• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    海洋沉积物SMTZ带黄铁矿莓球粒径增大现象的甲烷事件意义

    王家生 宋强 林杞 许力源 陈粲 王舟 耿坤龙

    王家生, 宋强, 林杞, 许力源, 陈粲, 王舟, 耿坤龙, 2025. 海洋沉积物SMTZ带黄铁矿莓球粒径增大现象的甲烷事件意义. 地球科学, 50(3): 908-917. doi: 10.3799/dqkx.2024.132
    引用本文: 王家生, 宋强, 林杞, 许力源, 陈粲, 王舟, 耿坤龙, 2025. 海洋沉积物SMTZ带黄铁矿莓球粒径增大现象的甲烷事件意义. 地球科学, 50(3): 908-917. doi: 10.3799/dqkx.2024.132
    Wang Jiasheng, Song Qiang, Lin Qi, Xu Liyuan, Chen Can, Wang Zhou, Geng Kunlong, 2025. Enlargement of Pyrite Framboid Size in Sulfate-Methane Transition Zone of Marine Sediments and Its Implying of Marine Methane Event. Earth Science, 50(3): 908-917. doi: 10.3799/dqkx.2024.132
    Citation: Wang Jiasheng, Song Qiang, Lin Qi, Xu Liyuan, Chen Can, Wang Zhou, Geng Kunlong, 2025. Enlargement of Pyrite Framboid Size in Sulfate-Methane Transition Zone of Marine Sediments and Its Implying of Marine Methane Event. Earth Science, 50(3): 908-917. doi: 10.3799/dqkx.2024.132

    海洋沉积物SMTZ带黄铁矿莓球粒径增大现象的甲烷事件意义

    doi: 10.3799/dqkx.2024.132
    基金项目: 

    国家自然科学基金项目 42276068

    国家自然科学基金项目 42302215

    国家自然科学基金项目 42472374

    详细信息
      作者简介:

      王家生(1963-),男,教授,博士,从事海洋地质学和普通地质学教学等工作,主要从事海洋天然气水合物地质系统沉积学、矿物学、地球化学和甲烷事件等研究. ORCID:0000-0003-4202-034. E-mail:js-wang@cug.edu.cn

    • 中图分类号: P67

    Enlargement of Pyrite Framboid Size in Sulfate-Methane Transition Zone of Marine Sediments and Its Implying of Marine Methane Event

    • 摘要: 海洋沉积物或海相地层中莓球状黄铁矿的莓球粒径大小和偏差被广泛应用于推测水体的氧化还原沉积环境.然而,在现代海洋天然气水合物赋存海区沉积物中硫酸盐‒甲烷转换带(SMTZ)内,甲烷厌氧氧化作用(AOM)成因的黄铁矿莓球粒径出现异常增大现象.当天然气水合物失稳引起异常多数量甲烷释放时,SMTZ位置可能跃升至沉积柱浅表层、海底甚至海水中,可能引起水体的缺氧、酸化和分层等变化;与此同时,增强的AOM仍会促进沉积物中黄铁矿的莓球粒径异常增大,因此有必要重新评估前人依据黄铁矿莓球粒径推测水体氧化还原环境的判别标准.莓球粒径 > 20 μm或莓球内核粒径平均 > 12 μm、标准偏差 > 3 μm的莓球状黄铁矿可能是海洋“甲烷事件”发生时的产物.

       

    • 图  1  海底附近流体交换过程、沉积柱地球化学分带和化学反应示意

      图据林杞(2016);SRZ. sulfate reduction zone,硫酸盐还原带;SMTZ. sulfate-methane transition zone,硫酸盐‒甲烷转换带;SMI. sulfate- methane interface,硫酸盐‒甲烷界面

      Fig.  1.  Schematic map showing fluids convection, interaction and chemical zone near seafloor

      图  2  南海北部陆坡沉积物中莓球状黄铁矿的莓球粒径、含量和硫稳定同位素组成

      Site 2A和Site 973-4站位的资料引自Lin et al.(2016a);Site GMGS4-W02B站位的资料引自许力源(2022).莓球粒径采用合须图表示.阴影部分为(古)SMTZ位置

      Fig.  2.  Framboid size, concentration and S isotope of pyrite in cored sediments from northern South China Sea

