• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西菲律宾海盆东部第四纪沉积物磁学记录及其古气候意义

    孙军 吴怀春 黄威 路晶芳 时美楠 王双 李博雅 虞义勇 陈晓辉 强小科 陆凯

    孙军, 吴怀春, 黄威, 路晶芳, 时美楠, 王双, 李博雅, 虞义勇, 陈晓辉, 强小科, 陆凯, 2025. 西菲律宾海盆东部第四纪沉积物磁学记录及其古气候意义. 地球科学, 50(3): 918-933. doi: 10.3799/dqkx.2024.139
    引用本文: 孙军, 吴怀春, 黄威, 路晶芳, 时美楠, 王双, 李博雅, 虞义勇, 陈晓辉, 强小科, 陆凯, 2025. 西菲律宾海盆东部第四纪沉积物磁学记录及其古气候意义. 地球科学, 50(3): 918-933. doi: 10.3799/dqkx.2024.139
    Sun Jun, Wu Huaichun, Huang Wei, Lu Jingfang, Shi Meinan, Wang Shuang, Li Boya, Yu Yiyong, Chen Xiaohui, Qiang Xiaoke, Lu Kai, 2025. Magnetic Records of Quaternary Sediments in the Eastern West Philippine Sea Basin and Its Paleoclimatic Implications. Earth Science, 50(3): 918-933. doi: 10.3799/dqkx.2024.139
    Citation: Sun Jun, Wu Huaichun, Huang Wei, Lu Jingfang, Shi Meinan, Wang Shuang, Li Boya, Yu Yiyong, Chen Xiaohui, Qiang Xiaoke, Lu Kai, 2025. Magnetic Records of Quaternary Sediments in the Eastern West Philippine Sea Basin and Its Paleoclimatic Implications. Earth Science, 50(3): 918-933. doi: 10.3799/dqkx.2024.139

    西菲律宾海盆东部第四纪沉积物磁学记录及其古气候意义

    doi: 10.3799/dqkx.2024.139
    基金项目: 

    中国地质调查局项目 DD20221720

    中国地质调查局项目 DD20230643

    中国地质调查局项目 DD20191003

    中国地质调查局项目 DD20242758

    极地地质与海洋矿产教育部重点实验室开放基金资助项目 PGMR-2023-101

    详细信息
      作者简介:

      孙军(1989-),男,博士研究生,助理研究员,从事沉积学与古海洋学、磁性地层学研究. ORCID:0000-0002-0851-6488. E-mail:sunjun607@126.com

      通讯作者:

      黄威,E-mail:huangw@mail.cgs.gov.cn

      陆凯, E-mail: qimg_luk@163.com

    • 中图分类号: P736

    Magnetic Records of Quaternary Sediments in the Eastern West Philippine Sea Basin and Its Paleoclimatic Implications

    • 摘要: 为深入研究菲律宾海风尘输入对亚洲内陆气候变化的响应,对西菲律宾海盆东部的QYZ01孔柱状样沉积物开展详细的岩石磁学和古磁学研究,建立第四纪磁性地层年代框架,探讨第四纪以来沉积物磁学特征指示的亚洲内陆风尘输入、东亚冬季风强度变化.结果表明,QYZ01孔沉积物的磁性矿物主要为陆源碎屑成因的、低矫顽力的单畴磁铁矿.QYZ01孔岩心记录了从Brunhes正极性时至Matuyama负极性时下部,包括Jaramillo、Olduvai和Réunion正极性亚时.根据沉积速率推算钻孔底部年龄为~2.43 Ma.早、中更新世界线(M/B界线)位于200 cm深度处.环境磁学指标χARM/SIRM比值揭示钻孔所在研究区2.43 Ma以来东亚冬季风强度和亚洲内陆风尘输入的整体和阶段性加强,并在2.43~1.86 Ma、1.86~1.0 Ma、1.0~0.5 Ma、0.5~0 Ma四个阶段表现出不同的变化特征.本研究为深入理解亚洲内陆气候变化和东亚季风演变提供了新的认识.

