Application of Mineral-Based Composite Materials for Aquatic Environmental Pollution Control: Properties, Mechanisms and Performances
-
摘要: 矿物基复合材料融合了矿物材料的特性和复合材料的优势, 因其独特的功效而成为生态环境研究领域的热点, 已被广泛应用于水环境质量提升的工程实践中.综述了矿物基复合材料的结构与性能提升方法, 包括酸/碱刻蚀、热活化改性、表面改性及金属纳米颗粒负载改性, 并探讨了其高效固定/去除水环境中重金属、有机及无机污染物的机制, 包括吸附作用、催化反应及其与水体微生物和水生植物等水生生物的联合作用.矿物基复合材料可以通过强化生物生态修复, 促进水生植物生长, 增强微生物多样性, 从而进一步改善水环境质量.总结了矿物基复合材料在水环境治理中的工程应用案例, 并强调了未来重点研究方向, 评估其在不同水质环境下的效能及长期影响, 探索与先进技术的最佳联合应用, 优化生产工艺和材料成本.Abstract: Due to the coupled effects of the properties of minerals and the advantages offered by composite materials, mineral-based composite materials have exhibited unique performances and attracted significant attention in the field of eco-environmental studies with extensive applications in improving water quality. This paper reviews various methods for enhancing the structure and properties of mineral-based composites materials, including acid/alkali etching, thermal activation modification, surface modification, and metal nanoparticle load modification. The mechanisms of these materials in effectively fixing/removing heavy metals, organic and inorganic pollutants in the aquatic environmental pollutants include adsorption, catalytic reactions, and synergistic effects with aquatic organisms such as microorganisms and aquatic plants. Mineral-based composite material plays a vital role in advancing biological ecological restoration, promoting the growth of aquatic plants, and enhancing microbial diversity. And the paper summarizes application cases of mineral-based composite materials in water environment restoration and management, and emphasizes the focus of future research on assessing their performance and long-term effects in different water quality environments, exploring best approaches of their joint application with other advanced techniques, and optimizing their manufacturing processes and material costs.
-
图 1 矿物材料联合水生生物协同提升水环境质量(据Liu et al., 2024修改)
Fig. 1. Synergistic enhancement of water environment quality through collaborative utilization of mineral materials and aquatic organisms (modified from Liu et al., 2024)
图 2 改性矿物材料提升湖泊底质碳氮磷生物地球化学转化(据Liu et al., 2020b修改)
Fig. 2. Enhanced biogeochemical transformation of carbon, nitrogen, and phosphorus in lake sediments with modified mineral materials (modified from Liu et al., 2020b)
表 1 矿物基复合材料在水环境治理中的典型工程应用案例
Table 1. Representative full scale projects of aquatic environmental pollution control using mineral-based composite materials
实施地点 恢复方法 恢复机制 恢复效果 成都市毗河九道堰段 麦饭石覆盖氮磷污染底泥 麦饭石的阻隔作用和吸附作用 底泥表层间隙水氨氮浓度保持在10 mg/L以下, 对表层沉积物磷阻隔率达到70%以上(胡易坤等, 2020) 同济大学三好坞富营养化景观水体 无机盐改性沸石覆盖污染底泥 沸石覆盖层的机械阻挡作用, CaCl2改性沸石离子交换作用, 沸石材料的吸附作用 CaCl2改性沸石覆盖后上覆水氨氮浓度0.42~0.60 mg/L, 对照为8.25 mg/L, 对底泥磷的抑制率达到81%(林建伟等, 2007) 江苏太湖 铝和锆改性沸石实验室处理太湖底泥 铝和锆改性沸石的配位体交换作用和沸石的吸附作用 改性沸石对太湖底泥磷释放均低于0.05 mg/L以下, 对照均大于0.085 mg/L(杨孟娟等, 2014) 安徽巢湖 改性硅藻土实验室除磷试验 改性硅藻土絮凝沉降作用 总磷去除率基本达到85%以上(郑西强等, 2019) 杭州西湖 底质改良材料覆盖底泥并包种沉水植物根部 底质改良材料改良底泥氧化还原电位, 抑制氮磷营养盐释放, 促进沉水植物生长, 营造根际有益微生态系统 恢复后的水质从Ⅳ类改善至Ⅲ类, 对表层沉积物总磷去除率达到55%, 沉水植物生物量从0.31 kg/m2提高至1.45 kg/m2, 盖度稳定维持在80%以上(Bai et al., 2020, 2023; Liu et al., 2022c) 苏格兰弗莱明顿湖 Phoslock锁磷剂与水混合后喷洒至水体表面 稀土元素镧与水体中磷形成不溶于水的磷酸镧沉淀物, 膨润土吸附作用 沉水植物物种数从修复前5种增加到修复后的12种, 特征种占比从修复前0%增加到修复后的28%(Gunn et al., 2014) 美国科罗拉多州 采用石灰石处理酸性矿水 化学中和作用 中和效率达90%(Skousen and Ziemkiewicz, 1996) 瑞典Finja湖和Vallentuna湖 采用硫酸铝对湖泊进行处理 铝盐絮凝作用 沉积物铁磷从2.16 mg/g降低至0 mg/g(Rydin and Welch, 1998) 澳大利亚墨尔本 城市雨水处理生物过滤器选择砂壤土和蛭石作为过滤介质 生物作用和吸附作用 有效降低氮磷浓度(Hatt et al., 2007) 新英格兰韦里斯克里克 采用天然沸石去除铵态氮 吸附作用 氨氮浓度从25 mg/L降低至1 mg/L以下(Booker et al., 1996) -