      图  3  IODP311航次U1329站位沉积物中黄铁矿莓球粒径大小、黄铁矿含量、硫同位素组成和海平面变化对比

      a.铬还原硫(CRS)同位素组成;b、c.全球底栖有孔虫壳体氧同位素组成和推测的海平面变化趋势;d.黄铁矿的莓球内核粒径平均值;e.莓球粒径平均值;f.莓球粒径加大边的大小;g.黄铁矿的相对含量.灰色阴暗部分代表现代SMTZ位置;蓝色阴影部分代表古SMTZ位置.最左侧代表U1329站位的岩性柱和年代框架

      Fig.  3.  Comparing of framboid size, concentration, S isotope of pyrite in Site U1329 of IODP 311 and correlated with global sea level changes

      图  4  南海北部陆坡水合物赋存海域沉积物中莓球状黄铁矿的莓球平均粒径‒标准偏差图

      图据许力源(2022);Site 2A等代表南海北部陆坡水合物赋存海域的不同站位,*代表具有加大边的草莓状黄铁矿;黑色斜虚线代表传统的缺氧‒硫化和氧化‒次氧化底层水沉积环境的分界线,据Wilkin et al.(1996);黑色横直和红色竖直虚线代表Lin et al.(2016a)给出的草莓状黄铁矿粒径异常的判断标准(平均粒径 > 20 μm,标准偏差 > 3 μm);红色横直和红色竖直虚线代表莓球内核粒径大小的判断标准(平均粒径 > 12 μm,标准偏差 > 3 μm)

      Fig.  4.  Framboid size and deviation of pyrites in sediments from northern South China Sea

      图  5  草莓状黄铁矿莓球粒径特征与SMTZ位置演化关系示意

      图据许力源(2022);a.上涌流体的甲烷浓度较小,SMTZ位于沉积物较深处,AOM较弱,莓球粒径通常较小;b.上涌流体的甲烷浓度增大,SMTZ移至沉积物浅表层,AOM增强,莓球粒径异常增大;c.上涌流体的甲烷浓度增大,SMTZ移至水‒沉积物界面,AOM增强,莓球粒径异常增大;d.上涌流体的甲烷浓度增大,SMTZ移至底层海水,AOM增强,莓球粒径大小难以判断

      Fig.  5.  Schematic relationship between SMTZ evolution and pyrite framboid size

      图  6  华南宜昌秭归青林口新元古代陡山沱组的莓球状黄铁矿莓球平均粒径变化

      图据Chen et al.(2025);左侧为陡山沱组地层柱状图;中间为莓球粒径平均值的合须图分布;右侧为统计的莓球粒径平均值和数量.在陡一段(M1)和陡四段(M4)层位中莓球粒径平均值存在明显增大趋势(> 20 μm);在陡二段(M2)中下部和陡二段\陡三段交界层位也存在一些莓球粒径增大的趋势,据此推测陡山沱组沉积时期至少存在3次古海洋甲烷事件

      Fig.  6.  Framboid pyrite size in Neoproterozoic Doushantuo Fm. in Qinglinkou section at Zigui, Yichang, South China

      表  1  莓球状黄铁矿的莓球迷粒径特征与水体氧化还原环境之间关系(常晓琳等, 2020许力源,2022

      Table  1.   The critical relationship between the pyrite framboid size and the mariner redox environment (Chang et al., 2020; Xu, 2022)