       

    • 图  1  菲律宾海地理位置、环流体系(a)与研究钻孔位置(b)

      改自Kawabe and Fujio(2010)Jia et al.(2018)Yi et al.(2022)

      Fig.  1.  Schematic map showing the geographical settings, subduction zone, regional circulation patterns (a), and core locations (b) in the Philippine Sea

      图  2  QYZ01孔典型沉积物样品岩石磁学结果

      a~c. 磁化率随温度变化曲线,红色、蓝色曲线分别为加热和冷却曲线;d~f. 顺磁矫正后的磁滞回线;g~i. 一阶反转曲线图

      Fig.  2.  Rock magnetic results of typical samples of core QYZ01 sediments

      图  3  QYZ01孔磁学参数χlf与SIRM(a)、χlfχARM(b)、SIRM与χARM相关性分析(c)和Dearing图(d)

      蓝色圆圈、橙色圆圈、绿色圆圈和紫色圆圈分别表示QYZ01孔0~122 cm、122~190 cm、190~352 cm和352~512 cm深度段的样品

      Fig.  3.  Correlation diagrams of χlf and SIRM (a), χlf and χARM (b), SIRM and χARM (c), and Dearing plots (d) of the samples from the core QYZ01 sediments

      图  4  QYZ01孔沉积物磁学参数随深度变化曲线

      Fig.  4.  Variations of magnetic parameters with depth for the sediments of the QYZ01 core

      图  5  QYZ01孔沉积物磁化率各项异性特征

      a. 磁化率各向异性主轴方向的等面积投影图;b. L-F图;c. Pj-F图;d. Pj-T

      Fig.  5.  Anisotropy of magnetic susceptibility characteristics for all samples of the QYZ01 core

      图  6  QYZ01孔典型沉积物样品退磁正交矢量投影图与归一化剩磁强度衰减图

      退磁正交矢量投影图中的蓝色和红色圆圈分别代表水平投影和垂直投影

      Fig.  6.  Orthogonal vector plots and remanence decay curves of representative specimens from the QYZ01 core

      图  7  西菲律宾海盆QYZ01孔磁性地层分析结果

      a. 岩心照片;b. 磁化率;c. 最大角偏差;d. 磁倾角;e. 岩心QYZ01的极性,其中识别出了8个磁性带;f. 标准地磁极性柱(GPTS),据Channell et al.(2003)Ogg(2020);灰色磁倾角数据点表示不可靠的数据点

      Fig.  7.  Magnetostratigraphy of the QYZ01 core

      图  8  QYZ01孔与西菲律宾海盆其他钻孔磁性地层结果对比和钻孔沉积年代‒深度曲线及沉积速率模式

      F1929孔、D80孔、D71孔、D64孔和XT19孔据Yao et al.(2021)Yi et al.(2022);GPTS据Channell et al.(2003)Ogg(2020)

      Fig.  8.  Comparison in magnetostratigraphy between the QYZ01 core and other cores in the West Philippine Sea Basin and the age-depth and sedimentation rate model of the QYZ01 core

      图  9  西菲律宾海盆QYZ01孔沉积物χARM/SIRM比值(e)与深海底栖有孔虫氧同位素曲线(a, Lisiecki and Raymo,2005)、黄土堆积速率(b, Sun and An,2005)、帕里西维拉海盆PV090510孔沉积物(I+C+K)/S(即(伊利石+绿泥石+高岭石)/蒙脱石)比值(c, Ming et al.,2014)、北太平洋ODP885/886孔风尘通量(d, Rea et al.,1998)、南海IODP1146孔风尘通量(f, Wan et al.,2007)、灵台黄土石英平均粒径(标准化)(g, Sun et al.,2006)以及南海U1431D孔沉积物ARM/SIRM比值(h, Gai et al.,2020)对比

      Fig.  9.  Comparison of χARM/SIRM ratio (e) of the QYZ01 core in the Western Philippine Sea Basin (this study) with the stacked global benthic δ18O record of LR04 (a, Lisiecki and Raymo, 2005), dust mass accumulation rate in the Chinese Loess Plateau (b, Sun and An, 2005), the (illite+chlorite+kaolinite)/smectite ratio of PV090510 core in the Parece Vela basin (c, Ming et al., 2014), dust mass accumulation rate of ODP 885/886 core in the North Pacific (d, Rea et al., 1998), dust mass accumulation rate of IODP Site 1146 in the northern South China Sea (f, Wan et al., 2007), the mean grain size of quartz particles (MGSQ) from Lingtai loess in the Chinese Loess Plateau(g, Sun et al., 2006), and ARM/SIRM ratio of IODP U1431D core in the central South China Sea (h, Gai et al., 2020)