Ahmad, J., Al-Farraj, A. S., Ahmad, M., et al., 2023. Fabrication of Nano-Bentonite-Based Organo-Minerals Composites of Biochar: Characterization and Application to Remove Arsenate from Contaminated Water. Water, Air, & Soil Pollution, 234(5): 302. https://doi.org/10.1007/s11270-023-06312-w Bai, G. L., 2022. Study on Benthic Improvement and Submerged Plant Restoration in Shallow Lakes and Their Microecological Effects (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). Bai, G. L., Liu, Y. L., Liu, Z. S., et al., 2023. Effects of Lake Geo-Engineering on Plankton in a Typical Shallow Urban Lake: Evidence Based on 10-Year Data. ACS ES & T Engineering, 3(1): 105-120. https://doi.org/10.1021/acsestengg.2c00255 Bai, G. L., Zhang, Y., Yan, P., et al., 2020. Spatial and Seasonal Ⅴariation of Water Parameters, Sediment Properties, and Submerged Macrophytes after Ecological Restoration in a Long-Term (6 Year) Study in Hangzhou West Lake in China: Submerged Macrophyte Distribution Influenced by Environmental Ⅴariables. Water Research, 186: 116379. https://doi.org/10.1016/j.watres.2020.116379 Bai, L. Q., Zhang, Y. H., Tong, W. S., et al., 2022. Mineral Composite Materials and Their Energy Storage and Energy Catalysis Applications. Chinese Science Bulletin, 67(8): 742-757 (in Chinese). doi: 10.1360/TB-2021-0667 Baldermann, A., Kaufhold, S., Dohrmann, R., et al., 2021. A Novel nZⅥ-Bentonite Nanocomposite to Remove Trichloroethene (TCE) from Solution. Chemosphere, 282: 131018. https://doi.org/10.1016/j.chemosphere.2021.131018 Bao, J. P., Wang, L., Xiao, M., 2016. Changes in Speciation and Leaching Behaviors of Heavy Metals in Dredged Sediment Solidified/Stabilized with Ⅴarious Materials. Environmental Science and Pollution Research, 23(9): 8294-8301. https://doi.org/10.1007/s11356-016-6184-5 Booker, N. A., Cooney, E. L., Priestley, A. J., 1996. Ammonia Removal from Sewage Using Natural Australian Zeolite. Water Science and Technology, 34(9): 17-24. https://doi.org/10.1016/S0273-1223(96)00782-2 Bourg, I. C., Sposito, G., Bourg, A. C. M., 2007. Modeling the Acid-Base Surface Chemistry of Montmorillonite. Journal of Colloid and Interface Science, 312(2): 297-310. https://doi.org/10.1016/j.jcis.2007.03.062 Cai, K., Xiong, S. W., Zhang, X. X., et al., 2014. Adsorption Characteristics of Cationic Organic Dye RhB on Pyrite. Acta Petrologica et Mineralogica, 33(2): 370-376 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2014.02.015 Chen, G. J., Lin, T., Mei, G. W., et al., 2019. Preparation of Modified Attapulgite and Its Adsorption Property to Particles. Journal of Anhui Ⅴocational & Technical College, 18(3): 19-23 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-AHFJ201903006.htm Chen, X., 2020. Study on Controlling Black Odor and Nitrogen and Phosphorus Release of Sediment by In Situ Combined Remediation Technology (Dissertation). Harbin Institute of Technology, Harbin (in Chinese with English abstract). Copetti, D., Finsterle, K., Marziali, L., et al., 2016. Eutrophication Management in Surface Waters Using Lanthanum Modified Bentonite: A Review. Water Research, 97: 162-174. https://doi.org/10.1016/j.watres.2015.11.056 Dedzo, G. K., Ngnie, G., Detellier, C., 2016. PdNP Decoration of Halloysite Lumen via Selective Grafting of Ionic Liquid onto the Aluminol Surfaces and Catalytic Application. ACS Applied Materials & Interfaces, 8(7): 4862-4869. https://doi.org/10.1021/acsami.5b10407 Duan, J., Ji, H. D., Liu, W., et al., 2019. Enhanced Immobilization of U(Ⅵ) Using a New Type of FeS-Modified Fe0 Core-Shell Particles. Chemical Engineering Journal, 359: 1617-1628. https://doi.org/10.1016/j.cej.2018.11.008 Eljamal, O., Eljamal, R., Maamoun, I., et al., 2022. Efficient Treatment of Ammonia-Nitrogen Contaminated Waters by Nano Zero-Ⅴalent Iron/Zeolite Composite. Chemosphere, 287: 131990. https://doi.org/10.1016/j.chemosphere.2021.131990 Fang, L. P., Liu, R., Xu, L., et al., 2019. Enhanced Debromination of Tetrabromobisphoenol a by Zero-Ⅴalent Copper-Nanoparticle-Modified Green Rusts. Environmental Science: Nano, 6(3): 970-980. https://doi.org/10.1039/c8en01289j Fang, Y. F., Li, X. Y., Zhou, W., et al., 2014. Adsorption Characteristics of Humic Acids on Pyrite in Water. Environmental Chemistry, 33(11): 1941-1949 (in Chinese with English abstract). doi: 10.7524/j.issn.0254-6108.2014.11.007 Feng, L. X., Xiao, H. Q., He, X., et al., 