B., Dendievel, A. M., et al., 2021. Depositional Environments and Historical Contamination as a Framework to Reconstruct Fluvial Sedimentary Evolution. Science of the Total Environment, 764: 142900. https://doi.org/10.1016/j.scitotenv.2020.142900
      Wang, B. J., Lin, C. S., Chen, Y., et al., 2006. Episodic Tectonic Movement and Evolutional Character in Jianghan Basin. Oil Geophysical Prospecting, 41(2): 226-230 (in Chinese with English abstract).
      Wang, F. F., Liu, J., Qiu, J. D., et al., 2014. Historical Evolution of Hypoxia in the East China Sea off the Changjiang (Yangtze River) Estuary for the Last ~13 000 Years: Evidence from the Benthic Foraminiferal Community. Continental Shelf Research, 90: 151-162. https://doi.org/10.1016/j.csr.2014.02.013
      Wang, X. C., Zhu, C. Wu, L., et al., 2012. Grain-Size Characteristics and Sedimentary Environment Change of JZ-2010 Section in Jianghan Plain, Hubei Province. Journal of Lake Sciences, 24(3): 480-486 (in Chinese with English abstract). doi: 10.18307/2012.0322
      Wickert, A. D., Martin, J. M., Tal, M., et al., 2013. River Channel Lateral Mobility: Metrics, Time Scales, and Controls. Journal of Geophysical Research: Earth Surface, 118(2): 396-412. https://doi.org/10.1029/2012jf002386
      Xiao, P., Yi, C. L., 1989. Preliminary Study on Environmental Changes in the Jianghan Plain during the Holocene. Journal of Arid Land Resources and Environment, 3(3): 158-162 (in Chinese with English abstract).
      Xie, S. C., Evershed, R. P., Huang, X., et al., 2013. Concordant Monsoon-Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China. Geology, 41(8): 827-830. https://doi.org/10.1130/G34318.1
      Xie, S. C. Hu, C. Y., Gu, Y. S., et al., 2015. Paleohydrological Variation since 13 ka BP in Middle Yangtze Region. Earth Science, 40(2): 198-205 (in Chinese with English abstract).
      Xie, Y. Y., Li, C. A., Wang, Q. L., et al., 2007. Grain-Size Characteristics and Their Environmental Significance of Jiangling Lake Sediments in Jianghan Plain. Journal of Jilin University (Earth Science Edition), 37(3): 570-577 (in Chinese with English abstract).
      Xie, Y. Y., Wang, Q. L., Li, C. A., et al., 2004. Climatic Implication of Grain Size from Lacustrine Sediments∶A Case Study of Jiangling Section, Jianghan Plain, China. Geological Science and Technology Information, 23(4): 41-43 (in Chinese with English abstract).
      Xin, W. Y., Bai, Y. C., Liu, W. L., et al., 2021. Experimental Study on Staged Sedimentary Evolution of Lacustrine Delta. Journal of Hydroelectric Engineering, 40(8): 43-56 (in Chinese with English abstract).
      Xu, Y. T., 2019. Sea-Level Change Determined Lake Formation in the Yangtze Plain (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Yang, L. Y., Zhang, W. L., Fang, X. M., et al., 2020. Aridification Recorded by Lithofacies and Grain Size in a Continuous Pliocene-Quaternary Lacustrine Sediment Record in the Western Qaidam Basin, NE Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 556: 109903. https://doi.org/10.1016/j.palaeo.2020.109903
      Yang, Q. X., Tian, W. X., Li, Q. W., et al., 2016. The Neotectonic Restricts to Quaternary Deposition Environment Evolution of Jianghan Basin. Journal of Geomechanics, 22(3): 631-641 (in Chinese with English abstract).