    • An, Z. S., Wu, G. X., Li, J. P., et al., 2015. Global Monsoon Dynamics and Climate Change. Annual Review of Earth and Planetary Sciences, 43: 29-77. https://doi.org/10.1146/annurev-earth-060313-054623
      Channell, J. E. T., Labs, J., Raymo, M. E., 2003. The Réunion Subchronozone at ODP Site 981 (Feni Drift, North Atlantic). Earth and Planetary Science Letters, 215(1-2): 1-12. https://doi.org/10.1016/S0012-821X(03)00435-7
      Dearing, J. A., 1999. Magnetic Susceptibility. In: Walden, J., Oldfield, F., Smith, J., eds., Environmental Magnetism: A Practical Guide. Technical Guide, No. 6. Quaternary Research Association, London, 35-62.
      Dearing, J. A., Bird, P. M., Dann, R. J. L., et al., 1997. Secondary Ferrimagnetic Minerals in Welsh Soils: a Comparison of Mineral Magnetic Detection Methods and Implications for Mineral Formation. Geophysical Journal International, 130(3): 727-736. https://doi.org/10.1111/j.1365-246X.1997.tb01867.x
      Ding, Y., Gao, W., Liu, M., et al., 2023. Response of Terrigenous Eolian Dust Sediment Composition to the East Asian Monsoon Evolution in the West Philippine Basin since 50 ka BP. Marine Geology & Quaternary Geology, 43(6): 74-85 (in Chinese with English abstract).
      Gai, C. C., Liu, Q. S., Roberts, A. P., et al., 2020. East Asian Monsoon Evolution since the Late Miocene from the South China Sea. Earth and Planetary Science Letters, 530: 115960. https://doi.org/10.1016/j.epsl.2019.115960
      Hou, X. L., Xu, J. S., Jiang, Z. X., et al., 2022. Environmental Magnetic Characteristics of Sediments of the Western Tropical Pacific: Response to the East Asian Winter Monsoon. Earth Science Frontiers, 29(5): 23-34 (in Chinese with English abstract).
      Huang, E. Q., Wang, S. H., Wei, S. H., et al., 2023. Precession Control of Interglacial Winter Monsoon Intensity over Tropical East Asia. Global and Planetary Change, 229: 104247. https://doi.org/10.1016/j.gloplacha.2023.104247
      Jia, Q., Li, T. G., Xiong, Z. F., et al., 2018. Hydrological Variability in the Western Tropical Pacific over the Past 700 kyr and Its Linkage to Northern Hemisphere Climatic Change. Palaeogeography, Palaeoclimatology, Palaeoecology, 493: 44-54. https://doi.org/10.1016/j.palaeo.2017.12.039
      Jiang, F. Q., Zhu, X., Li, T. G., et al., 2019. Increased Dust Deposition in the Parece Vela Basin since the Mid-Pleistocene Inferred from Radiogenic Sr and Nd Isotopes. Global and Planetary Change, 173: 83-95. https://doi.org/10.1016/j.gloplacha.2018.12.011
      Jiang, Z. X., Liu, Q. S., 2011. Magnetic Characterization and Paleoclimatic Significances of Late Pliocene-Early Pleistocene Sediments at Site 882A, Northwestern Pacific Ocean. Science in China (Series D), 41(9): 1242-1252 (in Chinese with English abstract).
      Jones, C. H., 2002. User-Driven Integrated Software Lives: "Paleomag" Paleomagnetics Analysis on the Macintosh. Computers & Geosciences, 28(10): 1145-1151. https://doi.org/10.1016/S0098-3004(02)00032-8
      Kawabe, M., Fujio, S., 2010. Pacific Ocean Circulation Based on Observation. Journal of Oceanography, 66(3): 389-403. https://doi.org/10.1007/s10872-010-0034-8
      Li, J. J., Fang, X. M., Song, C. H., et al., 2014. Late Miocene-Quaternary Rapid Stepwise Uplift of the NE Tibetan Plateau and Its Effects on Climatic and Environmental Changes. Quaternary Research, 81(3): 400-423. https://doi.org/10.1016/j.yqres.2014.01.002