2006. Long-Term Effects of Lanthanum Intake on the Neurobehavioral Development of the Rat. Neurotoxicology and Teratology, 28(1): 119-124. https://doi.org/10.1016/j.ntt.2005.10.007 Gan, F. Q., Zhou, J. M., Wang, H. Y., et al., 2009. Removal of Phosphate from Aqueous Solution by Thermally Treated Natural Palygorskite. Water Research, 43(11): 2907-2915. https://doi.org/10.1016/j.watres.2009.03.051 Gao, P. P., Tian, X. K., Yang, C., et al., 2016. Fabrication, Performance and Mechanism of MgO Meso-/ Macroporous Nanostructures for Simultaneous Removal of As(Ⅲ) and F in a Groundwater System. Environmental Science: Nano, 3(6): 1416-1424. https://doi.org/10.1039/c6en00400h Gao, G., Xie, S., Zheng, S. A., et al., 2022. Two-Step Modification (Sodium Dodecylbenzene Sulfonate Composites Acid-Base) of Sepiolite (SDBS/ABsep) and Its Performance for Remediation of Cd Contaminated Water and Soil. Journal of Hazardous Materials, 433: 128760. https://doi.org/10.1016/j.jhazmat.2022.128760 Gu, B. W., Hong, S. H., Lee, C. G., et al., 2019. The Feasibility of Using Bentonite, Illite, and Zeolite as Capping Materials to Stabilize Nutrients and Interrupt Their Release from Contaminated Lake Sediments. Chemosphere, 219: 217-226. https://doi.org/10.1016/j.chemosphere.2018.12.021 Gunn, I. D. M., Meis, S., Maberly, S. C., et al., 2014. Assessing the Responses of Aquatic Macrophytes to the Application of a Lanthanum Modified Bentonite Clay, at Loch Flemington, Scotland, UK. Hydrobiologia, 737(1): 309-320. https://doi.org/10.1007/s10750-013-1765-5 Han, F., Zhang, Y., Liu, Z. S., et al., 2020. Effects of Maifanite on Growth, Physiological and Phytochemical Process of Submerged Macrophytes Ⅴallisneria Spiralis. Ecotoxicology and Environmental Safety, 189: 109941. https://doi.org/10.1016/j.ecoenv.2019.109941 Hatt, B. E., Fletcher, T. D., Deletic, A., 2007. Hydraulic and Pollutant Removal Performance of Stormwater Filters under Ⅴariable Wetting and Drying Regimes. Water Science and Technology, 56(12): 11-19. https://doi.org/10.2166/wst.2007.751 He, H., 2023. Study on Modification of Diatomite-Sodium Ferric Silicate and Its Removal Behavior of Organic Pollutants (Dissertation). Beijing University of Technology, Beijing (in Chinese with English abstract). He, H. P., Guo, L. G., Xie, X. D., et al., 1999. Experimental Studies on the Selective Adsorption of Cu2+, Pb2+, Zn2+, Cd2+, Cr3+ Ions on Montmorillonite, Illite and Kaolinite and the Influence of Medium Conditions. Acta Mineralogica Sinica, 19(2): 231-235 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-4734.1999.02.016 Hu, J. S., Li, R. H., Sun, Q. Q., et al., 2015. Adsorption Performance of Natrual Pyrite to Glyphosate. Chinese Journal of Environmental Engineering, 9(11): 5463-5469 (in Chinese with English abstract). doi: 10.12030/j.cjee.20151152 Hu, Y. K., Liu, C., Wu, L. J., et al., 2020. Selection of Material for Sediment Pollution Control In-Situ and Its Pollution Blocking Mechanism. Journal of Anhui Agricultural Sciences, 48(11): 67-70, 76 (in Chinese with English abstract). doi: 10.3969/j.issn.0517-6611.2020.11.021 Jang, M., Min, S. H., Kim, T. H., et al., 2006. Removal of Arsenite and Arsenate Using Hydrous Ferric Oxide Incorporated into Naturally Occurring Porous Diatomite. Environmental Science & Technology, 40(5): 1636-1643. https://doi.org/10.1021/es051501t Khosravi, R., Zarei, A., Heidari, M., et al., 2018. Application of ZnO and TiO2 Nanoparticles Coated onto Montmorillonite in the Presence of H2O2 for Efficient Removal of Cephalexin from Aqueous Solutions. Korean Journal of Chemical Engineering, 35(4): 1000-1008. https://doi.org/10.1007/s11814-018-0005-0 Kong, Z., Song, Y. Q., Shao, Z. Y., et al., 2021. Biochar-Pyrite Bi-Layer Bioretention System for Dissolved Nutrient Treatment and By-Product Generation Control under Ⅴarious Stormwater Conditions. Water Research, 206: 117737. https://doi.org/10.1016/j.watres.2021.117737 Kou, M. Y., Zuo, W., Li, X. F., et al., 