      Yao, Q., Liu, K. B., Wu, Y. J., et al., 2021. A Multi-Proxy Record of Hurricanes, Tsunami, and Post-Disturbance Ecosystem Changes from Coastal Southern Baja California. Science of the Total Environment, 796: 149011. https://doi.org/10.1016/j.scitotenv.2021.149011
      Yin, H. F., Liu, G. R., Pi, J. G., et al., 2007. On the River-Lake Relationship of the Middle Yangtze Reaches. Geomorphology, 85(3-4): 197-207. https://doi.org/10.1016/j.geomorph.2006.03.017
      Yin, L. L., 2000. Lake Evolution of Jianghan Plain: A Case Study of the Hebosuo Reduetion and Emergence in the Ming Dynasty. Journal of Lake Science, 12 (1): 38-46 (in Chinese with English abstract). doi: 10.18307/2000.0106
      Yin, Z. Q., Qin, X. G., Wu, J. S., et al., 2008. Multimodal Grain-Size Distribution Characteristics and Formation Mechanism of Lake Sediments. Quaternary Sciences, 28(2): 345-353 (in Chinese with English abstract).
      Yuan, S. Y., Li, C. A., Zhang, Y. F., et al., 2011. Grain Sizes and Magnetic Susceptibility of the Xiaosi Section in the Jianghan Plain and Their Environmental Significance. Transactions of Oceanology and Limnology, (4): 169-176 (in Chinese with English abstract).
      Zhang, D. H., 1994. Neotectonics and Quaternary Environmental Changes in Jianghan Basin. Crustal Deformation and Earthquake, 14(1): 74-80 (in Chinese with English abstract).
      Zhang, L. Y., Li, C. A., Zhang, Y. F., et al., 2019. Sedimentary Strata and Paleoflood Identification Indexes of Wuhan Section, Yangtze River, during 4.5-2.5 ka BP. Geological Review, 65(4): 973-982 (in Chinese with English abstract).
      Zhang, M. M., Bu, Z. J., Liu, S. S., et al., 2021. Mid-Late Holocene Peatland Vegetation and Hydrological Variations in Northeast Asia and Their Responses to Solar and ENSO Activity. CATENA, 203: 105339. https://doi.org/10.1016/j.catena.2021.105339
      Zhang, X. G., 1980. Evolution of Yunmeng Lake and the Formation of the Lower Jingjiang River Bend. Journal of Fudan University (Social Sciences Edition), (2): 40-48 (in Chinese).
      Zhang, X. G., 1984. Historical Evolution of Hanjiang Estuary and Its Influence on Hankou Section of Yangtze River. Journal of Fudan University (Social Sciences Edition), (3): 29-39 (in Chinese).
      Zhang, Y. F., Li, C. A., Chen, G. J., et al., 2005. Characteristics and Paleoclimatic Significance of Magnetic Susceptibility and Stable Organic Carbon Isotopes from a Bore in Zhoulao Town, Jianghan Plain. Earth Science, 30(1): 114-120 (in Chinese with English abstract).
      Zhao, Y., Wu, Y. J., Du, Y., 2000. The Impact of Human Activities on the Environmental Evolution of Jianghan Lake Group. Journal of Huazhong Agricultural University (Social Sciences Edition), (1): 31-33 (in Chinese).
      Zhou, F. Q., 1994. Historical Evolution of Yunmeng Marsh and Jingjiang Delta. Journal of Lake Science, 6(1): 22-32 (in Chinese with English abstract). doi: 10.18307/1994.0103
      Zhu, C., Zhong, Y. S., Zheng, C. G., et al., 2007. Relationship of Archaeological Sites Distribution and Environment from the Paleolithic Age to the Warring States Time in Hubei Province. Acta Geographica Sinica, 62(3): 227-242 (in Chinese with English abstract).
      Zhu, S. G., 1991. The Formation of the Agricultural Area and the Evolution of the Agricultural Environment in the Jianghan Plain in the Historical Period. Agricultural Archaeology, (3): 84-92 (in Chinese with English abstract).
      Zhu, Y. X., Wang, S. M., Wu, R. J., 1997b. Sedimentologic Evidence for Date of Southward Moving of the Yangtze River in the Jianghan Plain since the Holocene. Chinese Science Bulletin, 42(18): 1972-1974 (in Chinese).
      Zhu, Y. X., Xue, B., Yang, X. D., et al., 1997a. The Sedimentary Characteristics and Paleoenvironment of Core M1 Areain Jianghan Basin. Journal of Geomechanics, 3(4): 77-84 (in Chinese with English abstract).