      Wilkin et al. (1996) Bond et al. (2010)
      水体环境 平均粒径 最大粒径 水体
      环境
      平均粒径 最大粒径及其特征 沉积特征
      氧化‒次氧
      化环境
      (7.7$ \pm $4.1) μm 10 %~50 %颗粒粒径超过10 μm,MFD会
      大于20 μm
      氧化
      环境
      无草莓状黄铁矿,黄铁矿晶体亦少见 细水平纹层发育
      上贫氧环境 极少草莓状黄铁矿,且粒径范围极大,鲜有粒径 < 5 μm的分子出现 细水平纹层发育
      下贫氧环境 6~10 μm 少数粒径较大,并有少量自形晶黄铁矿出现 细水平纹层发育,
      出现少量生物扰动
      缺氧‒硫化
      环境
      (5.0$ \pm $1.7) μm 大于10 μm的占比通常小于4%,MFD一般
      小于20 μm
      缺氧
      环境
      4~6 μm 数量较多,少数个体较大(> 10 μm),且以草莓状黄铁矿为主 可见小潜穴, 纹层被
      生物扰动破坏
      硫化
      环境
      3~5 μm 数量丰富,粒径分布窄,且以草莓状黄铁矿为主 潜穴发育或块状构造
      下载: 导出CSV
    • Boetius, A., Ravenschlag, K., Schubert, C. J., et al., 2000. A Marine Microbial Consortium Apparently Mediating Anaerobic Oxidation of Methane. Nature, 407(6804): 623-626. https://doi.org/10.1038/35036572
      Bond, D. P., Wignall, P. B., 2010. Pyrite Framboid Study of Marine Permian-Triassic Boundary Sections: A Complex Anoxic Event and Its Relationship to Contemporaneous Mass Extinction. Geological Society of America Bulletin, 122(7-8): 1265-1279. https://doi.org/10.1130/B30042.1
      Borowski, W. S., Paull, C. K., Ussler, W., 1996. Marine Pore-Water Sulfate Profiles Indicate in Situ Methane Flux from Underlying Gas Hydrate. Geology, 24(7): 655. https://doi.org/10.1130/0091-7613(1996)0240655: mpwspi>2.3.co;2 doi: 10.1130/0091-7613(1996)0240655:mpwspi>2.3.co;2
      Butler, I. B., Rickard, D., 2000. Framboidal Pyrite Formation via the Oxidation of Iron (Ⅱ) Monosulfide by Hydrogen Sulphide. Geochimica et Cosmochimica Acta, 64(15): 2665-2672. https://doi.org/10.1016/S0016-7037(00)00387-2
      Chang, X. L., Huang, Y. G., Chen, Z. Q., et al., 2020. The Microscopic Analysis of Pyrite Framboids and Application in Paleo-Oceanography. Acta Sedimentologica Sinica, 38(1): 150-165 (in Chinese with English abstract).
      Chen, C., Wang, J. S., Algeo, T. J., et al., 2023. Sulfate-Driven Anaerobic Oxidation of Methane Inferred from Trace-Element Chemistry and Nickel Isotopes of Pyrite. Geochimica et Cosmochimica Acta, 349: 81-95. https://doi.org/10.1016/j.gca.2023.04.002
      Chen, C., Wang, J. S., Algeo, T. J., et al., 2025. Trace Elements of Pyrite in the Ediacaran Doushantuo Formation Reveal Ancient Methane Release Events. Precambrian Research, 416: 107627. https://doi.org/10.1016/j.precamres.2024.107627
      Cui, H., Kaufman, A. J., Xiao, S. H., et al., 2017. Was the Ediacaran Shuram Excursion a Globally Synchronized Early Diagenetic Event? Insights from Methane-Derived Authigenic Carbonates in the Uppermost Doushantuo Formation, South China. Chemical Geology, 450: 59-80. https://doi.org/10.1016/j.chemgeo.2016.12.010
      Dickens, G. R., 2004. Hydrocarbon-Driven Warming. Nature, 429: 513-515. https://doi.org/10.1038/429513a
      Dickens, G. R., Castillo, M. M., Walker, J. C., 1997. A Blast of Gas in the Latest Paleocene: Simulating First-Order Effects of Massive Dissociation of Oceanic Methane Hydrate. Geology, 25(3): 259-262. https://doi.org/10.1130/0091-7613(1997)025<0259: abogit>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0259:abogit>2.3.co;2
      Dickens, G. R., Fewless, T., Thomas, E., et al., 2003. Excess Barite Accumulation during the Paleocene-Eocene Thermal Maximum: Massive Input of Dissolved Barium from Seafloor Gas Hydrate Reservoirs. In: Wing, S. L., Gingerich, P. D., Schmitz, B., et al., eds., Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America, Boulder. https://doi.org/10.1130/0-8137-2369-8.11
      Feng, D., Qiu, J. W., Hu, Y., et al., 2018. Cold Seep Systems in the South China Sea: An Overview. Journal of Asian Earth Sciences, 168: 3-16. https://doi.org/10.1016/j.jseaes.2018.09.021