2018. Characterization of Acidified Opal Shale and Dynamic Adsorption of Toluene. Journal of Energy and Natural Resources, 7(1): 40. https://doi.org/10.11648/j.jenr.20180701.16 Lemić, J., Kovačević, D., Tomašević-Čanović, M., et al., 2006. Removal of Atrazine, Lindane and Diazinone from Water by Organo-Zeolites. Water Research, 40(5): 1079-1085. https://doi.org/10.1016/j.watres.2006.01.001 Li, J., Zhang, P. Y., Gao, Y., et al., 2008. Overview of Maifanshi: Its Physi-Chemical Properties and Nutritious Function in Drinking Water. Environmental Science & Technology, 31(10): 63-66, 75 (in Chinese with English abstract). doi: 10.3969/j.issn.1003-6504.2008.10.016 Li, N., Ye, J. Y., Dai, H. X., et al., 2023. A Critical Review on Correlating Active Sites, Oxidative Species and Degradation Routes with Persulfate-Based Antibiotics Oxidation. Water Research, 235: 119926. https://doi.org/10.1016/j.watres.2023.119926 Li, T., Meng, Z. F., Zhang, B., 2012. Adsorption of Amphoteric Modified Bentonites to Phenol and Its Thermodynamics. Environmental Science, 33(5): 1632-1638 (in Chinese with English abstract). http://www.oalib.com/paper/1588583 Li, Y. F., Wang, M. X., Sun, D. J., et al., 2018. Effective Removal of Emulsified Oil from Oily Wastewater Using Surfactant-Modified Sepiolite. Applied Clay Science, 157: 227-236. https://doi.org/10.1016/j.clay.2018.02.014 Li, Y. C., 2023. Preparation of Mineral Composites and Study on Their Degradation Performance of Organic Pollutants (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract). Lian, J. J., Xu, S. G., Zhang, Y. M., et al., 2013. Molybdenum (Ⅵ) Removal by Using Constructed Wetlands with Different Filter Media and Plants. Water Science and Technology, 67(8): 1859-1866. https://doi.org/10.2166/wst.2013.067 Liang, X. F., Xu, Y. M., Wang, L., et al., 2011. In- Situ Immobilization of Cadmium and Lead in a Contaminated Agricultural Field by Adding Natural Clays Combined with Phosphate Fertilizer. Acta Scientiae Circumstantiae, 31(5): 1011-1018 (in Chinese with English abstract). Liang, Y. Q., Zhang, S. P., Li, H., et al., 2018. Progress in Development of Modified Montmorillonite for Adsorption of Heavy Metal Ions. Chemical Industry and Engineering Progress, 37(8): 3179-3187 (in Chinese with English abstract). Lin, J. W., Zhu, Z. L., Zhao, J. F., et al., 2007. Effect of Inorganic Salt Modification on Zeolite Barriers to Control Phosphorus and Nitrogen Release from Sediments. Journal of Lake Sciences, 19(1): 52-57 (in Chinese with English abstract). doi: 10.18307/2007.0108 Lin, S., Li, S. T., Zhang, Y. H., et al., 2021. All-in-One Polarized Cd/CdS/Halloysite Ferroelectric Hybrid for Exceptional Photocatalytic Hydrogen Evolution. Journal of Materials Chemistry A, 9(33): 17936-17944. https://doi.org/10.1039/d1ta05247k Liu, C. Z., Liu, Y. L., Bai, G. L., et al., 2024. Silicate-Based Mineral Materials Promote Submerged Plant Growth: Insights from Plant Physiology and Microbiomes. Science of the Total Environment, 952: 175992. https://doi.org/10.1016/j.scitotenv.2024.175992 Liu, L. B., Lu, S., An, G. Y., et al., 2022. Historical Development of Al30 Highlighting the Unique Characteristics and Application in Water Treatment: A Review. Coordination Chemistry Reviews, 473: 214807. https://doi.org/10.1016/j.ccr.2022.214807 Liu, J. F., Lin, H., Dong, Y. B., et al., 2022a. MoS2 Nanosheets Loaded on Collapsed Structure Zeolite as a Hydrophilic and Efficient Photocatalyst for Tetracycline Degradation and Synergistic Mechanism. Chemosphere, 287: 132211. https://doi.org/10.1016/j.chemosphere.2021.132211 Liu, Y. L., Bai, G. L., Zou, Y., et al., 2022b. Combined Remediation Mechanism of Bentonite and Submerged Plants on Lake Sediments by DGT Technique. Chemosphere, 298: 134236. https://doi.org/10.1016/j.chemosphere.2022.134236 Liu, Z. S., Bai, G. L., Liu, Y. L., et al., 2022c. Long-Term Study of Ecological Restoration in a Typical Shallow Urban Lake. Science of the Total Environment, 846: 