      Zhu, Z. M., Feinberg, J. M., Xie, S. C., et al., 2017. Holocene ENSO-Related Cyclic Storms Recorded by Magnetic Minerals in Speleothems of Central China. Proceedings of the National Academy of Sciences of the United States of America, 114(5): 852-857. https://doi.org/10.1073/pnas.1610930114
      蔡述明, 官子和, 1979. 武汉东湖湖泊地质(第四纪)研究: 有关东湖成因和古云梦泽问题的讨论. 海洋与湖沼, 10(4): 383-394.
      蔡述明, 官子和, 1982. 跨江南北的古云梦泽说是不能成立的: 古云梦泽问题讨论之二. 海洋与湖沼, 13(2): 129-142.
      蔡述明, 赵艳, 杜耘, 等, 1998. 全新世江汉湖群的环境演变与未来发展趋势: 古云梦泽问题的再认识. 武汉大学学报(哲学社会科学版), 51(6): 96-100.
      邓辉, 陈义勇, 贾敬禹, 等, 2009. 8 500 a BP以来长江中游平原地区古文化遗址分布的演变. 地理学报, 64(9): 1113-1125.
      中国科学院《中国自然地理》编辑委员会, 1982. 中国自然地理: 历史自然地理分册. 北京: 科学出版社.
      方鸿琪, 1959. 长江中下游地区的新构造运动. 地质学报, 33(3): 328-343.
      葛继稳, 2007. 湿地资源及管理实证研究: 以"千湖之省" 湖北省为例. 北京: 科学出版社.
      顾延生, 葛继稳, 黄俊华, 等, 2009. 2万年来气候变化‒人类活动与江汉湖群演化. 北京: 地质出版社.
      顾延生, 管硕, 马腾, 等, 2018. 江汉盆地东部第四纪钻孔地层与沉积环境. 地球科学, 43(11): 3989-4000. doi: 10.3799/dqkx.2018.324
      顾延生, 李贶家, 秦养民, 等, 2013. 历史时期以来人类活动与江汉湖群生态环境演变. 地球科学, 38(S1): 133-144.
      顾延生, 喻建新, 谢树成, 等, 2007. 江汉平原5 000年来气候演变的孢粉、植硅体记录. 地球科学, 32(增刊): 133-141.
      姜加虎, 窦鸿身, 苏守德, 等, 2015. 洞庭湖与古云梦泽的演变及荆湘水文化. 武汉: 长江出版社.
      金伯欣, 1979. 古云梦泽初探. 华中师院学报(自然科学版), 13(3): 52-61.
      金伯欣, 邓兆仁, 李新民, 1992. 江汉湖群综合研究. 武汉: 湖北科学技术出版社.
      李长安, 1998. 桐柏‒大别山掀斜隆升对长江中游环境的影响. 地球科学, 23(6): 562-566. http://www.earth-science.net/article/id/707
      李枫, 2014. 江汉平原5.5~3.4 kyr BP环境变化及其对古文化演替的影响(博士学位论文). 南京: 南京大学.
      李青淼, 韩茂莉, 2010. 云梦与云梦泽问题的再讨论. 湖北大学学报(哲学社会科学版), 37(4): 30-36.
      林承坤, 陈钦峦, 1965. 荆江河曲的成因与演变. 南京大学学报(自然科学版), 9(1): 97-122.
      缪君翔, 2018. 江汉平原HJ003孔光释光年代研究(硕士学位论文). 南昌: 江西师范大学.
      国家文物局, 2002. 中国文物地图集: 湖北分册. 西安: 西安地图出版社.
      石泉, 1988. 古代荆楚地理新探. 武汉: 武汉大学出版社.
      石泉, 1993. 古云梦泽"跨江南北"说辨误. 武汉大学学报(哲学社会科学版), (6): 80-85.
      石泉, 蔡述明, 1996. 古云梦泽研究. 武汉: 湖北教育出版社.
      谭其骧, 1980. 云梦与云梦泽. 复旦学报(社会科学版), (增刊): 1-11.