      Han, X. Q., Suess, E., Huang, Y. Y., et al., 2008. Jiulong Methane Reef: Microbial Mediation of Seep Carbonates in the South China Sea. Marine Geology, 249(3-4): 243-256. https://doi.org/10.1016/j.margeo.2007.11.012
      Heilig, G. K., 1994. The Greenhouse Gas Methane (CH4): Sources and Sinks, the Impact of Population Growth, Possible Interventions. Population and Environment, 16(2): 109-137. https://doi.org/10.1007/BF02208779
      Huang, Y. G., Chen, Z. Q., Wignall, P. B., et al., 2017. Latest Permian to Middle Triassic Redox Condition Variations in Ramp Settings, South China: Pyrite Framboid Evidence. Geological Society of America Bulletin, 129(1-2): 229-243. https://doi.org/10.1130/b31458.1
      Kim, B., Zhang, Y. G., 2022. Methane Hydrate Dissociation across the Oligocene-Miocene Boundary. Nature Geoscience, 15: 203-209. https://doi.org/10.1038/s41561-022-00895-5
      Lin, Q., 2016. Characteristics of Authigenic Minerals in Sediments of Natural Gas Hydrate Occurrence Area in the Northern South China Sea and Its Indication Significance of Sulfate-Methane Transition Zone (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Lin, Q., Wang, J. S., Algeo, T. J., et al., 2016a. Enhanced Framboidal Pyrite Formation Related to Anaerobic Oxidation of Methane in the Sulfate-Methane Transition Zone of the Northern South China Sea. Marine Geology, 379: 100-108. https://doi.org/10.1016/j.margeo.2016.05.016
      Lin, Q., Wang, J. S., Algeo, T. J., et al., 2016b. Formation Mechanism of Authigenic Gypsum in Marine Methane Hydrate Settings: Evidence from the Northern South China Sea. Deep Sea Research Part Ⅰ: Oceanographic Research, 115: 210-220. https://doi.org/10.1016/j.dsr.2016.06.010
      Lin, Q., Wang, J. S., Taladay, K., et al., 2016c. Coupled Pyrite Concentration and Sulfur Isotopic Insight into the Paleo Sulfate-Methane Transition Zone (SMTZ) in the Northern South China Sea. Journal of Asian Earth Sciences, 115: 547-556. https://doi.org/10.1016/j.jseaes.2015.11.001
      Liu, J. R., Izon, G., Wang, J. S., et al., 2018. Vivianite Formation in Methane-Rich Deep-Sea Sediments from the South China Sea. Biogeosciences, 15(20): 6329-6348. https://doi.org/10.5194/bg-15-6329-2018
      Miao, X. M., Feng, X. L., Liu, X. T., et al., 2021. Effects of Methane Seepage Activity on the Morphology and Geochemistry of Authigenic Pyrite. Marine and Petroleum Geology, 133: 105231. https://doi.org/10.1016/j.marpetgeo.2021.105231
      Ohfuji, H., Rickard, D., 2005. Experimental Syntheses of Framboids—A Review. Earth-Science Reviews, 71(3-4): 147-170. https://doi.org/10.1016/j.earscirev.2005.02.001
      Rust, G. W., 1935. Colloidal Primary Copper Ores at Cornwall Mines, Southeastern Missouri. Journal of Geology, 43(4): 398-426. https://doi.org/10.1086/624318
      Wang, B., Lei, H. Y., Huang, F. F., 2022. Impacts of Sulfate-Driven Anaerobic Oxidation of Methane on the Morphology, Sulfur Isotope, and Trace Element Content of Authigenic Pyrite in Marine Sediments of the Northern South China Sea. Marine and Petroleum Geology, 139: 105578. https://doi.org/10.1016/j.marpetgeo.2022.105578
      Wang, J. S., Jiang, G. Q., Xiao, S. H., et al., 2008. Carbon Isotope Evidence for Widespread Methane Seeps in the ca. 635 Ma Doushantuo Cap Carbonate in South China. Geology, 36(5): 347-350. https://doi.org/10.1130/G24513A.1
      Wang, J. S., Lin, Q., Li, Q., et al., 2015. AOM-Derived Authigenic Minerals in Marine Sediments and Implication for Ancient Methane Events in Deep Earth. Quaternary Sciences, 35(6): 1383-1392 (in Chinese with English abstract).
      Wang, J. S., Suess, E., 2002. Indicators of δ13C and δ18O of Gas Hydrate-Associated Sediments. Chinese Science Bulletin, 47(19): 1659-1663. https://doi.org/10.1007/BF03184118