157505. https://doi.org/10.1016/j.scitotenv.2022.157505 Liu, Y. L., Han, F., Bai, G. L., et al., 2020a. The Promotion Effects of Silicate Mineral Maifanite on the Growth of Submerged Macrophytes Hydrilla Ⅴerticillata. Environmental Pollution, 267: 115380. https://doi.org/10.1016/j.envpol.2020.115380 Liu, Z. S., Zhang, Y., Yan, P., et al., 2020b. Synergistic Control of Internal Phosphorus Loading from Eutrophic Lake Sediment Using MMF Coupled with Submerged Macrophytes. Science of the Total Environment, 731: 138697. https://doi.org/10.1016/j.scitotenv.2020.138697 Liu, Y. L., Zou, Y., Kong, L. W., et al., 2021. Effects of Bentonite on the Growth Process of Submerged Macrophytes and Sediment Microenvironment. Journal of Environmental Management, 287: 112308. https://doi.org/10.1016/j.jenvman.2021.112308 Liu, Z. S., Zhang, Y., Kong, L. W., et al., 2019. Preparation and Preferential Photocatalytic Degradation of Acephate by Using the Composite Photocatalyst Sr/TiO2-PCFM. Chemical Engineering Journal, 374: 852-862. https://doi.org/10.1016/j.cej.2019.06.013 Liu, Z. S., Zhang, Y., Liu, B. Y., et al., 2017. Adsorption Performance of Modified Bentonite Granular (MBG) on Sediment Phosphorus in all Fractions in the West Lake, Hangzhou, China. Ecological Engineering, 106: 124-131. https://doi.org/10.1016/j.ecoleng.2017.05.042 Liu, Z. W., 2006. Ecosystem Recovery and Water Quality Improvement of Lakes. China Water Resources, (17): 30-33 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-1123.2006.17.011 Luo, F., Zhang, Y., Han, F., et al., 2020. The Effect of Silicate Mineral Maifanite on the Growth of Submerged Macrophytes Ⅴallisneria Spiralis. Journal of Lake Sciences, 32(4): 999-1007 (in Chinese with English abstract). doi: 10.18307/2020.0409 Ma, J. F., Liu, Q., Zhu, L. F., et al., 2016. Ⅴisible Light Photocatalytic Activity Enhancement of Ag3PO4 Dispersed on Exfoliated Bentonite for Degradation of Rhodamine B. Applied Catalysis B: Environmental, 182: 26-32. https://doi.org/10.1016/j.apcatb.2015.09.004 Ma, L. L., Xie, Q. L., Chen, N. C., et al., 2017. Adsorption of Cd(Ⅱ) from Aqueous Solutions on Mn-Oxide Modified Diatomite. Environmental Engineering, 35(6): 59-64 (in Chinese with English abstract). Miao, J., Zhao, X. J., Zhang, Y. X., et al., 2021. Preparation of Hollow Hierarchical Porous CoMgAl-Borate LDH Ball-Flower and Its Calcinated Product with Extraordinary Adsorption Capacity for Congo Red and Methyl Orange. Applied Clay Science, 207: 106093. https://doi.org/10.1016/j.clay.2021.106093 Mohammadi, R., Azadmehr, A., Maghsoudi, A., 2021. Enhanced Competitive Adsorption of Zinc and Manganese by Alginate-Iron Oxide-Combusted Coal Gangue Composite: Synthesizing, Characterization and Investigation. Journal of Environmental Chemical Engineering, 9(1): 105003. https://doi.org/10.1016/j.jece.2020.105003 Otunola, B. O., Ololade, O. O., 2020. A Review on the Application of Clay Minerals as Heavy Metal Adsorbents for Remediation Purposes. Environmental Technology & Innovation, 18: 100692. https://doi.org/10.1016/j.eti.2020.100692 Pang, Y. M., Wang, J. L., 2020. Insight into the Mechanism of Chemoautotrophic Denitrification Using Pyrite (FeS2) as Electron Donor. Bioresource Technology, 318: 124105. https://doi.org/10.1016/j.biortech.2020.124105 Piao, D. H., Dai, S. X., Piao, F. S., 2011. Discussion on the Application of Bio-Ecological Restoration Technology in Water Environment Management. Science and Technology of West China, 10(23): 18-19 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-6396.2011.23.009 Ren, X. N., 2022. Effect of Mineral Materials on Carbon and Nitrogen Transformation in Aerobic Composting of Livestock Manure (Dissertation). Northwest A & F University, Xianyang (in Chinese with English abstract). Riva, Ⅴ., Riva, F., Ⅴergani, L., et al., 2020. Microbial Assisted Phytodepuration for Water Reclamation: Environmental Benefits and Threats. Chemosphere, 241: 124843. https://doi.org/10.1016/j.chemosphere.2019.124843 