      王必金, 林畅松, 陈莹, 等, 2006. 江汉盆地幕式构造运动及其演化特征. 石油地球物理勘探, 41(2): 226-230.
      王晓翠, 朱诚, 吴立, 等, 2012. 湖北江汉平原JZ-2010剖面沉积物粒度特征与环境演变. 湖泊科学, 24(3): 480-486.
      肖平, 易朝路, 1989. 江汉平原全新世环境变化初探. 干旱区资源与环境, 3(3): 158-162.
      谢树成, 胡超涌, 顾延生, 等, 2015. 最近13ka以来长江中游古水文变化. 地球科学, 40(2): 198-205. doi: 10.3799/dqkx.2015.015
      谢远云, 李长安, 王秋良, 等, 2007. 江汉平原江陵湖泊沉积物粒度特征及气候环境意义. 吉林大学学报(地球科学版), 37(3): 570-577.
      谢远云, 王秋良, 李长安, 等, 2004. 湖泊沉积物粒度的气候指示意义: 以江汉平原江陵剖面为例. 地质科技情报, 23(4): 41-43.
      辛玮琰, 白玉川, 刘万利, 等, 2021. 入湖三角洲阶段性沉积演变过程实验研究. 水力发电学报, 40(8): 43-56.
      徐砚田, 2019. 海平面变化驱动的长江中下游湖泊的形成(博士学位论文). 武汉: 中国地质大学.
      杨青雄, 田望学, 李启文, 等, 2016. 江汉盆地新构造运动对第四纪沉积环境演化的制约. 地质力学学报, 22(3): 631-641.
      尹玲玲, 2000. 从明代河泊所的置废看湖泊分布及演变──以江汉平原为例. 湖泊科学, 12(1): 38-46.
      殷志强, 秦小光, 吴金水, 等, 2008. 湖泊沉积物粒度多组分特征及其成因机制研究. 第四纪研究, 28(2): 345-353.
      袁胜元, 李长安, 张玉芬, 等, 2011. 江汉平原肖寺剖面粒度和磁化率特征及其环境意义. 海洋湖沼通报, (4): 169-176.
      张德厚, 1994. 江汉盆地新构造与第四纪环境变迁. 地壳形变与地震, 14(1): 74-80.
      张跞颖, 李长安, 张玉芬, 等, 2019. 长江武汉段4.5~2.5 ka沉积地层与古洪水标志识别. 地质论评, 65(4): 973-982.
      张修桂, 1980. 云梦泽的演变与下荆江河曲的形成. 复旦学报(社会科学版), (2): 40-48.
      张修桂, 1984. 汉水河口段历史演变及其对长江汉口段的影响. 复旦学报(社会科学版), (3): 29-39.
      张玉芬, 李长安, 陈国金, 等, 2005. 江汉平原湖区周老镇钻孔磁化率和有机碳稳定同位素特征及其古气候意义. 地球科学, 30(1): 114-120. http://www.earth-science.net/article/id/1459
      赵艳, 吴宜进, 杜耘, 2000. 人类活动对江汉湖群环境演变的影响. 华中农业大学学报(社会科学版), (1): 31-33.
      周凤琴, 1994. 云梦泽与荆江三角洲的历史变迁. 湖泊科学, 6(1): 22-32.
      朱诚, 钟宜顺, 郑朝贵, 等, 2007. 湖北旧石器至战国时期人类遗址分布与环境的关系. 地理学报, 62(3): 227-242.
      朱士光, 1991. 历史时期江汉平原农业区的形成与农业环境的变迁. 农业考古, (3): 84-92.
      朱育新, 王苏民, 吴瑞金, 1997b. 全新世江汉平原地区长江南移年代的沉积学依据. 科学通报, 42(18): 1972-1974.
      朱育新, 薛滨, 羊向东, 等, 1997a. 江汉平原沔城M1孔的沉积特征与古环境重建. 地质力学学报, 3(4): 77-84.
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  366
    • HTML全文浏览量:  194
    • PDF下载量:  140
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-11-24
    • 刊出日期:  2025-03-25

    目录

      /

      返回文章
      返回