      Liang, X., Yang, P. G., Yao, J., et al., 2021. Environmental Magnetic Record of East Asian Summer Monsoon Variability on the Chinese Loess Plateau Since 16 ka BP. Acta Geographica Sinica, 76(3): 539-549 (in Chinese with English abstract).
      Lisiecki, L. E., Raymo, M. E., 2005. A Pliocene-Pleistocene Stack of 57 Globally Distributed Benthic δ18O Records. Paleoceanography, 20(1): 2004PA001071. https://doi.org/10.1029/2004pa001071
      >Liu, Q. S., Jiang, Z. X., 2024. Interpretation of Rock Magnetism. Science Press, Beijing (in Chinese).
      Maher, B. A., 2007. Environmental Magnetism and Climate Change. Contemporary Physics, 48(5): 247-274. https://doi.org/10.1080/00107510801889726
      Meng, Q. Y., Li, A. C., Li, T. G., et al., 2009. Magnetic Properties of Sediments from the Western West Philippine Sea and Their Environmental Implications. Progress in Natural Science, 19(8): 868-876 (in Chinese with English abstract).
      Ming, J., Li, A. C., Huang, J., et al., 2014. Assemblage Characteristics of Clay Minerals and Its Implications to Evolution of Eolian Dust Input to the Parece Vela Basin since 1.95 Ma. Chinese Journal of Oceanology and Limnology, 32(1): 174-186. https://doi.org/10.1007/s00343-014-3066-x
      Ogg, J. G., 2020. Geomagnetic Polarity Time Scale. In: Gradstein, F. M., ed., Geologic Time Scale 2020. Elsevier, Amsterdam, 159-192. https://doi.org/10.1016/b978-0-12-824360-2.00005-x
      Oldfield, F., 1994. Toward the Discrimination of Fine-Grained Ferrimagnets by Magnetic Measurements in Lake and Near-Shore Marine Sediments. Journal of Geophysical Research: Solid Earth, 99(B5): 9045-9050. https://doi.org/10.1029/93jb03137
      Qin, H. F., Liu, Q. S., Pan, Y. X., 2008. The First-Order Reversal Curve (FORC) Diagram: Theory and Case Study. Chinese Journal of Geophysics, 51(3): 743-751 (in Chinese with English abstract).
      Rea, D. K., Snoeckx, H., Joseph, L. H., 1998. Late Cenozoic Eolian Deposition in the North Pacific: Asian Drying, Tibetan Uplift, and Cooling of the Northern Hemisphere. Paleoceanography, 13(3): 215-224. https://doi.org/10.1029/98pa00123
      Richter, C., Ali, J. R., 2015. Philippine Sea Plate Motion History: Eocene-Recent Record from ODP Site 1201, Central West Philippine Basin. Earth and Planetary Science Letters, 410: 165-173. https://doi.org/10.1016/j.epsl.2014.11.032
      Sun, Y. B., An, Z. S., 2005. Late Pliocene-Pleistocene Changes in Mass Accumulation Rates of Eolian Deposits on the Central Chinese Loess Plateau. Journal of Geophysical Research (Atmospheres), 110(D23): D23101. https://doi.org/10.1029/2005JD006064
      Sun, Y. B., Clemens, S. C., An, Z. S., et al., 2006. Astronomical Timescale and Palaeoclimatic Implication of Stacked 3.6-Myr Monsoon Records from the Chinese Loess Plateau. Quaternary Science Reviews, 25(1-2): 33-48. https://doi.org/10.1016/j.quascirev.2005.07.005
      Thompson, R., Oldfield, F., 1986. Environmental Magnetism. George Allen and Unwin, London.
      Toole, J. M., Millard, R. C., Wang, Z., et al., 1990. Observations of the Pacific North Equatorial Current Bifurcation at the Philippine Coast. Journal of Physical Oceanography, 20(2): 307-318. https://doi.org/10.1175/1520-0485(1990)0200307: ootpne>2.0.co;2 doi: 10.1175/1520-0485(1990)0200307:ootpne>2.0.co;2
      Wan, S. M., Li, A. C., Clift, P. D., et al., 2007. Development of the East Asian Monsoon: Mineralogical and Sedimentologic Records in the Northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(3-4): 561-582. https://doi.org/10.1016/j.palaeo.2007.07.009