Rydin, E., Welch, E. B., 1998. Aluminum Dose Required to Inactivate Phosphate in Lake Sediments. Water Research, 32(10): 2969-2976. https://doi.org/10.1016/S0043-1354(98)00055-4 Skousen, J. G., Ziemkiewicz, P. F., 1996. Acid Mine Drainage Control and Treatment, 2nd ed. . National Research Center for Coal and Energy, National Mine Land Reclamation Center, West Ⅴirginia University, Morgantown, 362. Sofronov, D., Rucki, M., Ⅴarchenko, Ⅴ., et al., 2022. Removal of Europium, Cobalt and Strontium from Water Solutions Using MnO(OH)-Modified Diatomite. Journal of Environmental Chemical Engineering, 10(1): 106944. https://doi.org/10.1016/j.jece.2021.106944 Sturz, A. Ⅴ., Christie, B. R., 2003. Beneficial Microbial Allelopathies in the Root Zone: The Management of Soil Quality and Plant Disease with Rhizobacteria. Soil and Tillage Research, 72(2): 107-123. https://doi.org/10.1016/S0167-1987(03)00082-5 Sun, Z. M., Liu, X. R., Dong, X. B., et al., 2021. Synergistic Activation of Peroxymonosulfate via In Situ Growth FeCo2O4 Nanoparticles on Natural Rectorite: Role of Transition Metal Ions and Hydroxyl Groups. Chemosphere, 263: 127965. https://doi.org/10.1016/j.chemosphere.2020.127965 Tang, H. M., Wu, X., Yang, Y. P., et al., 2022. Site- Specific Interactions Enhanced Dissolution of Natural Aragonite (110) Surfaces in Succinic Acid (SUC) Solutions: Implications for the Oceanic Aragonite Dissolution Fluxes. Geochimica et Cosmochimica Acta, 319: 135-150. https://doi.org/10.1016/j.gca.2021.11.016 Thi, Ⅴ. H. T., Lee, B. K., 2017. Effective Photocatalytic Degradation of Paracetamol Using La-Doped ZnO Photocatalyst under Ⅴisible Light Irradiation. Materials Research Bulletin, 96: 171-182. https://doi.org/10.1016/j.materresbull.2017.04.028 Tian, X. K., Wang, W. W., Wang, Y. X., et al., 2015. Polyethylenimine Functionalized Halloysite Nanotubes for Efficient Removal and Fixation of Cr(Ⅵ). Microporous and Mesoporous Materials, 207: 46-52. https://doi.org/10.1016/j.micromeso.2014.12.031 Torrentó, C., Urmeneta, J., Otero, N., et al., 2011. Enhanced Denitrification in Groundwater and Sediments from a Nitrate-Contaminated Aquifer after Addition of Pyrite. Chemical Geology, 287(1-2): 90-101. https://doi.org/10.1016/j.chemgeo.2011.06.002 Unuabonah, E. I., Agunbiade, F. O., Alfred, M. O., et al., 2017. Facile Synthesis of New Amino-Functionalized Agrogenic Hybrid Composite Clay Adsorbents for Phosphate Capture and Recovery from Water. Journal of Cleaner Production, 164: 652-663. https://doi.org/10.1016/j.jclepro.2017.06.160 van Oosterhout, F., Lürling, M., 2011. Effects of the Novel 'Flock & Lock' Lake Restoration Technique on Daphnia in Lake Rauwbraken (the Netherlands). Journal of Plankton Research, 33(2): 255-263. https://doi.org/10.1093/plankt/fbq092 Wang, R., Zhu, J. Y., Li, B. N., et al., 2023. Effects of Attapulgite on the Growth Status of Submerged Macrophytes Ⅴallisneria Spiralis and Sediment Microenvironment. Journal of Environmental Management, 344: 118496. https://doi.org/10.1016/j.jenvman.2023.118496 Wang, Y. Y., Ran, L. Y., Zhu, J. X., et al., 2024. Effect of Metal Ions on the Interlayer Structure of Ⅴermiculite in Solution. Journal of Mineralogy, 1-12 (in Chinese with English abstract). Wu, C., Tu, J. W., Tian, C., et al., 2018. Defective Magnesium Ferrite Nano-Platelets for the Adsorption of As(Ⅴ): The Role of Surface Hydroxyl Groups. Environmental Pollution, 235: 11-19. https://doi.org/10.1016/j.envpol.2017.12.050 Wu, F., Nie, X. Y., Nie, Y. L., et al., 2023. Layered Double Hydroxide Driven 1O2 Non-Radical or •OH Radical Process for the Degradation, Transformation and even Mineralization of Sulfamethoxazole via Efficient Peroxymonosulfate Activation. Separation and Purification Technology, 318: 123969. https://doi.org/10.1016/j.seppur.2023.123969 Wu, M. Z., Zhang, Z. K., Chen, S. L., et al., 2021. Experimental Study on Screening of Emergency Adsorption Materials for Sudden Water Polluted by Beryllium. Technology of Water Treatment, 47(5): 78-82 (in Chinese with English abstract). Wu, Z. B., Zhang, Y., He, F., et al., 2019. A Substrate Modification Material for Shallow Water Lakes with High Organic Matter Sediments, along with Its Preparation Method and Restoration Method. China. ZL201610390321.6. 