      Wang, J. S., Wang, Z., Chen, C., et al., 2024. Authigenic Minerals in Sediments at Marine Gas Hydrate Geosystem. China University of Geosciences Press, Wuhan (in Chinese).
      Wang, J., Suess, E., Rickert, D., 2003. Authigenic Gypsum Found in Gas Hydrate-Associated Sediments from Hydrate Ridge, the Eastern North Pacific. Science China: Earth Science, 47(3): 280-288. https://doi.org/10.1360/02yd0069
      Wang, Z., Chen, C., Wang, J. S., et al., 2020. Wide but not Ubiquitous Distribution of Glendonite in the Doushantuo Formation, South China: Implications for Ediacaran Climate. Precambrian Research, 338: 105586. https://doi.org/10.1016/j.precamres.2019.105586
      Wang, Z., Wang, J. S., Suess, E., et al., 2017. Silicified Glendonites in the Ediacaran Doushantuo Formation (South China) and Their Potential Paleoclimatic Implications. Geology, 45(2): 115-118. https://doi.org/10.1130/g38613.1
      Wignall, P. B., Bond, D. P. G., Kuwahara, K., et al., 2010. An 80 Million Year Oceanic Redox History from Permian to Jurassic Pelagic Sediments of the Mino-Tamba Terrane, SW Japan, and the Origin of Four Mass Extinctions. Global and Planetary Change, 71(1-2): 109-123. https://doi.org/10.1016/j.gloplacha.2010.01.022
      Wignall, P. B., Newton, R., 1998. Pyrite Framboid Diameter as a Measure of Oxygen Deficiency in Ancient Mudrocks. American Journal of Science, 298(7): 537-552. https://doi.org/10.2475/ajs.298.7.537
      Wignall, P. B., Newton, R., Brookfield, M. E., 2005. Pyrite Framboid Evidence for Oxygen-Poor Deposition during the Permian-Triassic Crisis in Kashmir. Palaeogeography, Palaeoclimatology, Palaeoecology, 216(3-4): 183-188. https://doi.org/10.1016/j.palaeo.2004.10.009
      Wilkin, R. T., Arthur, M. A., 2001. Variations in Pyrite Texture, Sulfur Isotope Composition, and Iron Systematics in the Black Sea: Evidence for Late Pleistocene to Holocene Excursions of the O2-H2S Redox Transition. Geochimica et Cosmochimica Acta, 65(9): 1399-1416. https://doi.org/10.1016/S0016-7037(01)00552-X
      Wilkin, R. T., Arthur, M. A., Dean, W. E., 1997. History of Water-Column Anoxia in the Black Sea Indicated by Pyrite Framboid Size Distributions. Earth and Planetary Science Letters, 148(3/4): 517-525. https://doi.org/10.1016/S0012-821X(97)00053-8
      Wilkin, R. T., Barnes, H. L., Brantley, S. L., 1996. The Size Distribution of Framboidal Pyrite in Modern Sediments: An Indicator of Redox Conditions. Geochimica et Cosmochimica Acta, 60(20): 3897-3912. https://doi.org/10.1016/0016-7037(96)00209-8
      Xu, L. Y., 2020. Framboid Size and Microcrystalline Characteristics of Framboidal Pyrite in Sediments from the Northern South China Sea and Their Implications for Sedimentary Environment (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zachos, J. C., Röhl, U., Schellenberg, S. A., et al., 2005. Rapid Acidification of the Ocean during the Paleocene-Eocene Thermal Maximum. Science, 308(5728): 1611-1615. https://doi.org/10.1126/science.1109004
      常晓琳, 黄元耕, 陈中强, 等, 2020. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用. 沉积学报, 38(1): 150-165.
      林杞, 2016. 南海北部天然气水合物赋存区沉积物中自生矿物特征及其硫酸盐‒甲烷转换带指示意义(博士学位论文). 武汉: 中国地质大学.
      王家生, 林杞, 李清, 等, 2015. 海洋沉积物中AOM成因的自生矿物及其对深时地球古海洋甲烷事件的启示. 第四纪研究, 35(6): 1383-1392.
      王家生, 王舟, 陈粲, 等, 2024. 海洋天然气水合物地质系统沉积物中自生矿物. 武汉: 中国地质大学出版社.
      许力源, 2022. 南海北部沉积物中草莓状黄铁矿的莓球粒径和微晶特征及其沉积环境指示意义(硕士学位论文). 武汉: 中国地质大学.
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  145
    • HTML全文浏览量:  70
    • PDF下载量:  34
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-11-22
    • 刊出日期:  2025-03-25

    目录

      /

      返回文章
      返回