      Wan, S. M., Yu, Z. J., Clift, P. D., et al., 2012. History of Asian Eolian Input to the West Philippine Sea over the last One Million Years. Palaeogeography, Palaeoclimatology, Palaeoecology, 326: 152-159. https://doi.org/10.1016/j.palaeo.2012.02.015
      Wang, C., Xu, F. J., Hu, B. Q., et al., 2020. Elemental Geochemistry of Core XT-4 Sediments from the Western Philippines Sea since 3.7 Ma and Its Paleoenvironmental Implications. Marine Sciences, 44(8): 205-214 (in Chinese with English abstract).
      Wang, S., Wang, Y. H., 2016. Magnetic Properties and Provenance of Surface Sediments in the Bohai and Yellow Seas. Quaternary Sciences, 36(1): 216-226 (in Chinese with English abstract).
      Wang, W., Xu, Z. K., Feng, X. G., et al., 2020. Composition Characteristics and Provenance Implication of Modern Dust in the West Philippine Sea. Earth Science, 45(2): 559-568 (in Chinese with English abstract).
      Xiao, C. H., Wang, Y. H., Lin, J., 2022. Provenance and Paleoclimate of Sediments in the Parece Vela Basin in Past 1 Ma: Inferences from Grain-Size and Clay Mineral Distribution. Acta Sedimentologica Sinica, 40(2): 508-524 (in Chinese with English abstract).
      Xu, Z. K., Li, T. G., Yu, X. K., et al., 2013. Sediment Provenance and Evolution of the East Asian Winter Monsoon since 700 ka Recorded by Major Elements in the West Philippine Sea. Chinese Science Bulletin, 58: 1044-1052. https://link.springer.com/article/10.1007/s11434-012-5538-8 doi: 10.1007/s11434-012-5538-8
      Yan, Q. S., Shi, X. F., Yuan, L., et al., 2022. Tectono-Magmatic Evolution of the Philippine Sea Plate: A Review. Geosystems and Geoenvironment, 1(2): 100018. https://doi.org/10.1016/j.geogeo.2021.100018
      Yao, H. Q., Wang, F. L., Wang, H. F., et al., 2021. Pleistocene Magnetostratigraphy of Four Cores in the West Philippian Basin and Regional Sedimentary Shift during the Mid-Pleistocene Transition. Geological Journal, 56(6): 2919-2929. https://doi.org/10.1002/gj.4082
      Yi, L., Hu, B. Q., Zhao, J. T., et al., 2022. Magnetostratigraphy of Abyssal Deposits in the Central Philippine Sea and Regional Sedimentary Dynamics during the Quaternary. Paleoceanography and Paleoclimatology, 37(5): e2021PA004365. https://doi.org/10.1029/2021PA004365
      Zhang, Z. S., Yan, Q., Zhang, R., et al., 2017. Teleconnection between Northern Hemisphere Ice Sheets and East Asian Climate during Quaternary. Quaternary Sciences, 37(5): 1009-1016 (in Chinese with English abstract).
      丁怡, 高伟, 刘明, 等, 2023. 近50 ka BP以来西菲律宾海盆沉积物风尘组分对东亚季风演化的响应. 海洋地质与第四纪地质, 43(6): 74-85.
      侯啸林, 徐继尚, 姜兆霞, 等, 2022. 热带西太平洋沉积物的环境磁学特征对东亚冬季风的响应. 地学前缘, 29(5): 23-34.
      姜兆霞, 刘青松, 2011. 上新世末期‒更新世早期西北太平洋ODP882A孔沉积物的磁学特征及其古气候意义. 中国科学(D辑), 41(9): 1242-1252.
      梁潇, 杨萍果, 姚娇, 等, 2021. 16 ka以来黄土高原东亚夏季风变化的环境磁学记录. 地理学报, 76(3): 539-549.
      刘青松, 姜兆霞, 2024. 岩石磁学演绎. 北京: 科学出版社.
      孟庆勇, 李安春, 李铁刚, 等, 2009. 西菲律宾海沉积物的岩石磁学性质及其古环境意义. 自然科学进展, 19(8): 868-876.
      秦华锋, 刘青松, 潘永信, 2008. 一阶反转曲线(FORC)图的原理及应用实例. 地球物理学报, 51(3): 743-751.
      王晨, 徐方建, 胡邦琦, 等, 2020. 3.7 Ma以来西菲律宾海XT-4孔沉积物元素特征及其古环境指示意义. 海洋科学, 44(8): 205-214.
      王双, 王永红, 2016. 黄渤海表层沉积物环境磁学特征分类及物源诊断. 第四纪研究, 36(1): 216-226.
      王薇, 徐兆凯, 冯旭光, 等, 2020. 西菲律宾海现代风尘物质组成特征及其物源指示意义. 地球科学, 45(2): 559-568.
      肖春晖, 王永红, 林间, 2022. 近1 Ma以来帕里西维拉海盆沉积物物源和古气候: 粒度和黏土矿物特征的指示. 沉积学报, 40(2): 508-524.
      张仲石, 燕青, 张冉, 等, 2017. 第四纪北半球冰盖发育与东亚气候的遥相关. 第四纪研究, 37(5): 1009-1016.
    • 加载中
    图(9)
    计量
    • 文章访问数:  206
    • HTML全文浏览量:  91
    • PDF下载量:  35
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-11-04
    • 刊出日期:  2025-03-25

    目录

      /

      返回文章
      返回