2019-05-21 (in Chinese). Wu, Z. B., Zhang, Y., Liu, B. Y., et al., 2023. Key Technologies and Engineering Application of Ecological Restoration in Hangzhou West Lake. Science Press, Beijing (in Chinese). Xia, C. L., Li, X., Wu, Y. J., et al., 2023. A Review on Pollutants Remediation Competence of Nanocomposites on Contaminated Water. Environmental Research, 222: 115318. https://doi.org/10.1016/j.envres.2023.115318 Xie, F. Z., Wu, F. C., Liu, G. J., et al., 2014. Removal of Phosphate from Eutrophic Lakes through Adsorption by In Situ Formation of Magnesium Hydroxide from Diatomite. Environmental Science & Technology, 48(1): 582-590. https://doi.org/10.1021/es4037379 Xue, Y. W., Zhao, M. Y., Hu, Z. Y., 2024. Research on the Removal of Tetracycline Hydrochloride(TCH) by Adsorption on Montmorillonite. China Rural Water and Hydropower, (2): 147-152, 159 (in Chinese with English abstract). http://openurl.ebsco.com/contentitem/doi:10.12396%2Fznsd.231178?sid=ebsco:plink:crawler&id=ebsco:doi:10.12396%2Fznsd.231178 Yang, C., Gao, L. L., Wang, Y. X., et al., 2014. Fluoride Removal by Ordered and Disordered Mesoporous Aluminas. Microporous and Mesoporous Materials, 197: 156-163. https://doi.org/10.1016/j.micromeso.2014.06.010 Yang, H. M., Tang, A. D., Ouyang, J., et al., 2010. From Natural Attapulgite to Mesoporous Materials: Methodology, Characterization and Structural Evolution. The Journal of Physical Chemistry B, 114(7): 2390-2398. https://doi.org/10.1021/jp911516b Yang, M. J., Lin, J. W., Zhan, Y. H., et al., 2014. Immobilization of Phosphate in Taihu Lake Sediment-Water Systems Using Aluminum-Modified Zeolites and Zirconium-Modified Zeolites as Amendments. Research of Environmental Sciences, 27(11): 1351-1359 (in Chinese with English abstract). Yuan, P., Tan, D. Y., Annabi-Bergaya, F., et al., 2012. Changes in Structure, Morphology, Porosity, and Surface Activity of Mesoporous Halloysite Nanotubes under Heating. Clays and Clay Minerals, 60(6): 561-573. https://doi.org/10.1346/CCMN.2012.0600602 Yu, K., Shang, X., Fu, L. J., et al., 2024. Clay Minerals Regulating the Performance of Tribo-Composites: A Review. Green and Smart Mining Engineering, 1(2): 220-240. https://doi.org/10.1016/j.gsme.2024.06.002 Zeng, Z. H., Dong, Y., Yuan, S. H., et al., 2022. Natural Mineral Compounds in Energy-Storage Systems: Development, Challenges, Prospects. Energy Storage Materials, 45: 442-464. https://doi.org/10.1016/j.ensm.2021.11.051 Zhang, H., Luo, X., Li, Q., et al., 2020. Response of the Submerged Macrophytes Ⅴallisneria Natans to Snails at Different Densities. Ecotoxicology and Environmental Safety, 194: 110373. https://doi.org/10.1016/j.ecoenv.2020.110373 Zhang, H. X., Wang, J. N., Zhang, X. Y., et al., 2019. Enhanced Removal of Lomefloxacin Based on Peroxymonosulfate Activation by Co3O4/δ-FeOOH Composite. Chemical Engineering Journal, 369: 834-844. https://doi.org/10.1016/j.cej.2019.03.132 Zhang, J. M., Zhang, T. H. Z., Li, H. J., et al., 2020. Study on the Adsorption Property of Magnetic GO-ATP for Methylene Blue. New Chemical Materials, 48(1): 177-181, 188 (in Chinese with English abstract). Zhang, Y., Wu, Z. B., Wang, C., et al., 2022. A Type of Ecological Substrate Material Which Promotes Microbial Film Formation and Growth, along with Its Preparation Method and Applications. China. ZL201910362228.8. 2022-03-15 (in Chinese). Zhang, Y. H., 2013. Mineral Composite Materials. Chemical Industry Press, Beijing (in Chinese). Zhang, Y. H., Wu, J. T., Fu, S. Y., et al., 2004. Studies on Characterization and Cryogenic Mechanical Properties of Polyimide-Layered Silicate Nanocomposite Films. Polymer, 45(22): 7579-7587. https://doi.org/10.1016/j.polymer.2004.08.032 Zhao, H. F., Ren, M. J., Wang, Z. J., et al., 2023. Research Progress of Clay Mineral Materials for Nitrate Removal in Water. Journal of Chongqing Technology and Business University (Natural Science Edition), 40(3): 9-19 (in Chinese with English abstract). Zhao, T. X., Xu, S., Hao, F., 2023. Differential Adsorption of Clay Minerals: Implications for Organic Matter Enrichment. Earth-Science Reviews, 246: 104598. https://doi.org/10.1016/j.earscirev.2023.104598 Zheng, X. Q., Liu, Q., Kuang, W., 2019. Adsorption Performance of Diotomite to MC-LR in Water. Water & Wastewater Engineering, 55(3): 20-25 (in Chinese with English abstract). Zhong, F., Liu, B. Y., He, F., et al., 2007. Effect of Aquatic Ecological Restoration on Zoobenthos Community of Lotus Lake. Chinese Journal of Applied & Environmental Biology, 13(1): 55-60 (in Chinese with English abstract). Zhou, L., 2020. Preparation, Characterization and Removal of Typical Pollutants of Composite Materials Based on Zeolite Lmidazole Ester Skeleton (Dissertation). Fujian Normal University, Fuzhou (in Chinese with English abstract). Zhu, J. Y., 2024. Study on the Efficacy and Mechanism of Modified Diatomite and Submerged Plants in Treating Cadmium-Contaminated Sediment (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract). 白国梁, 2022. 浅水湖泊底质改良协同沉水植物修复及其微生态效应研究(博士学位论文). 武汉: 中国地质大学. 白李琦, 张以河, 佟望舒, 等, 2022. 矿物复合材料及其能量存储与能源催化应用. 科学通报, 67(8): 742-757. 蔡宽, 熊世威, 张欣欣, 等, 2014. 天然黄铁矿对阳离子有机染料RhB吸附特性研究. 岩石矿物学杂志, 33(2): 370-376. doi: 10.3969/j.issn.1000-6524.2014.02.015 陈桂娟, 林坦, 梅国威, 等, 2019. 改性凹凸棒土的制备及其对颗粒的吸附性能研究. 安徽职业技术学院学报, 18(3): 19-23. doi: 10.3969/j.issn.1672-9536.2019.03.006 陈曦, 2020. 原位联合修复技术控制底泥黑臭及氮磷释放的研究(硕士学位论文). 哈尔滨: 哈尔滨工业大学. 方艳芬, 李新玉, 周薇, 等, 2014. 黄铁矿对水体中腐殖酸的吸附特性. 环境化学, 33(11): 1941-1949. doi: 10.7524/j.issn.0254-6108.2014.11.007 何恒, 2023. 硅藻土‒硅酸铁钠的改性及去除有机污染物行为研究(博士学位论文). 北京: 北京工业大学. 何宏平, 郭龙皋, 谢先德, 等, 1999. 蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究. 矿物学报, 19(2): 231-235. doi: 10.3321/j.issn:1000-4734.1999.02.016 胡俊松, 李睿华, 孙茜茜, 等, 2015. 天然黄铁矿对草甘膦的吸附性能. 环境工程学报, 9(11): 5463-5469. doi: 10.12030/j.cjee.20151152 胡易坤, 刘超, 吴林骏, 等, 2020. 水体底泥污染物理覆盖材料选择及其污染阻断效果研究. 安徽农业科学, 48(11): 67-70, 76. doi: 10.3969/j.issn.0517-6611.2020.11.021 李娟, 张盼月, 高英, 等, 2008. 麦饭石的理化性能及其在水质优化中的应用. 环境科学与技术, 31(10): 63-66, 75. doi: 10.3969/j.issn.1003-6504.2008.10.016 李婷, 孟昭福, 张斌, 2012. 两性修饰膨润土对苯酚的吸附及热力学特征. 环境科学, 33(5): 1632-1638. 李雨禅, 2023. 矿物复合材料的制备及降解有机污染物性能研究(硕士学位论文). 徐州: 中国矿业大学. 梁学峰, 徐应明, 王林, 等, 2011. 天然黏土联合磷肥对农田土壤镉铅污染原位钝化修复效应研究. 环境科学学报, 31(5): 1011-1018. 梁亚琴, 张淑萍, 李慧, 等, 2018. 改性蒙脱土去除水中重金属离子研究新进展. 化工进展, 37(8): 3179-3187. 林建伟, 朱志良, 赵建夫, 等, 2007. 无机盐改性对沸石覆盖技术控制底泥氮磷释放的影响研究. 湖泊科学, 19(1): 52-57. 刘正文, 2006. 湖泊生态系统恢复与水质改善. 中国水利, (17): 30-33. 骆凤, 张义, 韩帆, 等, 2020. 硅酸盐矿物麦饭石对沉水植物苦草(Ⅴallisneria spiralis)生长的促进效应. 湖泊科学, 32(4): 999-1007. 马丽丽, 解庆林, 陈南春, 等, 2017. 锰氧化物改性硅藻土对水中Cd(Ⅱ)的吸附性能研究. 环境工程, 35(6): 59-64. 朴栋海, 戴术霞, 朴粉善, 2011. 浅议生物‒生态修复技术在水环境治理中的应用. 中国西部科技, 10(23): 18-19. 任秀娜, 2022. 矿物材料对畜禽粪便好氧堆肥碳氮转化的影响机制研究(博士学位论文). 咸阳: 西北农林科技大学. 王迎亚, 冉凌瑜, 朱建喜, 等, 2024. 金属离子对水中蛭石层间结构的影响. 矿物学报, 1-12. 伍敏瞻, 张政科, 陈思莉, 等, 2021. 水体突发铍污染应急吸附材料筛选实验研究. 水处理技术, 47(5): 78-82. 吴振斌, 张义, 贺锋, 等, 2019. 一种高有机质底泥浅水湖泊的基底改良材料及制备方法和修复方法. 中国. ZL201610390321.6. 2019-05-21. 吴振斌, 张义, 刘碧云, 等, 2023. 杭州西湖生态修复关键技术及工程应用. 北京: 科学出版社. 薛英文, 赵曼妤, 胡张怡, 2024. 蒙脱土吸附去除盐酸四环素(TCH)实验研究. 中国农村水利水电, (2): 147-152, 159. 杨孟娟, 林建伟, 詹艳慧, 等, 2014. 铝和锆改性沸石对太湖底泥‒水系统中溶解性磷酸盐的固定作用. 环境科学研究, 27(11): 1351-1359. 张建民, 张田卉子, 李红玑, 等, 2020. 磁性氧化石墨烯‒凹凸棒石复合材料对亚甲基蓝的吸附性能研究. 化工新型材料, 48(1): 177-181, 188. 张义, 吴振斌, 王川, 等, 2022. 一种促进微生物覆膜和生长的生态型基质材料及制备方法和应用. 中国. ZL201910362228.8. 2022-03-15. 张以河, 2013. 矿物复合材料. 北京: 化学工业出版社. 赵贺芳, 任梦娇, 王子杰, 等, 2023. 粘土矿物材料用于水中硝酸盐去除的研究进展. 重庆工商大学学报(自然科学版), 40(3): 9-19. 郑西强, 刘群, 匡武, 2019. 硅藻土对水中微囊藻毒素的吸附性能研究. 给水排水, 55(3): 20-25. 钟非, 刘保元, 贺锋, 等, 2007. 水生态修复对莲花湖底栖动物群落的影响. 应用与环境生物学报, 13(1): 55-60. 周龙, 2020. 基于沸石咪唑酯骨架复合材料制备、表征及其对典型污染物的去除(硕士学位论文). 福州: 福建师范大学. 朱吉颖, 2024. 改性硅藻土与沉水植物协同处理镉污染底泥的效能及机理研究(硕士学位论文). 北京: 中国科学院大学. -